

PB   Oracle Data Guard 11g Handbook

Oracle
Data Guard 11g
Handbook

About the Authors
Larry Carpenter is a Distinguished Product Manager at Oracle USA and is a 
member of the Maximum Availability Architecture Product Management team in 
Server Technologies with a focus on Oracle’s High Availability and Disaster 
Recovery technologies. Larry has 35 years of experience in the computer industry, 
with the last 20 years focused on the business continuity needs of critical 
databases and applications. He is recognized by the Oracle user community as a 
Data Guard expert, an HA Technical Evangelist, and a consultant to diverse 
Enterprise customers worldwide. Larry’s expertise is ensuring the successful 
deployment of Oracle Disaster Recovery Solutions in diverse computing 
environments and bringing constantly evolving customer requirements to Oracle’s 
development teams. Larry is conversant in English, Italian, French, and German.

Joe Meeks is a Director of Product Management with Oracle’s Database High 
Availability Group in Server Technologies. Joe manages customer programs that 
focus on data protection and high availability solutions using Oracle Data Guard 
and the Oracle Maximum Availability Architecture. These programs ensure 
customer success through knowledge transfer of HA best practices while closely 
aligning future Oracle development priorities with customer requirements. Joe has 
30 years of experience in the computer industry helping customers to address HA 
requirements of business critical applications in manufacturing, retail, finance, 
energy, telecommunications, healthcare, and public sectors. He has a BS in 
Environmental Science and an MBA.

Charles Kim is an Oracle ACE and an Oracle Certified DBA. Charles works 
predominately in the Maximum Availability Architecture (MAA) space (RAC, ASM, 
Data Guard, and other HA solutions). Charles released his first book, Oracle
Database 11g New Features for DBA and Developers, in November 2007. Charles 
also co-authored Linux Recipes for Oracle DBAs with APress, published in 
November 2008. Charles is also the author of the MAA case study at Oracle’s web 
site (www.oracle.com/technology/deploy/availability/htdocs/FNF_CaseStudy.html). 
He holds certifications in Oracle, Red Hat Linux, and Microsoft; has more than 18 
years of IT experience; and has worked with Oracle since 1991. Charles blogs 
regularly at http://blog.dbaexpert.com and provides technical solutions to Oracle 
DBAs and developers.

Bill Burke is a Consulting Technical Director with Oracle’s System Performance and 
Architecture consulting practice. More than half of his 25 years in the IT industry has 
been committed to volunteer leadership roles. He has served on the board of 
directors of the International Oracle Users Group, International Oracle Users 
Council, Oracle Development Tools User Group, has led the first and second 
IOUG/Oracle Database 10g beta test teams, and has been an active participant on 
the public boards, forums, and Oracle mailing lists where he was known as the 
“Kinder and Gentler DBA.” Most of his work today in the SP&A Practice is in best 
practice audits and the implementation and performance tuning of Maximum 
Availability Architectures including Real Application Clusters (RAC), Data Guard, 
and their management with Enterprise Manager Grid Control. Bill has been an 
OCP-certified DBA since version 7 of Oracle.

http://blog.dbaexpert.com
www.oracle.com/technology/deploy/availability/htdocs/FNF_CaseStudy.html

Mr. Burke is a Certified Flight Instructor—Instrument and has logged hundreds of 
hours as a commercial pilot and flight instructor over the years. In his free time 
away from Oracle, he is an accomplished professional photographer who works 
with local youth sports organizations, non-profit organizations on a pro-bono 
basis, and specializes in scenic, wilderness, and travel photography with an 
emphasis on endangered species.

You can reach him at wburkejr@gmail.com.

Sonya Carothers is a Senior Oracle Database Administrator at PDX, Inc. She has 
more than 24 years of IT experience in database administration and software 
development. Sonya has worked as a senior database administrator, IT manager, 
and technical consultant. She has worked with several relational databases and 
has been working with Oracle since 1994. In addition, she has worked on a wide 
variety of projects in multi-platform environments. Her expertise includes high 
availability architecture, disaster recovery infrastructure, high performance 
database design, best practice database administration, and systems configuration.

Joydip Kundu is currently the Director of Development for Data Guard Logical 
Standby and LogMiner. He has been with Oracle since 1996 and is one of the 
original developers of Oracle LogMiner. Joydip is the architect of the log mining 
engine inside the Oracle RDBMS that underpins Data Guard Logical Standby, 
Streams Capture, and other redo-based features such as asynchronous Change 
Data Capture and Audit Vault. Joydip holds a Ph.D. in Computer Science from 
University of Massachusetts at Amherst.

Michael Smith is Principal Member of the technical staff in Oracle’s Maximum 
Availability Architecture (MAA) team in Server Technologies. Mike has been with 
Oracle for 10 years, previously serving as the Data Guard Global Technical Lead 
within Oracle Global Support. Mike’s current focus is developing, validating, and 
publishing HA best practices using Data Guard in an integrated fashion across all 
Oracle Database high availability features. His Data Guard technical specialties 
focus on network transport, recovery, role transitions, Active Data Guard, and client 
failover. He has published a dozen MAA Best Practice papers for Oracle 9i, 10g, 
and 11g. He has been a contributing author to other Oracle Press publications. 
Mike has also been speaker at the previous three Oracle Open World events  
held in San Francisco. His “What They Didn’t Print in the DOC” best practice 
presentations covering Data Guard and MAA are a favorite among Oracle users, 
with attendance at the top of all Oracle Database technology presentations.

Nitin Vengurlekar, a consulting member of the technical staff at Oracle, is the 
author of Oracle Automatic Storage Management by Oracle Press. With more than 
22 years of IT experience, including OS390 Systems Programming, UNIX Storage 
Administration, System and Database Administration, Nitin is a seasoned systems 
architect who has successfully assisted numerous customers to deploy highly 
available Oracle systems. He has worked for Oracle for more than 14 years, 
currently in the Real Application Clusters (RAC) engineering group, with specific 
emphasis on ASM and storage. He has written many papers on ASM usage and 
deployments on various storage array architectures and serves as a writer of and 
contributor to Oracle documentation as well as Oracle education material.

iv   Oracle Data Guard 11g HandbookAbout the Technical Editors
Michael Powell is an OCP-certified DBA with more than 15 years of IT experience. He has more 
than 12 years of experience in implementing and administering Oracle for Fortune 500 companies. 
Michael has worked as lead DBA for RAC and Data Guard implementations. He is also a contributor 
to the “Maximum Availability Architecture Implementation Case Study for Fidelity National Financial 
(FNF)” and has been a participant in Oracle Database Beta programs. Michael specializes in 
database and Oracle Application implementations. Here’s a link to a case study: www.oracle.com/
technology/deploy/availability/htdocs/FNF_CaseStudy.html.

Sreekanth Chintala is an OCP-certified DBA, has been using Oracle technologies for more than  
a decade, and has more than 15 years of IT experience. Sreekanth specializes in Oracle high 
availability, disaster recovery, and grid computing. Sreekanth is an author of many technical white 
papers and a frequent speaker at Oracle OpenWorld, IOUG, and local user group meetings. 
Sreekanth is active in the Oracle community and is the current web seminar chair for the community-
run Oracle Real Application Clusters Special Interest Group (www.ORACLERACSIG.org).

www.oracle.com/technology/deploy/availability/htdocs/FNF_CaseStudy.html
www.oracle.com/technology/deploy/availability/htdocs/FNF_CaseStudy.html
www.ORACLERACSIG.org

iv   Oracle Data Guard 11g Handbook

Oracle
Data Guard 11g
Handbook

Larry Carpenter  Joe Meeks 
Charles Kim  Bill Burke 
Sonya Carothers  Joydip Kundu 
Michael Smith  Nitin Vengurlekar 

New York  Chicago  San Francisco 
Lisbon  London  Madrid  Mexico City  Milan   
New Delhi  San Juan  Seoul  Singapore  Sydney  Toronto

Copyright © 2009 by The McGraw-Hill Companies, Inc. All rights reserved. Except as permitted under the United States
Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in
a database or retrieval system, without the prior written permission of the publisher.

ISBN: 978-0-07-162148-9

MHID: 0-07-162148-2

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-162111-3, MHID: 0-07-162111-3.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a
trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of
infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in
corporate training programs. To contact a representative please e-mail us at bulksales@mcgraw-hill.com.

Information has been obtained by Publisher from sources believed to be reliable. However, because of the possibility of human
or mechanical error by our sources, Publisher, or others, Publisher does not guarantee to the accuracy, adequacy, or complete-
ness of any information included in this work and is not responsible for any errors or omissions or the results obtained from
the use of such information. Oracle Corporation does not make any representations or warranties as to the accuracy, adequacy,
or completeness of any information contained in this Work, and is not responsible for any errors or omissions.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and
to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to
store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create deriv-
ative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-
Hill’s prior consent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly
prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WAR-
RANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM
USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA
HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUD-
ING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the work will meet your
requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to
you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting there-
from. McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no circumstances
shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages
that result from the use of or inability to use the work, even if any of them has been advised of the possibility of such damages.
This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or
otherwise.

This book is dedicated to all Oracle Database administrators in the hope that our words will
be their guide to success and restful nights. And to those non–Oracle Database

administrators, may you wish you, too, were using Oracle Data Guard!
—Larry Carpenter

A quick shout out to the family—Gretchen, and my kids, Emily, Abby, and Ted.
We are all hoping a lot of people buy this book so it can help pay the college bills.

—Joe Meeks

I dedicate this book to my precious wife, Melissa, and our three boys, Isaiah, Jeremiah, and
Noah, for their support during the project and sacrifice of precious family time. Thank you

for your unceasing prayers and encouragement.
—Charles Kim

I’d like to dedicate this book to my loving wife, Sandra, for the commitment of her time
with me; without her support and continued motivation, my contribution to this book

would not have been possible.
—Bill Burke

To my son, Julian, thanks for your love, encouragement, and laughter.
—Sonya Carothers

To my five-year-old daughter, Ria Rajyasri, for making my journey as a father so full of joy
and wonder.

—Joydip Kundu

I would like to dedicate my portion of this book to my wife, Tina, and two of the best
daughters a father could ask for, Jessica and Madison. I know having a “computer geek”
for a husband and father can at times be tedious (“but Tina, bandwidth is determined by

how quickly a medium can change states”) and embarrassing (my T-shirt that has “DAD”
spelled out in binary), which makes me love you guys all the more.

—Mike Smith

I would like to dedicate this book to my kids, Ishan and Nisha; to my wife, Priya; and most
importantly to my parents, whose guidance and support have always been invaluable.

—Nitin Vengurlekar

This page intentionally left blank

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 

Contents

Foreword   . .  xvii
Acknowledgments   . .  xix
Introduction   . .  xxi

  1  Data Guard Architecture   .   1
Data Guard Overview   . .  2

What Is Redo?   . .  2
Redo Transport Services   . .  5

Synchronous Redo Transport   . .  5
Asynchronous Redo Transport   . .  7
Redo Transport Compression   . .  9
Automatic Gap Resolution   . .  9

Apply Services   . .  11
Redo Apply (Physical Standby)   . .  12
SQL Apply (Logical Standby)   . .  15
Can’t Decide? Then Use Both!   . .  17

Data Guard Protection Modes   . .  18
Maximum Performance   . .  18
Maximum Availability   . .  18
Maximum Protection   . .  19

Role Management Services   . .  19
Switchover   . .  20
Failover   . .  21

Data Guard Management   . .  24
Active Standby Databases   . .  26

Offload Read-Only Queries and Reporting   . .  26
Offload Backups   . .  27
Testing   . .  27

Data Guard and the Maximum Availability Architecture   . .  29
Conclusion   . .  29

ix

 Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

x   Oracle Data Guard 11g Handbook

 Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Contents  xix   Oracle Data Guard 11g Handbook

  2  Implementing Oracle Data Guard   .   31
Plan Before You Implement   . .  32

Determining Your Requirements   . .  33
Understanding the Configuration Options   . .  35
Relating the RPO and RTO to the Protection Mode   . .  62

Creating a Physical Standby Database   . .  63
Choosing Your Interface   . .  63
Before You Start   . .  64
Using Oracle Enterprise Manager Grid Control   . .  65
The Power User Method   . .  78

Creating a Logical Standby   . .  98
Data Guard and Oracle Real Application Clusters   . .  105
Conclusion   . .  106

  3  Redo Processing   .   107
Important Concepts of Oracle Recovery   . .  108

ACID Properties   . .  108
Oracle Recovery   . .  109
Life of a Transaction   . .  111
Nologging Operations   . .  111

The Components of a Physical Standby   . .  114
Real-time Apply   . .  117
Scaling and Tuning Data Guard Apply Recovery   . .  118
Parallel Media Recovery   . .  119
Tools and Views for Monitoring Physical Standby Recovery   .  120

Physical Standby Corruption Detection   . .  124
11g New Data Protection Changes   . .  124
Data Protection and Checking on a Physical Standby   .  125

Conclusion   . .  126

  4  Logical Standby   .   127
Characterizing the Dataset Available at the Logical Standby   . .  129

Characterizing the Dataset Replicated from the Primary Database   .  129
Protecting Replicated Tables on a Logical Standby   . .  134
Customizing Your Logical Standby Database (or Creating  

a Local Dataset at the Logical Standby)   . .  141
Understanding the Operational Aspects of a Logical Standby   .  145
Looking Inside SQL Apply   . .  145

Tuning SQL Apply   . .  157
Some Rules of Thumb   . .  158
Determining Whether SQL Apply Is Lagging   . .  158
Determining Whether SQL Apply Is the Bottleneck   . .  159
Determining Which SQL Apply Component Is the Bottleneck   .  159

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 

 Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 

 Data Guard 11g Handbook

Troubleshooting SQL Apply   . .  164
Understanding Restarts in SQL Apply   . .  164
Troubleshooting Stopped SQL Apply   . .  167

Conclusion   . .  170

  5  Implementing Oracle Data Guard Broker   .   171
Overview of the Data Guard Broker   . .  172

The Broker Process Model   . .  173
The Broker Process Flow   . .  174
The Broker Configuration Files   . .  176
The Broker CLI   . .  178

Getting Started with the Broker   . .  179
Configuring the Broker Parameters   . .  179
The Broker and Oracle Net Services   . .  183
RAC and the Broker   . .  187
Connecting to the Broker   . .  190

Managing Data Guard with the Broker   . .  193
Creating and Enabling a Broker Configuration   . .  193
Changing the Broker Configuration Properties   . .  200
Changing the State of a Database   . .  211
Changing the Protection Mode   . .  212

Monitoring Data Guard Using the Broker   . .  214
Removing the Broker   . .  216
Conclusion   . .  217

  6  Oracle Enterprise Manager Grid Control Integration   .   219
Accessing the Data Guard Features   . .  220

Configuring Data Guard Broker with OEM Grid Control   .  221
Verify Configuration and Adding Standby Redo Logs   .  224
Viewing Metrics   . .  226
Modifying Metrics   . .  227
Viewing the Alert Log File   . .  228
Enabling Flashback Database   . .  230
Reviewing Performance   . .  231
Changing Protection Modes   . .  234
Editing Standby Database Properties   . .  236
Performing a Switchover   . .  238
Performing a Manual Failover   . .  240
Fast-Start Failover   . .  243
Creating a Logical Standby   . .  244
Managing Active Standby   . .  250
Managing Snapshot Standby   . .  250
Removing a Standby Database from Broker Control   . .  250

Keeping an Eye on Availability   . .  252
Conclusion   . .  255

 Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

xii   Oracle Data Guard 11g Handbook

 Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Contents  xiiixii   Oracle Data Guard 11g Handbook

  7  Monitoring Data Guard Implementations   .   257
Monitoring the Data Guard Environment   . .  258

Mining the Alert Log File (PS+LS)   . .  259
Gathering Statistical Information from Archive Log History (PS+LS)   .  264
Detecting Archive Log Gaps (PS+LS)   . .  266
Identifying Delays in Redo Transport (PS)   . .  268
Monitoring Archive Log Destinations (PS+LS)   . .  269
Examining Apply Rate and Active Rate (PS)   . .  271
Reviewing Transport and Apply Lag (PS+LS)   . .  272
Determining the Current Time on the Standby Database (PS)   .  273
Reporting the Status of Managed Recovery Process (PS)   .  275

Data Guard Menu Utility   . .  276
Reviewing the Current Data Guard Environment   . .  277

Checking the Password File (PS+LS)   . .  278
Checking for Nologging Activities (PS+LS)   . .  279
Looking at Archivelog Mode and Destinations (PS+LS)   .  282
Checking Standby File Management (PS)   . .  284
Revealing Errors in the Data Guard Status View (PS)   . .  284
Logical Standby Data Guard Menu   . .  285

Conclusion   . .  297

  8  Switchover and Failover   .   299
Introduction to Role Transition   . .  300

Switchover   . .  300
Failover   . .  302
Switchover vs. Failover   . .  309

Flashback Technologies and Data Guard   . .  309
Performing a Switchover   . .  311

Configuration Completeness Check   . .  311
Preparatory Checks   . .  311
Preprocessing Steps   . .  314
Switching over to a Physical Standby   . .  315
Switching over to a Logical Standby   . .  320
Using the Broker or Grid Control to Switchover   . .  323
Switchover Health Check   . .  324

Performing a Failover   . .  324
Failing over to a Physical Standby   . .  326
Failing over to a Logical Standby   . .  328
Bringing Back the Old Primary    . .  329
Using the Broker or Grid Control to Failover   . .  334
Automatic Failover   . .  335

A Final Word on Multiple Standbys   . .  348
Conclusion   . .  348

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 
al.

 Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 

 Data Guard 11g Handbook

  9  Active Data Guard   .   349
Physical Standby—Open Read-Only   . .  350

Why Read-Only?   . .  351
The Downside of Read-Only or Read-Write Mode   . .  352

Snapshot Standby for QA and Test Environments   . .  353
Read Write Standby in Oracle Database 10g  . .  353
Snapshot Standbys in Oracle Database 11g  . .  357

Real Application Testing   . .  364
Database Replay   . .  365
SQL Performance Analyzer   . .  370

Active Data Guard   . .  371
Configuring Active Data Guard   . .  374

Conclusion   . .  376

  10  Automating Site and Client Failover   .   377
Defining the Problem   . .  378

Complete Site Failover   . .  378
Partial Site Failover   . .  379

The Nitty Gritty    . .  379
Connection Load Balancing and Connect Time Failover   .  380
Outbound Connect Timeout   . .  381
Transparent Application Failover   . .  382
Fast Application Notification   . .  384
The DB_ROLE_CHANGE System Event   . .  386

Implementing Client Failover   . .  387
Complete Site Failover Configuration   . .  387

Conclusion   . .  394

  11  Minimizing Planned Downtime Using Data Guard Switchover   .   395
Overview of Planned Migration   . .  396
Leveraging Data Guard Switchover for Planned Migration   . .  397

Case 1–New Data Center   . .  397
Case 2–Move to ASM   . .  397

Performing a Database Rolling Upgrade Using Data Guard   . .  398
Leveraging Rolling Upgrades Using SQL Apply   . .  399
Rolling Upgrades Using Transient Logical Standby   . .  402

Conclusion   . .  408

  12  Backup and Recovery Considerations   .   409
RMAN Basics   . .  410
RMAN Integration with Data Guard   . .  411

Block Change Tracking Support   . .  411
Control File Management   . .  412
Resynchronizing the RMAN Catalog   . .  412

 Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

xiv   Oracle Data Guard 11g Handbook

 Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Contents  xvxiv   Oracle Data Guard 11g Handbook

RMAN Configuration in Data Guard   . .  412
Example Configuration for a Primary Database   . .  414
Example Configuration for a Backup Standby Database   .  415
Example Configuration for Other Physical Standby Databases   .  415

Backup Strategies   . .  415
Backup Scenarios   . .  417

Backup Database Not Backed Up   . .  417
Full Backups on Primary   . .  417
Backup as Copy   . .  419
Image Copy Rolled Forward   . .  420
Standby Database Creation   . .  423
Backups on a Standby Database   . .  423
Archive Backups   . .  426

General Recovery Strategies   . .  426
Media Failure   . .  426
Block Corruption   . .  426
User Errors   . .  429

Recovery Scenarios   . .  430
Loss of a Datafile on a Primary Database   . .  430
Loss of a Datafile on a Standby Database   . .  431
Loss of Standby Controlfile   . .  432
Loss of Primary Controlfile   . .  432
Loss of an Online Redo Log File   . .  432
Incomplete Recovery of the Primary Database   . .  436
Recovering from a Dropped Table   . .  437
Recover a Missing Datafile from a Backup Taken on the Standby   .  437

General Best Practices   . .  440
Conclusion   . .  441

  13  Troubleshooting Data Guard   .   443
Diagnostic Information   . .  444

Database Alert Logs   . .  444
Observer Log Files   . .  447
Data Guard Trace Files   . .  447
Data Guard Broker Log Files and Tools   . .  448
Dynamic Performance Views   . .  449

Data Guard Configuration and Management Errors   . .  450
Common Management Issues   . .  450
Physical Standby Issues   . .  456
Logical Standby Database Failures   . .  459
Switchover Issues   . .  461
Failover Issues   . .  463
Data Guard Broker Issues   . .  464
Errors Converting to a Snapshot Standby   . .  468

xiv   Oracle Data Guard 11g Handbook Contents  xvxiv   Oracle Data Guard 11g Handbook

Helpful Hints and Tips   . .  468
Avoid Refreshing the Standby Control File   . .  468
Avoid Using the NOLOGGING Clause   . .  468
OMF—Copying Control File   . .  469

Conclusion   . .  470

  14  Deployment Architectures   .   471
Manufacturing Company: HA Configuration   . .  473
Utility Company: Zero Data Loss HA/DR   . .  476
Retail Brokerage Firm: HA/DR with Zero Data Loss and  

Extended Geographic Separation   . .  478
Government Agency: Protection from Multi-site Threats   . .  480
Pharmaceutical Company: Centralized HA/DR and Data Distribution   .  483
Web Retailer: HA/DR with Reader-farm Scale Out   . .  484
Insurance Company: Maximum Availability Architecture   . .  486
Conclusion   . .  488

  A  Data Guard vs. Array-based Remote Mirroring Solutions   .   491
The Basics   . .  492
Topology   . .  493
Performance   . .  493
Reliability   . .  494
Final Thoughts   . .  495

    Index   .   497

This page intentionally left blank

Foreword

I’ve often said that there is one thing a DBA is not allowed to get wrong, and that is 
recovery. To be more general, it is the DBA’s job to ensure that data that cannot ever be 
lost is never lost. If you cannot provide for continuous, no data loss access to all of your 
corporate data, you have not done the primary job a DBA should do. Providing a solid 
disaster recovery contingency is part of the job of the DBA, and Oracle Data Guard is the 
way to provide for it.

Oracle provides many features and functions to facilitate data backup, recovery, and 
availability. However, there are so many features that at times the implementation and 
configuration can be daunting. You’ll have questions such as “What is the ‘best way’ to 
provide continuous availability given my circumstances?” “How do I decide between all of 
the configurations possible?” “What is the tradeoff of doing it one way versus the other?” 
“How does it all actually work under the covers?” This book covers in depth all of these 
questions, plus others. The authors, Larry Carpenter, Joe Meeks, Charles Kim, Bill Burke, 
Sonya Carothers, Joydip Kundu, Michael Smith, and Nitin Vengurlekar, are experts in the 
field. They are the people I go to in order to get answers myself.

The book begins by explaining the Data Guard Architecture, starting with the 
transaction log (REDO) information—what role it plays, how it is transmitted, and how it is 
ultimately used. The Data Guard architecture is built up, layer by layer, and presented in a 
manner that’s easy to understand. You’ll learn not only how the redo is transmitted, but how 
the receiving disaster recovery site applies (uses) the redo information. You’ll learn the 
differences between a physical standby database and a logical standby database. You’ll be 
introduced to Data Guard’s various configuration modes—either for extreme performance 
on one hand or for guaranteed zero data loss on the other. You’ll also learn about some 
everyday uses for your standby databases; they are not just for failures anymore.

The book progresses to describe the actual physical installation, setup, and configuration 
of your standby instances. It starts with a section on “before you even think about setting this 

xvii

xviii   Oracle Data Guard 11g Handbook

up, this is what you need to think about”—an approach I like. Rather than just plowing ahead and 
making uninformed decisions, you’ll learn about what specifically you need to ask. Important 
terms such as Recovery Point Objective (RPO) (the point in time to which data must be protected, 
which is a measure of how much “loss” would be acceptable, say from zero to a lot) and Recovery 
Time Objective (RTO) (the amount of time you can afford to have the data be unavailable, again 
from zero to a lot) are introduced and discussed. Unless you can assign some values to those 
metrics, you’ll find it difficult, if not impossible, to make decisions about how to configure your 
disaster recovery solution.

After covering how to install and configure your installation, the book addresses performance 
considerations, including frequently asked questions. (Believe me, I know. On http://asktom.
oracle.com/, I see them asked frequently.) How do you tune Data Guard? How do you measure 
Data Guard response times? Where am I spending my time in Data Guard? All of these questions 
and more are covered with sections on tuning the recovery rate (the rate of application of redo at 
the disaster recovery site), how to perform Data Guard recovery in parallel, troubleshooting redo 
apply issues, and understanding the operational aspects (how it all works). To me, that is key. If 
you understand how something works, you are well equipped to “fix” it.

Next in line is a series of chapters on managing your Data Guard environment, either by 
using automated tools such as Enterprise Manager or by taking a more “do-it-yourself scripting” 
approach.

What follows are chapters covering something you hope never to have to do: failover. Well, 
they actually cover switchover, a graceful, reversible process whereby you can turn production 
into standby and standby into production, as well as failover. These are areas in which you will 
need to practice; you don’t want to find out the day you need to failover that either you don’t 
know how to failover, or, even worse, you cannot failover due to a mistake that was not 
discovered previously.

The remainder of the book covers other very useful information such as “What else can I use 
this standby thing for?” “How does this impact my backup and recovery procedures?” “How have 
other people implemented Data Guard and why did they make the choices they did?” “Why is 
Data Guard the right way to provide for disaster recovery for my database, and what is wrong 
with other methods?” And more.

In short, if you need a roadmap describing how to implement disaster recovery, what you 
need to think about, what are your options, and which ones you should explore, under what 
circumstances, then this book is for you. It combines the “How does it work?” with “How do I 
make it work?” in a practical, hands-on way.

—Thomas Kyte
asktom.oracle.com

xix

http://asktom.oracle.com/
http://asktom.oracle.com/

xviii   Oracle Data Guard 11g Handbook

Acknowledgments

We want to acknowledge our sponsoring editor, Lisa McClain, for her commitment to this 
book and her patience with all the authors. Thank you for understanding our busy 
schedules and personal conflicts while pushing us to deliver in a timely manner. This book 
would be delayed by another year without her involvement and nurturing.

We also want to acknowledge our acquisitions coordinator, Meghan Riley, editorial 
supervisor, Janet Walden, the meticulous work of copy editor Lisa Theobald, project 
manager Vastavikta Sharma, proofreader Paul Tyler, and the entire production and 
marketing team at Oracle Press. We would also like to extend our personal gratitude to our 
incredible technical editors, Michael Powell and Sreekanth Chintala, for their great review 
of all the chapters and contributions.

—Larry, Joe, Charles, Bill, Sonya, Joy, Mike, and Nitin

First and foremost, I’d like to thank Bernadette, my wife of 35-plus years, for putting up 
with my insanity and late nights while we were all working on this book. I would not have 
made it without her. I would also like to thank Rick Anderson and Mark W. Johnson of 
Oracle for first introducing me to Database Disaster Recovery, first with Oracle Rdb 
(originally from Digital and an Oracle product since 1994) and then with Oracle Data 
Guard starting with Oracle8i. Their dedication to ensuring that our customers were 
successful was my guide and support in my endeavors to do the same. Finally, my thanks to 
my manager, Ashish Ray, and our senior VP, Juan Loaiza, for allowing me to contribute to 
this book.

—Larry Carpenter

Many thanks to the development staff who have made Data Guard the best data 
protection and data availability solution for enterprise databases. Additional thanks to the 
members of Oracle’s Maximum Availability Architecture team who document and validate 

xix

xx   Oracle Data Guard 11g Handbook

best practices for Oracle’s high availability solutions. But the biggest thanks of all are reserved for 
the DBAs and IT managers who recognize the value offered by Data Guard. Their efforts transform 
Data Guard from a concept represented by lines of code and documentation into real business 
value for their companies.

—Joe Meeks

I want to extend a personal thank you to our lead author, Larry Carpenter, for his enormous 
sacrifice and commitment to bringing the technical content of this book together. Without Larry’s 
sacrifices, this book would not have been possible.

—Charles Kim

First and foremost, I thank the dedicated team of authors involved in our project, and in 
particular Larry Carpenter, who was always there front and center to support each of us as we 
worked to complete our contributions to the book. I’d like to thank Charles Kim, who I’ve worked 
with for many years and have come to respect for his professionalism and dedication to the 
Oracle technology arena, for inviting me to participate in this work, and for his patience while we 
sometimes struggled to meet every deadline. Finally, for the sacrifices my family has made while I 
worked late and on weekends after arriving home from traveling all week to complete my 
portions of the book, thank all of you.

—Bill Burke

I would like to thank my friend and colleague Charles Kim for the opportunity to work on this 
project. During the course of writing this book, he has been an invaluable source of knowledge. 
Thanks for your guidance, recommendations, and time. I would also like to thank Michael Powell 
and Sreekanth Chintala for their technical reviews. Their expertise and practical knowledge have 
helped me immensely. My special thanks to Larry Carpenter for his help, patience, and 
willingness to share his extensive technical expertise. 

Lastly, I’d like to thank my family for their understanding, patience, and support while I 
worked on this book.

—Sonya Carothers

Thanks to the members of the LogMiner and the Logical Standby development team for 
staying the course through fair and foul weather.

—Joydip Kundu

I would like to acknowledge all of my teammates on the Maximum Availability Architecture 
team. Working with such smart, talented people can only be called a privilege. In addition, I 
would like to thank the High Availability Product Management team and ST developers for all of 
their help in getting the MAA best practices out to the customer base.

—Mike Smith

Thanks to the entire Vengurlekar and Bhide family, the RacPack group, the ASM development 
group, and the MAA team. Thanks to Larry Carpenter for his tireless efforts in getting this book 
together and Charles Kim for talking me into writing this book (you owe me a beer). A big thanks 
to Kirk Mcgowan, Sohan Demel, and Angelo Pruscino for letting me do this book.

—Nitin Vengurlekar

xxi

xx   Oracle Data Guard 11g Handbook

Introduction

Oracle Data Guard provides the best data protection and data availability solution for 
mission-critical databases that are the life-blood of businesses large and small. As bold as 
this statement is, Data Guard’s rich capabilities did not materialize overnight; Data Guard is 
a product of more than 15 years of continuous development. We can trace the roots of 
today’s Data Guard as far back as Oracle7 in the early 1990s. Media recovery was used to 
apply archived redo logs to a remote standby database, but none of the automation that 
exists today was present in the product. Instead, user-written scripts used FTP to transmit 
and register archive logs at the standby database. The Oracle7 feature was appropriately 
referred to as “manual standby.” Oracle8i capabilities evolved into the “automatic standby” 
feature, with automated log shipping (using Oracle Net Services) and apply. User-written 
scripts were still the order of the day to resynchronize primary and standby databases in 
case they lost connection with each other. Also in the Oracle8i timeframe, Oracle made 
available prepackaged scripts for a limited number of platforms that simplified switchover 
and failover operations. These scripts could be downloaded from the Oracle Technology 
Network and were called Data Guard, introducing the present-day brand for the first time.

Oracle9i was the first formal release of the Data Guard product that we know today. 
Replacing the Oracle8i scripts, the new release delivered a comprehensive automated 
solution for disaster recovery fully integrated with the database kernel—including automated 
gap resolution and the concept of protection modes, allowing customers to configure Data 
Guard more easily to meet their recovery point and recovery time objectives. Oracle9i also 
significantly enhanced redo transport services, adding synchronous and asynchronous redo 
transport methods as an alternative to traditional log shipping. For the first time, Data Guard 
could provide zero data loss protection all by itself, without the use of remote-mirroring 
technologies.

Oracle 9i Release 2 introduced a new type of standby database using SQL Apply,  
giving users the choice of Redo Apply (physical standby) or SQL Apply (logical standby). 

xxi

xxii   Oracle Data Guard 11g Handbookxxii   Oracle Data Guard 11g Handbook

SQL Apply enabled a standby database to be open while the standby apply process was active, 
making it attractive for offloading read-only queries from the primary database. This new 
development set the stage for a series of subsequent enhancements to both types of standby 
databases, physical and logical, to enable their productiveness while in standby role, greatly 
improving the return on investment (ROI) of standby systems.

As core functionality evolved, so did the tools for managing a Data Guard configuration. A 
Data Guard configuration can be created, monitored, and managed with Oracle Enterprise 
Manager (OEM) Grid Control. Mouse-driven switchovers (planned transition of a standby 
database to a primary role with zero data loss) and failovers (unplanned role transitions where 
data loss exposure depends upon the Data Guard protection mode used) have made role 
transition operations less daunting than in earlier Data Guard releases. There is even an option of 
automating database failover so that no human intervention is required. The current release of 
Oracle Enterprise Manager Grid Control, release 10.2.0.5, supports all the new Oracle Data 
Guard 11g features such as Snapshot Standby and Active Data Guard. And as a hint of things to 
come in future releases, we understand that Oracle is hard at work enhancing capabilities to fail 
application clients over automatically to a new primary database—something that in the current 
release requires a more hand-crafted method using the best practices documented later in this 
book. These features add traditional high availability attributes to a Data Guard configuration, 
providing an alternative as well as a complement to cluster technologies for protecting against 
server failure.

It is important to note that Data Guard is not an island unto itself; it is one of many Oracle 
high availability features that, when each is integrated with the other, provides value that is 
greater than the sum of the parts. For example, Flashback Database makes it possible to avoid 
rebuilding a failed primary database after a failover to its standby. Use of a flash recovery area 
will automate management of archive logs on both primary and standby databases.

Data Guard is integrated with Oracle RAC, with Automatic Storage Management, and with 
Oracle Recovery Manager. This integration is not by chance. Oracle has methodically inventoried 
the many sources of planned and unplanned downtime and is following a blueprint to address all 
possible causes of downtime using capabilities integrated with the Oracle database. Taken 
together, these capabilities define the Oracle Maximum Availability Architecture. Oracle’s work is 
not yet complete, but an argument can easily be made that the company “is definitely the leader” 
among the relational database vendors. Sources of unplanned outages have been addressed. 
Driving planned downtime to zero is the last remaining frontier. Data Guard provides many ways 
to minimize unplanned downtime in the current release, but you can look forward to increasing 
Oracle focus on further minimizing planned downtime in upcoming releases.

This book is very timely given the significant enhancements in Data Guard 11g that 
revolutionize how users can leverage their standby databases for productive purposes while in 
standby role. A Data Guard physical standby database licensed for the Active Data Guard option 
can be open for read-only queries and reporting while continuously applying updates received 
from the primary database. This can improve primary database performance and response time by 
offloading queries to an active standby database. It can also defer or eliminate new hardware and 
software purchases by using existing standby databases, previously idle, that are already in place. 
No other method on the market offers the simplicity, transparency, and high performance of the 
Active Data Guard standby for maintaining a synchronized replica of a production database that 
is open read-only.

Data Guard 11g also offers Snapshot standby, a method of fully leveraging a physical standby 
database for QA testing and other activities that require a database that is independent of the 

xxii   Oracle Data Guard 11g Handbookxxii   Oracle Data Guard 11g Handbook Introduction  xxiii

primary and open read-write. When combined with another new Oracle Database 11g feature, 
Real Application Testing, a Data Guard snapshot standby provides an ideal test system for making 
absolutely sure that no unintended consequences will result from introducing change to your 
production environment.

This book provides a sound architectural foundation for newcomers to Data Guard as well as 
important insight for veteran DBAs who have been working with Data Guard since its inception. The 
authors have been assembled from Oracle Product Management, Development, and Consulting, as 
well as industry experts with many years of experience using Data Guard. While Data Guard 11g is 
the focus of this book, we will occasionally highlight information from previous releases where 
helpful.

The authors have worked hard to provide information that expands well beyond what Oracle 
has documented. You will benefit from a deeper explanation of details and tradeoffs than is 
provided by the Data Guard documentation. In some cases, the authors have consolidated 
information under a clear Data Guard context, in contrast to the Oracle documentation that can 
cross-reference multiple documentation sources and leave it up to you to build your own Data 
Guard context along the way.

The outline of the book is simple. Regardless of how knowledgeable you believe you are 
about Data Guard, we strongly recommend that you start with Chapter 1 and don’t skip ahead. 
This will give you a comprehensive view of Data Guard capabilities and a sound conceptual 
understanding of how it functions. The first chapter sets the stage and provides necessary context 
for the information that follows.

As you dive into the subsequent chapters, be prepared for in-depth information for configuring 
and managing a Data Guard configuration. Chapter 2 provides all the information you need to 
create a Data Guard configuration. Whether you use SQL, the Data Guard Broker, or Enterprise 
Manager Grid Control, you should read and understand all the information in Chapter 2. Again, this 
adds to your foundation of knowledge that will be helpful regardless of the management interface 
you ultimately use.

Later chapters expand additional details for management from the perspective of the Data 
Guard Broker or Enterprise Manager Grid Control, with in-depth discussion of media recovery, 
SQL Apply, role transitions, backup and recovery of primary and standby databases, 
troubleshooting, Active Data Guard, and more.

For command-line DBAs, Chapter 7 is dedicated to monitoring scripts, where we expose both 
shell and SQL script to help you effectively monitor your Data Guard environment. The monitoring 
scripts are provided in a menu screen format with prompts for menu options. Because the menu 
screens are written in Korn shell scripts, the source code is completely exposed. Our complete set 
of monitoring scripts can be downloaded from the dataguardbook.com web site or from Oracle 
Press’s download site in a single tar format. The best part about Chapter 7 is that we explain not 
only what the scripts do, but how to deploy them in your environment.

Last but not least, we provide reference architectures that are representative of actual customer 
configurations encountered by the authors of this book. We don’t waste time on the traditional 
disaster recovery configuration of a single node primary database with remote standby. We focus 
on more advanced configurations where customers have implemented Data Guard for high 
availability in addition to disaster recovery, or multi-standby configurations that provide ideal levels 
of data protection along with various options for using active standby databases for productive 
purposes while in standby role. Our goals are to expand your thinking with regard to Data Guard’s 
capabilities, increase your confidence to deploy and manage a Data Guard configuration, and 
provide you with meaningful context so that you can be sure you are using Data Guard in an 
optimal way for your specific requirements.

This page intentionally left blank

Chapter
1

Data Guard Architecture

1

2 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 1: Data Guard Architecture 3

uman error, hardware failures, software and network failures, and large-scale
events such as fires, hurricanes, and earthquakes all jeopardize the availability of
databases that are the lifeblood of business applications. The impact to operations
when critical databases are unavailable is so obvious that few people need to be
convinced of the importance of data protection and availability.

As an Oracle user, you have already done your homework on Oracle Data Guard. You
know that Data Guard is purpose-built for protecting Oracle data, offering the highest levels
of data protection and availability while still maintaining the best performance for your Oracle
database. You know that, as a native capability built into the Oracle kernel, Data Guard’s
integration with other Oracle High Availability technologies—most notably Oracle Real
Application Clusters (RAC), Oracle Recovery Manager (RMAN), and Oracle Flashback
Technologies—offers many benefits. You also know that your finance department will be
happy that Active Data Guard standby databases will not consume your IT budget on systems,
storage, and software that sit idle until a failure occurs. And because there is no such thing as
one-size-fits-all, you know that Data Guard offers the flexibility you need to address a wide
range of requirements.

On the flip side of things, “comprehensive and flexible” means that you have a number of
decisions to make. You might not be sure about the best way to deploy Data Guard for your
environment, and while you have read the Oracle documentation, you may find that you still
don’t completely understand how Data Guard works. You need more insight into the trade-offs
inherent in the different configuration options that Data Guard offers and what you need to
know to manage a Data Guard configuration. The good news is that you are reading this book.
We will provide you with a broader and deeper understanding of Data Guard that will ensure
your success.

Data Guard Overview
Data Guard operates on a simple principle: ship redo, and then apply redo. Redo includes all of
the information needed by the Oracle Database to recover a database transaction. A production
database, referred to as the primary database, transmits redo to one or more independent
replicas referred to as standby databases. Data Guard standby databases are in a continuous
state of recovery, validating and applying redo to maintain synchronization with the primary
database. Data Guard will also automatically resynchronize a standby database that becomes
temporarily disconnected from its primary database because of a network or standby outage.
This simple architecture makes it possible to have one or more synchronized replicas
immediately available to resume processing in the event of a planned or unplanned outage of
the primary database. A high-level overview of the Data Guard transport and apply architecture
is provided in Figure 1-1.

What Is Redo?
Redo is at the center of everything Data Guard does. While Chapter 3 provides more details on
redo concepts, a basic knowledge of this feature is fundamental to your understanding of how
Data Guard works.

H

Chapter 1: Data Guard Architecture 3

Data Guard vs. Remote Mirroring: Advantage Data Guard
Data Guard transmits only redo data—the information needed to recover a database
transaction—to synchronize a standby database with its primary. Data Guard also prevents
the primary from propagating corruption by performing Oracle validation before applying
changes to a standby database. Before Data Guard became available, companies would use
storage or host-based remote mirroring to maintain a synchronized copy of their Oracle
database files. Unfortunately, remote mirroring does not have any knowledge of an Oracle
transaction; thus it can’t distinguish between redo, undo, data block changes, or control file
writes. This requires remote mirroring to transmit every write to every file, generating 7 times
the network volume and 27 times more network I/O operations than Data Guard.1 Remote
mirroring is also unable to perform Oracle validation, making it impossible to provide the
same level of protection as Data Guard. For these reasons and others discussed later in this
chapter, Data Guard has become the preferred data availability and protection solution for
the Oracle Database.

Primary database transactions generate redo records. Oracle documentation defines a redo 1
record as follows:2

A redo record, also called a redo entry, is made up of a group of change vectors, each of
which is a description of a change made to a single block in the database. For example, if
you change a salary value in an employee table, you generate a redo record containing
change vectors that describe changes to the data segment block for the table, the undo
segment data block, and the transaction table of the undo segments.

Redo records contain all the information needed to reconstruct changes made to the
database. During media recovery, the database will read change vectors in the redo records and
apply the changes to the relevant blocks.

Redo records are buffered in a circular fashion in the redo log buffer of the System Global
Area (SGA). The log writer process (LGWR) is the database background process responsible for
redo log buffer management. At specific times, the LGWR writes redo entries to a sequential
file—the online redo log file (ORL)—to free space in the redo log buffer for new entries. The
LGWR always writes all redo entries that have been copied into the redo log buffer since the last
time it wrote. The LGWR writes the following:

 A commit record ■ Whenever a transaction is committed, the LGWR writes the
transaction redo records from the redo log buffer to an ORL and assigns a system change
number (SCN) to identify the redo records for each committed transaction. Only when all
redo records associated with a given transaction have been written to the ORL is the user
process notified that the transaction has been committed.

1 “Oracle Data Guard and Remote Mirroring Solutions,” Oracle Technology Network: www.oracle.com/technology/
deploy/availability/htdocs/DataGuardRemoteMirroring.html
2 Oracle Database Administrator’s Guide 11g Release 1 (11.1)

www.oracle.com/technology/deploy/availability/htdocs/DataGuardRemoteMirroring.html
www.oracle.com/technology/deploy/availability/htdocs/DataGuardRemoteMirroring.html

4 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 1: Data Guard Architecture 5

 Redo log buffers ■ If the redo log buffer becomes a third full or if 3 seconds have passed
since the last time the LGWR wrote to the ORL, all redo entries in the log buffer will be
written to the ORL. This means that redo records can be written to an ORL before the
corresponding transaction has been committed. If necessary, media recovery will roll
back these changes using the undo that is also part of the redo entry. The LGWR will also
write all redo records to the ORL if the database writer process (DBWn) writes modified
buffers to disk and the LGWR had not already completed writing all of the redo records
associated with the modified buffers.

It is worth noting that in times of high activity, the LGWR can write to the ORL using “group”
commits. For example, assume a user commits a transaction. While the LGWR is writing the
commit record to disk, other users may also be issuing COMMIT statements. However, the LGWR
cannot write to the redo log file to commit these transactions until it completes the previous write
operation. After the first transaction’s entries are written to the redo log file, the entire list of redo
entries of waiting transactions (not yet committed) can be written to disk in one operation,
requiring less I/O than if each transaction entry were handled individually. (The LGWR always
does sequential writes—the larger the write, the more efficient it is.) If requests to commit
continue at a high rate, every LGWR write from the redo log buffer will contain multiple commit
records. This impacts what is referred to as redo-write size, one of the factors that influence
database performance in a Data Guard synchronous configuration, which is discussed later in this
chapter and in Chapter 2.

While the LGWR is going about its business making sure that transactions are recoverable,
changes to data blocks in the primary database are deferred until it is more efficient for the DBWn
to flush changes in the buffer cache to disk. The LGWR’s write of the redo entry containing the
transaction’s commit record is the single event that determines that the transaction has been

FIGURE 1-1. Overview: Data Guard redo transport and apply

Oracle Instance
in-memory

Primary Database Standby Database

Redo Transmission1

23

Oracle
Data Files Recovery

Data
Recovery

Data

Oracle
Data Files

Redo transport services transmit redo data from primary to standby as it is generated.1

Apply services validate redo data and update standby database files.

Independent of Data Guard, the database writer process updates primary database files.

Data Guard automatically resynchronizes the standby following network or standby outages
using redo data that has been archived at the primary.

2

3

4

Oracle Instance
in-memory

Automatic
Outage Resolution
4

Chapter 1: Data Guard Architecture 5

committed. Oracle Database is able to issue a success code to the committing transaction, even
though the DBWn has not yet flushed data buffers to disk. This enables high performance while
guaranteeing that transactions are not lost if the primary database crashes before all data blocks
have been written to disk.

Everything discussed in this section is normal processing for any Oracle database, whether or
not Data Guard is in use. As transactions commit, they generate redo. This is where a detailed
discussion of Data Guard can begin.

Redo Transport Services
Data Guard Redo Transport Services coordinate the transmission of redo from a primary database
to the standby database. At the same time that the primary database LGWR process is writing redo
to its ORL, a separate Data Guard process called the Log Network Server (LNS) is reading from
the redo buffer in SGA and passes redo to Oracle Net Services for transmission to the standby
database.

Data Guard’s flexible architecture allows a primary database to transmit redo directly to a
maximum of nine standby databases. Data Guard is also well integrated with Oracle RAC. An
Oracle RAC database has two or more servers (nodes), each running its own Oracle instance and
all having shared access to the same Oracle database. Either the primary, or standby, or both can
be an Oracle RAC database. Each primary instance that is active generates its own thread of redo
and has its own LNS process to transmit redo to the standby database.

Redo records transmitted by the LNS are received at the standby database by another Data
Guard process called the Remote File Server (RFS). The RFS receives the redo at the standby
database and writes it to a sequential file called a standby redo log file (SRL). In a multi-standby
configuration, the primary database has a separate LNS process that manages redo transmissions
for each standby database. In a configuration with three standby databases, for example, three
LNS processes are active on each primary database instance.

Data Guard supports two redo transport methods using the LNS process: synchronous or
asynchronous. A high-level overview of the redo transport architecture is provided in Figure 1-2.

Synchronous Redo Transport
Synchronous transport (SYNC) is also referred to as a “zero data loss” method because the LGWR
is not allowed to acknowledge a commit has succeeded until the LNS can confirm that the redo
needed to recover the transaction has been written to disk at the standby site. SYNC is described

Myth Buster: LGWR Transmits Redo to Standby Databases
A common misconception is that the LGWR is the process that transmits data to a standby
database. This is not the case. The Data Guard LNS process manages all synchronous and
asynchronous redo transmissions. Eliminating this perception is the reason why the Data
Guard 11g documentation simply refers to the redo transport methods as SYNC or ASYNC,
rather than LGWR SYNC or LGWR ASYNC as was done in previous releases.

6 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 1: Data Guard Architecture 7

in detail in Figure 1-3. The numbered list that follows outlines each phase of SYNC redo transport
and corresponds to the numbers shown in Figure 1-3.

 1. The user commits a transaction creating a redo record in SGA. The LGWR reads the redo
record from the log buffer, writes it to the online redo log file, and waits for confirmation
from the LNS.

 2. The LNS reads the same redo record from the log buffer and transmits it to the standby
database using Oracle Net Services. The RFS receives the redo at the standby database
and writes it to a standby redo log file.

FIGURE 1-3. SYNC redo transport architecture

Primary
Database

Standby
Database

Redo
Buffer

SGA

LNS

LGWR

RFS Apply

Standby
Redo Logs

Online
Redo Logs

U
se

r
co

m
m

it

Commit ACK

Oracle Net Services

Data Guard
Synchronous Transport (SYNC)

1

1

1

2

2 2

3

3
3

1

FIGURE 1-2. Data Guard redo transport process architecture

Primary
Database

Standby
Database

Redo
Buffer

SGA
LNS RFS Apply

Standby
Redo Logs

U
se

r
co

m
m

it

Oracle Net Services

Redo Data

Data Guard Transport

LNS ships redo data directly from the redo buffer—an RFS process receives it at the standby.

Chapter 1: Data Guard Architecture 7

 3. When the RFS receives a write-complete from the disk, it transmits an acknowledgment
back to the LNS process on the primary database, which in turn notifies the LGWR that
transmission is complete. The LGWR then sends a commit acknowledgment to the user.

While SYNC guarantees protection for every transaction that the database acknowledges as
having been committed, this guarantee can also impact primary database performance. The cause
of the performance impact is obvious: the LGWR must wait for confirmation that data is protected
at the standby before it can proceed with the next transaction. The degree of impact this has on
application response time and database throughput is a function of several factors: the redo-write
size, available network bandwidth, round-trip network latency (RTT), and standby I/O performance
writing to the SRL. Because network RTT increases with distance, so will the performance impact
on your primary database, imposing a practical limit on how far apart you will be able to locate
your primary and standby databases. The cumulative impact of these factors can be seen in the
wait event “LNS wait on SENDREQ,” found in the V$SYSTEM_EVENT dynamic performance view
(optimizing redo transport is discussed in Chapter 2).

Having read this, you are probably wondering what happens to the primary database if the
network or standby database fails while using SYNC? Will the primary database wait forever for
an acknowledgment that will never come? Please hold that thought until the “Data Guard
Protection Modes” section and the discussion of the NET_TIMEOUT attribute, later in this chapter.

Asynchronous Redo Transport
Asynchronous transport (ASYNC) is different from SYNC in that it eliminates the requirement that
the LGWR wait for acknowledgment from the LNS, creating near zero performance impact on the
primary database regardless of the distance between primary and standby locations.

The LGWR will continue to acknowledge commit success even if limited bandwidth prevents
the redo of previous transactions from being sent to the standby database immediately (picture a
sink filling with water faster than it can drain). If the LNS is unable to keep pace and the log buffer
is recycled before the redo can be transmitted to the standby, the LNS automatically transitions to
reading and sending from the ORL (Data Guard 11g onward). Once the LNS is caught up, it
automatically transitions back to reading/sending directly from the log buffer.

If ASYNC redo transport falls behind to the degree that the LNS is still in the ORL at log
switch time, LNS will continue until it completes sending the contents of the original ORL. Once
complete, it seamlessly transitions back to reading/sending from the current online log file.

Data Guard 11g ASYNC Enhancements
ASYNC behavior has varied over previous Data Guard releases. The LNS process in Data
Guard 11g ASYNC now reads directly from the redo log buffer, but unlike pre-10.2 releases,
there is never a “buffer full” state that can cause transmission to terminate. Instead, the LNS
process seamlessly transitions to read and send from the online redo log of the primary
database. Data Guard 11g ASYNC is also more efficient in how it utilizes available network
bandwidth, increasing the network throughput rate that can be achieved for any given
bandwidth. The higher the network latency, the greater the gain in network throughput
compared to previous Data Guard releases.

8 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 1: Data Guard Architecture 9

When the LNS catches up with the LGWR, it seamlessly transitions back to reading/sending from
the redo log buffer.

In the rarer case in which there are two or more log switches before the LNS has completed
sending the original ORL, the LNS will still transition back to reading the contents of the current
online log file. Any ORLs that were archived between the original ORL and the current ORL are
transmitted via Data Guard’s gap resolution process described in the section “Automatic Gap
Resolution” a little later in the chapter. Note that if you find that this “rare case” is a frequent
occurrence, it is most likely a sign that you have not provisioned enough bandwidth to transport
your redo volume.

The behavior of ASYNC transport enables the primary database to buffer a large amount of redo,
called a transport lag, without terminating transmission or impacting availability. While the I/O
overhead related to the ASYNC LNS reading from the ORL can marginally impact primary database
performance, this is insignificant compared to the potential performance impact of SYNC on a high
latency network. The relative simplicity of ASYNC is evident when comparing Figures 1-4 and 1-3.
The only drawback of ASYNC is the increased potential for data loss. If a failure destroys the primary
database before any transport lag is reduced to zero, any committed transactions that are a part of
the transport lag will be lost. Provisioning enough network bandwidth to handle peak redo
generation rates when using ASYNC will minimize this potential for data loss.

Optimizing ASYNC Redo Transport
The log buffer hit ratio is tracked in the view X$LOGBUF_READHIST. A low hit ratio indicates
that the LNS is frequently reading from the ORL instead of the log buffer. If there are periods
when redo transport is coming close, but is not quite keeping pace with your redo generation
rate, consider increasing the log buffer size in Data Guard 11g to achieve a more favorable
hit ratio. This will reduce or eliminate I/O overhead of the LNS reading from the ORL. See
Chapter 2 for more details.

FIGURE 1-4. ASYNC redo transport architecture

Primary
Database

Standby
Database

Redo
Buffer

SGA

LNS

LGWR

RFS Apply

Standby
Redo Logs

Online
Redo Logs

U
se

r
co

m
m

it

Commit ACK

Oracle Net

Data Guard Asynchronous Transport (ASYNC)

• No dependency between LGWR and LNS.

• No “buffer full” state—LNS automatically transitions to log
 files if the redo log buffer is recycled.

• LNS has zero overhead if reading from SGA, minimal
 overhead if reading from ORL.

Chapter 1: Data Guard Architecture 9

Redo Transport Compression
An additional consideration when using ASYNC is determining whether it is advantageous to
compress redo to reduce your bandwidth requirements. Oracle released a new product for Oracle
Enterprise Edition 11g called the Advanced Compression option. This new product contains
several compression features, one of which is redo transport compression for Data Guard. Initially
this feature could only be enabled when Data Guard was transmitting log files needed to resolve
an archive log gap. However, in response to customer request, Oracle has published information
about an undocumented parameter that enables compression for ASYNC redo transport as well.
(See sidebar, “Enabling ASYNC Redo Transport Compression.”)

ASYNC redo transport compression will increase CPU utilization; however, in bandwidth-
constrained environments it can make the difference between success and failure in accomplishing
your recovery point (data loss) objectives. For example, Oracle Japan and Hitachi Ltd. tested the
impact of using compression in a bandwidth-constrained environment with a test workload that
generated 20 MB/sec of redo. While compression ratios will vary from one workload to the next,
the compression ratio achieved in the test was 60 percent. The benefit of using compression was
significant, making it possible to sustain a transport lag of less than 10 seconds and achieve
recovery point objectives.3 This compared very favorably to baseline test runs without compression,
in which transmission could not keep pace with primary redo generation, resulting in a transport
lag that continued to increase linearly over time for the duration of the test. The testing also showed
that as long as sufficient CPU resources were available for compression, minimal impact was
experienced on database throughput or response time.

Automatic Gap Resolution
A log file gap occurs whenever a primary database continues to commit transactions while the
LNS process has ceased transmitting redo to the standby database. This can occur whenever the
network or the standby database is down, depending on how you have chosen to implement your
Data Guard configuration (discussed in the section “Data Guard Protection Modes” later in this
chapter). While in this state, the primary database LGWR process continues writing to the current
ORL, fills it, and then switches to a new ORL while an archive (ARCH) process archives the
completed ORL locally. This cycle can repeat itself many times over on a busy system before
the connection between the primary and standby is restored, creating a large log file gap.

3 “Batch Processing in Disaster Recovery Configurations: Best Practices for Oracle Data Guard,” validation report
on Data Guard redo transport compression and proper network configuration by Hitachi Ltd./Oracle Japan GRID
Center: www.hitachi.co.jp/Prod/comp/soft1/oracle/pdf/OBtecinfo-08-008.pdf

Enabling ASYNC Redo Transport Compression
Buried in Oracle MetaLink Note 729551.1 is the information needed to enable redo transport
compression for Oracle Database 11g Release 1 and Data Guard ASYNC (Maximum
Performance) using the parameter _REDO_TRANSPORT_COMPRESS_ALL. A license for Oracle
Advanced Compression is required to enable redo transport compression.

www.hitachi.co.jp/Prod/comp/soft1/oracle/pdf/OBtecinfo-08-008.pdf

10 Oracle Data Guard 11g Handbook Chapter 1: Data Guard Architecture 11

Data Guard uses an ARCH process on the primary database to continuously ping the standby
database during the outage to determine its status. When communication with the standby is
restored, the ARCH ping process queries the standby control file (via its RFS process) to determine
the last complete log file that the standby received from the primary database. Data Guard
determines which log files are required to resynchronize the standby database and immediately
begins transmitting them using additional ARCH processes. At the very next log switch, the LNS
will attempt and succeed in making a connection to the standby database and will begin
transmitting current redo while the ARCH processes resolve the gap in the background. The
dashed lines in Figure 1-5 portray the transmission and apply of redo needed to resolve the log
file gap. Once the standby apply process is able to catch up to current redo records, the apply
process automatically transitions out of reading from archived redo logs, and into reading from
the current SRL (assuming the user has configured Data Guard real-time apply). One last side
note: beginning with Data Guard 10g, one ARCH process at the primary database is always
dedicated to local archival to ensure that remote archival during gap resolution does not impact
the ability of the primary to recycle its ORLs.4

The performance of automatic gap resolution is critical. The longer the primary and standby
databases remain unsynchronized, the greater the risk of data loss should a failure occur. The
primary must be able to transmit data at a much faster pace than its normal redo generation rate if
the standby is to have any hope of catching up. The Data Guard architecture enables gaps to be
resolved quickly using multiple background ARCH processes, while at the same time the LNS
process is conducting normal SYNC or ASYNC transmission of the current log stream.

4 This functionality is available in Oracle9i Data Guard starting at version 9.2.0.5. See MetaLink Note 260040.1.

FIGURE 1-5. Automatic gap resolution

Transactions

Primary
Database

Standby
Database

LNS RFS Apply

Standby
Redo
Logs

LGWR

ARCH
ARCH

RFS
Archived
Redo Logs

Archived Redo Logs

Online
Redo
Logs

Transmission of
archive logs needed
to resolve log file gap

Redo
Buffer

SGA SYNC
ASYNC

Oracle Net Services
Data Guard Automatic Gap Resolution

ping

Redo from current
online redo log file

Chapter 1: Data Guard Architecture 11

Apply Services
Data Guard offers two different methods to apply redo to a standby database: Redo Apply
(physical standby) and SQL Apply (logical standby). We will describe the differences in a moment,
but first let’s discuss key objectives that Redo Apply and SQL Apply have in common.

The primary goal of Data Guard is to protect against data loss; thus its first design objective is
that the standby database be a synchronized copy of the primary database. Data Guard is
designed from the ground up for simple one-way replication of the entire database. Data Guard
also has built-in safeguards that prevent any unauthorized modifications from being made at the
standby database to data it has replicated from the primary database. These characteristics explain
the fundamental difference between Data Guard and Oracle’s full-featured replication product,
Oracle Streams. Oracle Streams offers various methods for granular, n-way replication and
transformation of subsets of an Oracle database. By definition, the additional functionality of
Oracle Streams means that it has more moving parts with the usual implications for performance
and management complexity. Data Guard has been designed for a simpler mission, and this is
reflected in the relative simplicity of implementing and managing a Data Guard configuration.

The second objective for Data Guard is to provide a high degree of isolation between primary
and standby databases. This prevents problems that occur at the primary database from impacting
the standby database and compromising data protection and availability. This also prevents
problems that occur at the standby from impacting the availability or performance of the primary
database. For example, Data Guard apply processes validate redo before it is applied to the
standby database, preventing physical corruptions that can occur at the primary database from
being propagated to the standby database. Also, consider for a moment the earlier discussion of
redo transport services. Nowhere is there a dependency between redo transport and standby
database apply. Primary database availability, performance, and its ability to transmit redo to the
standby database are not impacted by how standby apply is configured, or the performance of the
apply process, or even whether apply is on or off.

The third objective for Data Guard is to provide data availability and high availability should
the primary database fail. Redo Apply and SQL Apply have the same capabilities to transition a
synchronized standby database quickly to the primary role. This protects data and restores
availability following planned or unplanned outages of the primary database.

Why Isn’t ARCH Redo Transport in the Data Guard 11g Documentation?
Three redo transport methods were documented prior to Data Guard 11g: SYNC, ASYNC,
and ARCH. ARCH refers to traditional archive log shipping, in which Data Guard would wait
for an ORL to be archived before the contents of the resulting archive log file where shipped
by an ARCH process. Data Guard 11g ASYNC performance enhancements have led Oracle
to deprecate ARCH as a documented redo transport method. Though deprecated, the
functionally still exists to use ARCH for redo transport and provide backward compatibility
for previous customer installations. The ARCH transport infrastructure also continues to be
used transparently by Data Guard 11g when automatically resolving archive log gaps
between primary and standby databases.

12 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 1: Data Guard Architecture 13

The final objective for Data Guard is to deliver a high return on investment in standby
systems, storage, and software, without compromising its core mission of data protection and
availability. Both Redo Apply and SQL Apply enable the productive use of standby databases
while in a standby role, without impacting data protection or the ability to achieve recovery time
objectives (RTO).

Now that you know what Redo Apply and SQL Apply have in common, you need to
understand the differences between the two to determine which type of standby database is best
suited to your requirements. An overview of the unique characteristics and benefits of Redo Apply
and SQL Apply are discussed next. Additional details are provided in Chapters 2, 3, and 4.

Redo Apply (Physical Standby)
Redo Apply maintains a standby database that is an exact, block-by-block, physical replica of the
primary database. As the RFS process on the standby receives primary redo and writes it to an SRL,
Redo Apply uses Media Recovery to read redo records from the SRL into memory and apply
change vectors directly to the standby database. Media Recovery does parallel media recovery
(Figure 1-6) for very high performance. It comprises a Media Recovery Coordinator and multiple
parallel apply processes. The Media Recovery Coordinator (MRP0) manages the recovery session,
merges redo by SCN from multiple instances (if Oracle RAC primary), and then parses redo into

Data Guard Apply and Oracle RAC
Each primary Oracle RAC instance ships its own thread of redo that is merged by the Data
Guard apply process at the standby and applied in SCN order to the standby database (see
Chapter 8 for a more detailed explanation). If the standby is an Oracle RAC database, only
one instance (the apply instance) can merge and apply changes to the standby database.
Should the apply instance fail for any reason, the apply process can automatically failover
to a surviving instance in the Oracle RAC standby database when using the Data Guard
broker, discussed in Chapter 5.

FIGURE 1-6. Parallel media recovery for Redo Apply (physical standby)

Parallel Media Recovery
apply process (pr00)

apply process (pr01)

apply process (pr02)

Media Recovery Coordinator (MRP0)
coordinator & thread merger apply process (pr03)

apply process (pr04)

(8 CPU server) apply process (pr05)

apply process (pr06)

Chapter 1: Data Guard Architecture 13

change mappings partitioned by apply process. The apply processes (pr00, 01, 02…) read data
blocks, assemble redo changes from mappings, and then apply redo changes to data blocks. Redo
Apply automatically configures a number of apply processes equal to the number of CPUs in the
standby system minus one. This architecture, along with significant Media Recovery enhancements
in Oracle Database 11g, achieves very high performance. Oracle has benchmarked Data Guard
Redo Apply rates up to 47 MB/sec for an online transaction processing (OLTP) workload and
112 MB/sec for a direct path load.5

Oracle Active Data Guard 11g
The usefulness of a physical standby database while in the standby role was significantly
enhanced by the Active Data Guard Option for Oracle Database 11g Enterprise Edition. In
previous Data Guard releases, the database would have to be in the mount state when media
recovery was active. Media recovery has always been optimized for the highest possible
performance and was never designed to present queries with a read-consistent view while
enabled. Querying a physical standby database has required disabling media recovery and
opening the standby database in read-only mode. Since standby data can quickly become stale
once media recovery is disabled, the usefulness of a physical standby to offload read-only queries
and reporting from a primary database was limited.

Active Data Guard 11g solves the read consistency problem without impacting standby apply
performance by use of a “query” SCN. The media recovery process on the standby database advances
the query SCN after all dependent changes in a transaction have been fully applied (the new query
SCN is also propagated to all instances in an Oracle RAC standby). The query SCN is exposed to the
user as the CURRENT_SCN column of the V$DATABASE view on the standby database. Read-only
users will only see data up to the query SCN, guaranteeing the same read consistency as the primary
database. This enables a physical standby database to be open read-only while media recovery is
active, making it very useful for offloading read-only workloads from the primary database.

Corruption Protection
Data Guard Redo Apply provides superior data protection by preventing physical corruptions that
can occur at the primary database from being applied to a standby database. Redo transmitted
directly from SGA by SYNC or ASYNC is completely isolated from physical I/O corruptions

5 Active Data Guard 11g and media recovery best practices: www.oracle.com/technology/deploy/availability/pdf/
maa_wp_11gr1_activedataguard.pdf

Remote Mirroring and Corruption
We frequently hear reports from users of Storage Area Network (SAN) or host-based remote
mirroring of cases in which physical corruptions caused by component failure at their
primary site were mirrored to remote volumes, making both copies unusable. Since Oracle
cannot be mounted on remote volumes while the mirroring session is active, it cannot
perform end-to-end validation of changes before they are applied to the standby database.
Worse yet, remote mirroring users often do not learn that a problem exists until they need
their standby database—and at that point it’s too late. Data Guard does not have these
limitations.

www.oracle.com/technology/deploy/availability/pdf/maa_wp_11gr1_activedataguard.pdf
www.oracle.com/technology/deploy/availability/pdf/maa_wp_11gr1_activedataguard.pdf

14 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 1: Data Guard Architecture 15

caused by component failures at the primary site. The software code-path executed by Redo
Apply on a standby database is also fundamentally different from that of a primary—providing the
standby database an additional level of isolation from software errors that can impact the primary
database. Data Guard uses Oracle processes to validate redo before it is applied to the standby
database. Corruption-detection checks occur at the following key interfaces:

 On the primary database during Redo Transport ■ LGWR, LNS, ARCH On an Oracle
Database 11g primary database, corruption detection/protection is best enabled using the
parameter DB_ULTRA_SAFE.

 On the standby database during Redo Apply ■ RFS, ARCH, MRP, DBWR On an Oracle
Database 11g standby database, corruption detection/prevention is best enabled using
the parameters DB_BLOCK_CHECKSUM=FULL and DB_LOST_WRITE_PROTECT=TYPICAL.

If Redo Apply detects any corrupt redo at the standby database, Data Guard will automatically
fetch new copies of the relevant archive logs from the primary database using the gap resolution
process in the hope that the originals are free of corruption.

Physical Standby utilizes the new Oracle Database 11g parameter, DB_LOST_WRITE_PROTECT,
to provide industry-unique protection against corruptions caused by lost writes. A lost write
occurs when an I/O subsystem acknowledges the completion of a write, while in fact the write
did not occur in persistent storage. On a subsequent block read the I/O subsystem returns the
stale version of the data block that is used to update other blocks, spreading corruptions across
the database. When the DB_LOST_WRITE_PROTECT initialization parameter is set, the database
records buffer cache block reads in the redo log, and this information is used to detect lost writes.
Meaningful protection using lost write detection requires the use of a Data Guard physical
standby database. You set DB_LOST_WRITE_PROTECT to TYPICAL in both primary and standby
databases (setting DB_ULTRA_SAFE at the primary as noted above will automatically set DB_
LOST_WRITE_PROTECT=TYPICAL on the primary database). When the standby database applies
redo using Redo Apply, it reads the corresponding blocks and compares the SCNs with the SCNs
in the redo log. If the comparison shows:

 The block SCN on the primary database is lower than the block SCN on the standby ■
database, then a lost write has occurred on the primary database and an external error
(ORA-752) is signaled. The recommended procedure in response to an ORA-752 is to
execute a failover to the physical standby and re-create the primary database.

 The block SCN is higher, then a lost write has occurred on the standby database, and an ■
internal error (ORA-600 3020) is signaled. If possible, you can fix the standby using a
backup from the primary database of the affected data files. Otherwise, you will have to
rebuild the standby completely.

Redo Apply Benefits
Physical standby databases maintained using Redo Apply are generally the best choice for disaster
recovery (DR) based upon their simplicity, transparency, high performance, and superior data
protection. In summary, the advantages of a physical standby database include the following:

 Complete application and data transparency—no data type or other restrictions. ■

 Very high performance, least management complexity, and fewest moving parts. ■

Chapter 1: Data Guard Architecture 15

 Oracle end-to-end validation before apply provides the best protection against physical ■
corruptions, including corruptions due to lost writes.

 Able to be utilized for up-to-date read-only queries and reporting while providing DR ■
(Active Data Guard 11g).

 Able to offload backups from the primary database while providing DR. ■

 Able to support QA testing and other activities requiring read-write access, while continuing ■
to provide DR protection for primary data (Data Guard 11g Snapshot Standby).

 Able to execute rolling database upgrades beginning with Oracle Database 11 ■ g (Transient
Logical)

SQL Apply (Logical Standby)
SQL Apply uses the Logical Standby Process (LSP) to coordinate the apply of changes to the
standby database. SQL Apply requires more processing than Redo Apply, as can be seen in
Figure 1-7 and discussed in detail in Chapter 4. The processes that make up SQL Apply read the
SRL and “mine” the redo by converting it to logical change records, and then building SQL
transactions and applying SQL to the standby database. Because the process of reconstruction
and replaying workload has more moving parts, it requires more memory, CPU, and I/O than
Redo Apply.

SQL Apply also does not provide the same level of transparency as Redo Apply. SQL Apply
performance can vary from one transaction profile to the next. SQL Apply does not support all
data types (such as XML in object relational format, and Oracle supplied types such as Oracle
Spatial, Oracle Intermedia, and Oracle Text). Collectively, these attributes result in SQL Apply
requiring more extensive performance testing, tuning, and management effort than a physical
standby database. (Refer to Oracle MetaLink for an excellent note that provides insight into
optimizing SQL Apply performance.6) While such characteristics are found to varying degrees in
any SQL-based replication solution, whether provided by Oracle or by third parties, SQL Apply

6 MetaLink Note 603361.1: “Developer and DBA Tips for Pro-Actively Optimizing SQL Apply”

Rolling Database Upgrades Using a Physical Standby
Data Guard 11g enables a physical standby database to be used for rolling database
upgrades via the KEEP IDENTITY clause and SQL Apply. A physical standby is temporarily
converted to a transient logical standby and upgraded to the new release. Although the
process of upgrading the Oracle Home must be performed on both the primary and standby
systems, the execution of the database upgrade script only needs to be performed once on
the transient logical standby database. Following a switchover, the original primary database
is converted back into a physical standby and is upgraded by applying the redo generated by
the execution of the upgrade script previously run on the transient logical standby (see
Chapter 11 for details). This eliminates the extra cost and effort of deploying additional
storage for a logical standby database solely for the purpose of a rolling database upgrade.

16 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 1: Data Guard Architecture 17

has an inherent advantage over third-party SQL replication products due to its native integration
with the Oracle Database kernel.

SQL Apply Benefits
The extra processing performed by SQL Apply is also the source of its advantages when compared
to Redo Apply. Because SQL Apply applies SQL, a logical standby database is opened read-write
while apply is active. While SQL Apply prevents any modifications from being made to the data it
is replicating, a logical standby database has the additional flexibility of allowing inserts, updates,
and deletes to local tables and schemas that have been added to the standby database independent
of the primary. This is very useful, for example, if you want to use the standby to offload a reporting
application from the primary database that must make frequent writes to global temporary tables or
other local tables that exist only at the standby database. A logical standby database also allows
the creation of local indexes and materialized views that don’t exist on the primary database. This
enables indexes that can be quite expensive to maintain, in terms of their impact on an OLTP
system, to be implemented on a logical standby database where they are valuable for optimizing
reporting and browsing activities. SQL Apply benefits include the following:

 A native Oracle capability that is simpler and less intrusive on primary database ■
performance and administration than third-party SQL-based replication products. This is
accomplished by having a simpler design objective of one-way replication for the entire
primary database. (Redo Transport Services efficiently transmit all primary database redo,
and SQL Apply always performs all of its processing at the standby database.)

 A standby database that is opened read-write while SQL Apply is active. ■

 A “guard” setting that prevents applications from modifying data in the standby database ■
that is being maintained by SQL Apply.

FIGURE 1-7. SQL Apply process architecture

Redo
records

Logical Change Records (LCRs)
not grouped into transactions

Redo Data
from

Primary
Database

Reader

LCR
LCR

:

Shared
Pool

Builder

Transaction
groups

Log Mining

Apply Processing

Logical
Standby

Database
Applier AnalyzerCoordinator

(LSP)
Transactions sorted

in dependency order
Transactions
to be applied

Preparer

Chapter 1: Data Guard Architecture 17

 SQL Apply can be used for rolling database upgrades to new Oracle releases and ■
patchsets, beginning with Oracle Database 10.1.0.4 for logical standby databases, and
beginning with Oracle Database 11.1.0.6 for physical standby databases (using the
KEEP IDENTITY clause).

We recommend using SQL Apply if you can satisfy its prerequisites and you have the additional
requirement for a standby database that is open read-write while it provides DR protection for the
primary database.

Can’t Decide? Then Use Both!
We know that making a choice between Redo Apply and SQL Apply can create a dilemma. You
want the simplicity and performance of Redo Apply for data protection and availability. Redo
Apply when using Active Data Guard 11g also offers an excellent solution for offloading read-only
queries from your primary databases. However, you may have cases where a reporting application
needs read-write access to the standby database, requiring the additional flexibility offered by SQL
Apply. Data Guard support for multi-standby configurations having a mix of physical and logical
standby databases can provide users with the flexibility to satisfy all requirements in an optimum
fashion in a single Data Guard configuration.7

7 “Managing Data Guard Configurations Having Multiple Standby Databases—MAA Best Practices”: www.oracle
.com/technology/deploy/availability/pdf/maa10gr2multiplestandbybp.pdf

Myth Buster: SQL Apply Is an Immature Feature
SQL Apply WAS an immature feature when first released in Oracle9i, leading early users to
believe that SQL Apply could not be used successfully in a production environment. This
perception is now a myth as SQL Apply has matured over several major Oracle releases. This
statement is substantiated by the growing number of successful production implementations
using Data Guard 10g Release 2. Data Guard 11g SQL Apply is a very attractive solution for
the requirements it is designed to address.

Myth Buster: Standby Apply Performance Can Impact the Primary Database
A common misperception is that standby apply performance can impact the primary
database. This perception is perpetuated by the fact that competing RDBMS products do not
deliver the same level of isolation implemented by Data Guard. Standby database apply
performance does not have any impact on primary database availability or performance in a
Data Guard configuration.

www.oracle.com/technology/deploy/availability/pdf/maa10gr2multiplestandbybp.pdf
www.oracle.com/technology/deploy/availability/pdf/maa10gr2multiplestandbybp.pdf

18 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 1: Data Guard Architecture 19

Data Guard Protection Modes
Many DBAs are interested in the superior data protection of Data Guard SYNC redo transport, but
they are often concerned that the primary database may hang indefinitely if it does not receive
acknowledgment from its standby database, due to the standby database being unavailable or
a network down condition. The last thing that most DBAs want to report to their customers is that
while the primary database is completely healthy, it is refusing to process any more transactions
until it can guarantee that data is protected by a standby database. Then again, perhaps you have
a different set of requirements and you must absolutely guarantee that data is protected even at
the expense of primary database availability. Both of these use cases can utilize SYNC transport to
provide zero data loss protection, but the two cases require a different response to a network or
standby failure. Data Guard protection modes implement rules that govern how the configuration
will respond to failures, enabling you to achieve your specific objectives for data protection,
availability, and performance. Data Guard can support multiple standby databases in a single
Data Guard configuration, and they may all have the same, or different, protection mode setting,
depending on your requirements. The different Data Guard protection modes are Maximum
Performance, Maximum Availability, and Maximum Protection.

Maximum Performance
This mode emphasizes primary database performance over data protection. It requires ASYNC
redo transport so that the LGWR process never waits for acknowledgment from the standby
database. Primary database performance and availability are not impacted by redo transport, by
the status of the network connection between primary and standby, or by the availability of the
standby database. As discussed earlier in this chapter, ASYNC enhancements in Data Guard 11g
have made it the default redo transport method for Maximum Performance. Oracle no longer
recommends the ARCH transport for Maximum Performance in Data Guard 11g given that it
provides a lower level of data protection with no performance advantage compared to ASYNC.

Maximum Availability
This mode emphasizes availability as its first priority and zero data loss protection as a very close
second priority. It requires SYNC redo transport, thus primary database performance may be
impacted by the amount of time required to receive an acknowledgment from the standby that
redo has been written to disk. SYNC transport, however, guarantees 100-percent data protection
during normal operation in the event that the primary database fails.

However, events that have no impact on the availability of the primary database can impact
its ability to transmit redo to the standby. For example, a network or standby database failure will
make it impossible to transmit to the standby database, yet the primary database is still capable of
accepting new transactions. A primary database configured for Maximum Availability will wait a
maximum of NET_TIMEOUT seconds (a user configurable parameter which is discussed more
completely in Chapter 2) before giving up on the standby destination and allowing primary
database processing to proceed even though it can no longer communicate with the standby. This
prevents a failure in communication between the primary and standby databases from impacting
the availability of the primary database.

Data Guard will automatically resynchronize the standby database once the primary is able to
re-establish a connection to the standby (utilizing the gap resolution process described earlier in this
chapter). Specifically, once NET_TIMEOUT seconds expire, the LGWR process disconnects from the

Chapter 1: Data Guard Architecture 19

LNS process, acknowledges the commit, and proceeds without the standby. Processing continues
until the current ORL is complete and the LGWR cycles into a new ORL. As the new ORL is
opened, the LGWR will terminate the previous LNS process, if necessary, and start a new LNS
process that will attempt to make a new connection to the standby database. If it succeeds, the
contents of the new ORL will be sent as usual. If the LNS does not succeed within NET_TIMEOUT
seconds, the LGWR continues as before, acknowledges the current commit, and proceeds without
the standby. This process is repeated at each log switch until LNS succeeds in making a connection
to the standby database. (How soon the LGWR retries a failed standby can be tuned using the
REOPEN attribute, which is discussed in Chapter 2.)

Meanwhile, the primary database has archived one or more ORLs that have not been
completely transmitted to the standby database. A Data Guard ARCH process continuously pings
the standby database until it can again make contact and determine which archive logs are
incomplete or missing at the standby. With this knowledge in-hand, Data Guard immediately
begins transmitting any log files needed to resynchronize the standby database. Once the ping
process makes contact with the standby Data Guard will also force a log switch on the primary
database. This closes off the current online log file and initiates a new LNS connection to
immediately begin shipping current redo, preventing redo transport from falling any further
behind while gap resynchronization is in progress. The potential for data loss during this process
exists only if another failure impacts the primary database before the automatic resynchronization
process is complete.

Maximum Protection
As its name implies, this mode places utmost priority on data protection. It also requires SYNC
redo transport. The primary will not acknowledge a commit to the application unless it receives
acknowledgment from at least one standby database in the configuration that the data needed to
recover that transaction is safely on disk. It has the same impact on primary database performance
as Maximum Availability, except that it does not consider the NET_TIMEOUT parameter. If the
primary does not receive acknowledgment from a SYNC standby database, it will stall and
eventually abort, preventing any unprotected commits from occurring. This behavior guarantees
complete data protection even in the case of multiple failure events (for example, first the network
drops, and later the primary site fails). Note that most users who implement Maximum Protection
configure a minimum of two SYNC standby databases at different locations, so that failure of an
individual standby database does not impact the availability of the primary database.

Role Management Services
Let’s step back for a moment and review what we have covered thus far. Our review of Data
Guard transport and apply services has shown the following:

 Data Guard only needs to transmit redo records to synchronize remote standby databases. ■

 Transmission can be either synchronous (zero data loss) or asynchronous. ■

 Synchronous transmission can impact primary database throughput and response time ■
because of the time it takes for the primary to receive acknowledgment from the remote
standby that data is safely written to disk. We can control how long a primary database
will wait for that acknowledgment so that we do not fall into an indefinite hang if the
primary loses its link to the standby.

20 Oracle Data Guard 11g Handbook Chapter 1: Data Guard Architecture 21

 Asynchronous transmission will never cause the primary to stall or impact primary ■
database performance or response time in a material way.

 There are two different types of standby databases: Redo Apply (physical) and SQL Apply ■
(logical). We know their relative strengths, and we know that regardless of the method
chosen, standby apply performance will never impact the availability or performance of
the primary database. We know that all redo is validated by Oracle before it is applied
to the standby database, preventing physical corruptions or lost writes that may occur on
the primary database from impacting the standby database. We know that all Data Guard
standby databases are active, able to be open for read-only queries and reports in order
to offload work from a primary database and get more value from investments in standby
systems.

 The Data Guard protection modes control how the configuration will respond to failures ■
so that availability, performance, and data protection objectives are achieved. We know
that the availability of the standby database or the network connection between primary
and standby will never impact primary database availability unless explicitly configured
to do so to achieve the highest possible level of data protection.

The next area of Data Guard architecture we will discuss is role management services that
enable the rapid transition of a standby database to the primary database role. Data Guard
documentation uses the term switchover to describe a planned role transition, usually for the
purpose of minimizing downtime during planned maintenance activities. The term failover is used
to describe a role transition in response to unplanned events.

Switchover
Switchover is a planned event in which Data Guard reverses the roles of the primary and a
standby database. Switchover is particularly useful for minimizing downtime during planned
maintenance. The most obvious case is when migrating to new Oracle Database releases or
patchsets using a rolling database upgrade. A Data Guard switchover also minimizes downtime
when migrating to new storage (including Exadata storage8), migrating volume managers (for
example, moving to Oracle Automatic Storage Management), migrating from single instance to
Oracle RAC, performing technology refresh, operating system or hardware maintenance, and
even relocating data centers. The switchover command executes the following steps:

 1. Notifies the primary database that a switchover is about to occur.

 2. Disconnects all users from the primary.

 3. Generates a special redo record that signals the End Of Redo (EOR).

 4. Converts the primary database into a standby database.

 5. Once the standby database applies the final EOR record, guaranteeing that no data has
been lost, converts the standby to the primary role.

The new primary automatically begins transmitting redo to all other standby databases in the
configuration. The transition in a multi-standby configuration is orderly because each standby

8 MAA “Best Practices for Migrating to Oracle Exadata Storage Server”: www.oracle.com/technology/products/bi/db/
exadata/pdf/migration-to-exadata-whitepaper.pdf

www.oracle.com/technology/products/bi/db/exadata/pdf/migration-to-exadata-whitepaper.pdf
www.oracle.com/technology/products/bi/db/exadata/pdf/migration-to-exadata-whitepaper.pdf

Chapter 1: Data Guard Architecture 21

received the identical EOR record transmitted the original primary, they know that the next redo
received will be from the database that has just become the new primary database.

The basic principle for using switchover to reduce downtime during planned maintenance is
usually the same. The primary database runs unaffected while you implement the required
changes on your standby database (e.g. patchset upgrades, full Oracle version upgrades, etc).
Once complete, production is switched over to the standby site running at the new release. In the
case of a data center move, you simply create a standby database in the new data center and
move production to that database using a switchover operation.

Alternatively, before performing maintenance that will impact the availability of the primary site,
you can first switch production to the standby site so that applications remain available the entire
time that site maintenance is being performed. Once the work is complete Data Guard will
resynchronize both databases and enable you to switch production back to the original primary site.
Regardless of how much time is required to perform planned maintenance, the only production
database downtime is the time required to execute a switchover—a task that can be completed in
less than 60 seconds as documented by Oracle best practices9, and in as fast as 5 seconds as
documented in collaborative validation testing performed more recently by Oracle Japan and IBM.10

Switchover operations become even more valuable given Oracle’s increasing support for
different primary/standby systems in the same Data Guard configuration. For example, Oracle
Database 11g can support a Windows primary and Linux standby, or a 32-bit Oracle primary and
a 64-bit Oracle standby, and other select mixed configurations.11 This makes it very easy to
migrate between supported platform combinations with very little risk simply by creating a
standby database on the new platform and then switching over. In most cases, you are able to
minimize your risk even more by continuing to keep the old database on the previous platform
synchronized with the new. If an unanticipated problem occurs and you need to fall back to the
previous platform, you can simply execute a second switchover and no data is lost.

Failover
Failover is the term used to describe role transitions due to unplanned events. The process is
similar to switchover except that the primary database never has the chance to write an EOR
record. From the perspective of the standby database, redo transport has suddenly gone dormant.
The standby database faithfully applies the redo from the last committed transaction that it has
received and waits for redo transport to resume. At this point, whether or not a failover results in
data loss depends upon the Data Guard protection mode in effect at the time of failure. There
will never be any data loss in Maximum Protection. There will be zero data loss in Maximum
Availability, except when a previous failure (e.g. a network failure) had interrupted redo transport
and allowed the primary database to diverge from the standby database. Any committed
transactions that have not been transmitted to the standby will be lost if a second failure destroys
the primary database. Similarly, configurations using Maximum Performance (ASYNC) will lose
any committed transactions that were not transmitted to the standby database before the primary
database failed.

9 MAA “Switchover and Failover Best Practices” for Data Guard 10g: www.oracle.com/technology/deploy/
availability/pdf/MAA_WP_10gR2_SwitchoverFailoverBestPractices.pdf
10 Oracle Japan GRID Center Performance Validation: Data Guard SQL Apply on IBM Power Systems: http://www
.oracle.com/technology/deploy/availability/pdf/gridcenter_sqlapply_validation_powersystem.pdf
11 MetaLink Note 413484.1

www.oracle.com/technology/deploy/availability/pdf/MAA_WP_10gR2_SwitchoverFailoverBestPractices.pdf
www.oracle.com/technology/deploy/availability/pdf/MAA_WP_10gR2_SwitchoverFailoverBestPractices.pdf
http://www.oracle.com/technology/deploy/availability/pdf/gridcenter_sqlapply_validation_powersystem.pdf
http://www.oracle.com/technology/deploy/availability/pdf/gridcenter_sqlapply_validation_powersystem.pdf

22 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 1: Data Guard Architecture 23

DBAs have the choice of configuring either manual or automatic failover. Manual failover
operations give the administrator complete control of role transitions. Manual failover, however,
will lengthen the outage by the amount of time required for the administrator to be notified, to
respond to the notification, to evaluate what has happened, make the decision to failover, and
manually execute the command. In contrast, Data Guard’s Fast-Start Failover12 feature described in
Figure 1-8 automatically detects the failure, evaluates the status of the Data Guard configuration,
and, if appropriate, executes the failover to a previously chosen standby database. (Fast-Start
Failover is discussed in detail in Chapter 8.) In either case, executing a database failover is very fast
once the decision has been made to perform a failover. Oracle has benchmarked Data Guard 11g
database failover times ranging from 14 to 25 seconds depending on the configuration.13

Choosing Between Manual or Automatic Failover
Manual or automatic? How do you decide which approach to executing failover is right for you?
Your decision is driven by several factors: RTO objectives, the complexity of application failover
in your environment, and your personal comfort level using an automated versus a manual
process. All things being equal, manual failover will take longer to complete simply because of
the human element involved. Even if the status of the primary database is continuously monitored
and alerts are automatically sent to administrators when problems occur, the administrator must
respond, evaluate the current status, and decide what to do. Not only does this take time, but also
the amount of time required can vary widely from one event to the next, making failover time
difficult to predict. If your recovery time objective is lax enough that it can be achieved using
manual failover, then there is no benefit to be gained from the additional effort required to

12 MAA “Fast-Start Failover Best Practices” for Data Guard 10g: www.oracle.com/technology/deploy/availability/pdf/
MAA_WP_10gR2_FastStartFailoverBestPractices.pdf
13 MAA “Switchover and Failover Best Practices” for Data Guard 10g: www.oracle.com/technology/deploy/
availability/pdf/MAA_WP_10gR2_SwitchoverFailoverBestPractices.pdf

Myth Buster: You Must Re-create the Original Primary Databases after Failover
Beginning with Oracle 10g Release 1, you can often avoid having to restore a failed primary
database from a new backup if Flashback Database was enabled on the primary database
before the failover occurred (a minimum flashback retention period of 60 minutes is
required). If the failed primary can be repaired and the database brought to a mounted
state, it can be flashed back to an SCN that precedes the standby becoming the new
primary, and converted to a standby database. When using Redo Apply, this SCN is
determined by issuing the following query on the new primary database:

SQL> SELECT TO_CHAR(STANDBY_BECAME_PRIMARY_SCN)
FROM V$DATABASE;

Once the flashback operation is complete, you convert the failed primary to a physical
standby database and Data Guard is able to resynchronize it with the new primary to
quickly return the configuration to a protected state. This process is a little more involved
for a logical standby, but will accomplish the same end result.

www.oracle.com/technology/deploy/availability/pdf/MAA_WP_10gR2_FastStartFailoverBestPractices.pdf
www.oracle.com/technology/deploy/availability/pdf/MAA_WP_10gR2_FastStartFailoverBestPractices.pdf
www.oracle.com/technology/deploy/availability/pdf/MAA_WP_10gR2_SwitchoverFailoverBestPractices.pdf
www.oracle.com/technology/deploy/availability/pdf/MAA_WP_10gR2_SwitchoverFailoverBestPractices.pdf

Chapter 1: Data Guard Architecture 23

automate failover. However, manual failover can make more aggressive recovery time objectives
very difficult, or even impossible to achieve. The more aggressive your recovery time objective,
the more there is to be gained from implementing Data Guard Fast-Start Failover.

Application complexity is the second factor to consider in manual versus automatic failover.
For example, a U.S. government user of Data Guard since 2003 operates a complex application
environment with distributed transactions that execute across multiple databases. A zero data loss
failover in Maximum Protection or Maximum Availability mode would be no problem for Fast-
Start Failover. The standby database would assume the primary role with no data loss, and there
would be no recovery implications for any of the other databases participating in a distributed
transaction. An automatic failover in Maximum Performance mode with data loss, however,
would be problematic. Manual effort is required because Data Guard is not yet able to coordinate
point-in-time recovery across multiple databases participating in a distributed transaction. This
user has configured Maximum Performance mode given that primary and standby databases are
separated by more than 1000 miles. Even though Data Guard 11g supports automatic failover in
Maximum Performance mode, it is not practical for this user to implement because of the
additional manual effort required to recover multiple databases to the same point in time to
preserve global data consistency following a data loss failover.

How Fast Is Automatic Failover?
Oracle documented Data Guard automatic failover performance for Oracle Database 10g
Release 10.2.0.2. Failover timings for this early release of Fast-Start Failover were 17 seconds
for physical standby databases and 14 seconds for logical standby databases. Users deploying
later releases of Data Guard have anecdotally reported that failover times have dropped to
less than 10 seconds depending on configuration.

FIGURE 1-8. Data Guard Fast-Start Failover architecture

Site 2
Standby

Site 1
Primary

• Fast-Start Failover Target• Maximum Availability (SYNC)
• Maximum Performance (ASYNC)
 • FastStartFailoverLagLimit

• Data Guard Observer
 • FastStartFailoverThreshold

Data Guard
Fast-Start Failover

24 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 1: Data Guard Architecture 25

In conversations with DBAs, we also frequently observe a reluctance to “trust” software to
execute an automatic failover. This apprehension is natural. Administrators are concerned that the
lack of manual control may lead to unnecessary failovers (false failovers) and disrupt operations.
They fear that automatic failover may result in more data loss than acceptable, or that it may
cause a split-brain condition, in which two primary databases each process transactions
independent of the other. They worry that applications may not reconnect to the new primary
database, impacting availability even though the database failover was successful. They are
concerned that they will be forever rebuilding the original primary database after failovers occur.

While these are legitimate concerns for any automatic solution, Data Guard Fast-Start Failover
has been carefully designed to avoid these problems. Data Guard has very specific, user-configurable
rules to control an automatic failover for SYNC and ASYNC configurations, preventing false failovers
and making it impossible for a split-brain condition to occur. It will never allow an automatic failover
if the resulting data loss exceeds the previously configured recovery point threshold. It posts system
events that can be used with Oracle Fast Application Notification (FAN), Fast Connection Failover
(FCF) and Transparent Application Failover (TAF), or other methods external to Oracle that can
reliably direct applications to reconnect to the new primary database (also discussed further in
Chapter 10).14 Data Guard Fast-Start Failover automatically reinstates the failed primary database as
a standby for the new primary, assuming it is salvageable, and thus creates no extra work for the DBA
compared to manual failover procedures. We expect to see more companies deploy Fast-Start
Failover as the increasing cost of downtime drives more aggressive RPOs, and as their internal testing
validates Data Guard capabilities, eliminating obstacles to its adoption. See Chapter 8 for more
details on Role Transitions.

Data Guard Management
Data Guard offers three choices for management interface: SQL*Plus, Data Guard broker, and
Enterprise Manager. SQL*Plus is the traditional method for managing a Data Guard configuration.
SQL*Plus is the most flexible option, but it’s also the most tedious to use. Any changes made to
a Data Guard configuration require attaching directly to each system and making changes locally
for that system.

14 MAA “Client Failover Best Practices for Highly Available Oracle Databases”: www.oracle.com/technology/
deploy/availability/pdf/MAA_WP_10gR2_ClientFailoverBestPractices.pdf

Myth Buster: Automatic Failover Can Cause Split-Brain
The last thing you ever want to have are two independent databases, each operating as the
same primary database. This can happen if, unknown to you, someone restarts the original
primary database after you have performed a failover to its standby database. A common
misperception is that automatic failover can increase the chance of this occurring. Not so
with Data Guard Fast-Start Failover. A failed primary cannot open without first receiving
permission from the Data Guard observer process. The observer will know that a failover
has occurred and will refuse to allow the original primary to open. The observer will
automatically reinstate the failed primary as a standby for the new primary database,
making it impossible to have a “split-brain” condition.

www.oracle.com/technology/deploy/availability/pdf/MAA_WP_10gR2_ClientFailoverBestPractices.pdf
www.oracle.com/technology/deploy/availability/pdf/MAA_WP_10gR2_ClientFailoverBestPractices.pdf

Chapter 1: Data Guard Architecture 25

The Data Guard broker is a distributed management framework that automates and
centralizes the creation, maintenance, and monitoring of a Data Guard configuration. It has its
own command line (DGMGRL) and syntax. It simplifies and automates many administrative
tasks for creation, monitoring, and management of a Data Guard configuration. Centralized
management is possible by virtue of the broker maintaining a configuration file that includes
profiles for all databases in the Data Guard configuration. You can connect to any database in the
configuration and the broker will propagate changes to all other databases in the configuration
and their server parameter files. The broker also includes commands to start an observer, the
process that monitors the status of a Data Guard configuration and executes an automatic failover
(Fast-Start Failover) if the primary database should fail.

Oracle Enterprise Manager provides a GUI to the Data Guard broker, replacing the DGMGRL
command line and interfacing directly with the broker’s monitor processes. The Enterprise Manager
Data Guard management overview page is shown in Figure 1-9.

Myth Buster: The Data Guard Broker Is a Single Point of Failure
The Data Guard broker is not a single point of failure. Broker processes are background
processes that exist on each database in a Data Guard configuration and communicate with
each other. Broker configuration files are multiplexed and maintained at all times on each
database in the configuration. If the system on which you are attached fails, you simply
attach to another database in the Data Guard configuration and resume management from
there. More details in Chapter 5.

FIGURE 1-9. The Enterprise Manager Data Guard management page

26 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 1: Data Guard Architecture 27

Enterprise Manager also provides an easy-to-use creation wizard that provides a simple
point-and-click interface to create a Data Guard configuration. Enterprise Manager requires that
the Data Guard broker be enabled. If the broker is not enabled, Enterprise Manager cannot be
used to manage your Data Guard configuration, and Enterprise Manager’s monitoring of Data
Guard related metrics is limited to redo rate, transport lag, and apply lag.

Active Standby Databases
It used to be acceptable for DR solutions to limit their scope to data protection. High availability
was considered a separate topic from DR. Then along came Oracle Database 10g and Data Guard
Fast-Start Failover, and all of a sudden a DR solution for Oracle Database also possesses high
availability attributes. Now, instead of measuring the recovery point objective (RPO) for a DR
solution in hours or days, a Data Guard RPO can be measured in seconds or minutes, depending
on configuration.

Similarly, DR solutions have traditionally been characterized by standby systems that are
unable to be used for any productive purpose while they maintain synchronization with the
primary site. This has made DR solutions expensive because they can be used for no other
purpose, and has limited their use only to the most critical databases and to companies that could
afford their high cost. Sure, some SQL-based replication strategies can be used to work around
this limitation, but such approaches do not work transparently with all applications and data
types. SQL-based solutions also have difficulty scaling in high workload environments, and they
can add considerable management complexity—increasing cost and business risk. With Oracle
Database 11g and using Active Data Guard or Data Guard Snapshot Standby, physical standby
databases can be used for productive purposes while they also provide DR protection. Asset
utilization and performance are enhanced while complexity and the likelihood of disrupting
operations when introducing changes to production environments are reduced. This results in
higher return on investment with less business risk. Several examples for using your standby
databases are described in the sections that follow.

Offload Read-Only Queries and Reporting
Active Data Guard enables a physical standby database to be open read-only while Redo Apply
is active; queries run against the standby database receive results that are up-to-date with the
primary database. Read-only queries and reports can be offloaded from the primary to the
standby database, reducing I/O and CPU consumption, creating headroom for future growth,
and improving quality of service for read-write transactions. The entire time the active
standby is servicing queries it is also providing DR. If the primary database should fail,
data is protected at the standby and failover is immediate because the standby database is
completely up-to-date.

Active Data Guard also makes it very easy to test the readiness of your DR solution. In
addition to the usual Data Guard status reporting, you can easily issue the same query against
your primary and standby databases and compare results to validate that the standby database is
functioning and up-to-date. Active Data Guard is unique in that it offers the simplicity, reliability,
and high performance of physical replication, while providing much of the utility of more
complex SQL-based replication technologies for read-only queries and reporting.

Chapter 1: Data Guard Architecture 27

Offload Backups
Active Data Guard also includes the ability to use RMAN block change tracking and perform fast,
online, incremental backups of your physical standby database. Because backups taken on
a physical standby can be used to restore either the primary or standby databases, it is no longer
necessary to perform backups on the primary, freeing system resources to process critical
transactions. This functionality should be considered even for companies that have previously
used storage-based technologies to offload backup overhead from their production databases. For
example, it’s not uncommon to use storage technologies to take a full copy of a production
database and then run backups from this copy. Instead of this practice, the same storage can be
repurposed to deploy a local Data Guard physical standby database with Active Data Guard.
RMAN fast incremental backups can be performed on the active standby database, providing the
same benefit of offloading the primary. But because the standby database is active, it provides
additional benefits of better data protection, higher availability, and the ability to offload read-only
queries and reports from the primary database.

Testing
One of the biggest IT challenges is minimizing the risk of introducing changes to systems,
databases, and applications in critical production environments. How often have you seen
changes implemented over a weekend, when everything looks fine until Monday morning and
real users get on the system, performance slows to a crawl, and the CEO wants to know why the
problems weren’t discovered in test and addressed before they disrupted business operations?
Ideally, you could avoid this risk by thoroughly testing any proposed changes on a true replica of
your production system and database using actual production workload. Ideally, you would
also be able to run multiple tests using the same workload and data. This lets you establish a
meaningful baseline against which you can iteratively assess the performance impact of proposed
changes, optimizing the strategy chosen without impacting production.

Data Guard Snapshot Standby in Oracle Database 11g, a feature included with the Enterprise
Edition license, has been developed to help address this problem. Using a single command, a
Data Guard 11g physical standby can be converted to a snapshot standby, independent of the
primary database, that is open read-write and able to be used for preproduction testing. Behind
the scenes, Data Guard uses Flashback Database and sets a guaranteed restore point (GRP)15 at the

15 Configuring the RMAN Environment: Guaranteed Restore Points: http://download.oracle.com/docs/cd/
B28359_01/backup.111/b28270/rcmconfb.htm#BRADV89447

How Fast Are Fast Incremental Backups?
Oracle benchmarking has shown that fast incremental backups using RMAN block change
tracking are up to 20 times faster than traditional incremental backups. Changed blocks are
easily identified without the performance impact of full table scans. Before Active Data Guard,
fast incremental backups using RMAN block change tracking could not be performed on
a physical standby database.

http://download.oracle.com/docs/cd/B28359_01/backup.111/b28270/rcmconfb.htm#BRADV89447
http://download.oracle.com/docs/cd/B28359_01/backup.111/b28270/rcmconfb.htm#BRADV89447

28 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 1: Data Guard Architecture 29

SCN before the standby was open read-write. Primary database redo continues to be shipped to
a snapshot standby, and while not applied, it is archived for later use.

A second command converts the snapshot back into a synchronized physical standby
database when testing is complete. Behind the scenes the standby is flashed back to the
GRP, discarding changes made while it was open read-write. Redo Apply is started and all
primary database redo archived while a snapshot standby is applied until it is caught up with the
primary database. While a snapshot standby does not impact recovery point objectives, it can
lengthen recovery time at failover due to the time required to apply the backlog of redo archived
while it was open read-write.

Oracle Real Application Testing is a new option for the Oracle Database 11g Enterprise
Edition and is an ideal complement to Data Guard snapshot standby. It enables the capture of an
actual production workload, the replay of the captured workload on a test system (your Data
Guard snapshot standby), and subsequent performance analysis. You no longer have to invest time
and money writing tests that ultimately do an inadequate job of simulating actual workload. You
don’t have to try to re-create your transaction profile, load, timing, and concurrency. Using Data
Guard, the process is simple:

 1. Convert a physical standby database to a snapshot standby and begin capturing workload
on your primary database.

 2. Explicitly set a second guaranteed restore point on your snapshot standby database.

 3. Replay the workload captured from the primary database on the snapshot standby to obtain
a base line performance sample.

 4. Flash the snapshot standby back to your explicit guaranteed restore point set in step 2.

 5. Implement whatever changes you want to test on the snapshot standby.

 6. Replay the workload captured from the primary database on the snapshot standby and
analyze the impact of the change by comparing the results to your baseline run.

 7. If you aren’t satisfied with the results and want to modify the change, simply flash the
snapshot standby back to your explicit guaranteed restore point set in step 2, make your
modifications, replay the same workload, and reassess the impact of the change.

 8. When testing is complete, convert from snapshot standby back to a physical standby.
Data Guard will discard any changes made during testing and resynchronize the standby
with redo it had received from primary and archived while the snapshot standby was
open read-write.

Myth Buster: A Physical Standby Database Can’t Receive
Primary Redo While Open Read-Write
A physical standby database does not defer shipping of redo from primary to standby when
open read-write if you use Data Guard 11g snapshot standby. Redo for current primary
database transactions continues to be received and archived by a snapshot standby database
the entire time it is open read-write for testing or other purposes. Primary data is kept safe at
the standby, and DR protection is assured at all times.

Chapter 1: Data Guard Architecture 29

Not only are you able to quickly run a series of tests using actual production workload, you
are also able to run them on an exact copy of the production database, and on servers and
storage sized similarly to production (given that standby systems are usually sized to run
production should a failover ever be necessary). You have eliminated considerable time, effort,
and expense of deploying a test system by using the DR system already in place. Most
importantly, you achieve a better test result and significantly reduce the risk of impacting
performance or availability when implementing changes to production systems.

Data Guard and the Maximum
Availability Architecture
Data Guard is only one of the many Oracle Database capabilities that provide high availability
and data protection. This chapter has touched on Oracle Real Application Clusters, Oracle
Automatic Storage Management, Oracle Recovery Manager, Oracle Flashback Technologies,
and Oracle Streams. Other significant features include a growing set of planned maintenance
capabilities—online patching, online redefinition, online addition/subtraction of cluster nodes
and storage, online configuration of memory and database parameters, and rolling database
upgrades. The collective deployment of these capabilities using Oracle documented best practices
is referred to as the Oracle Maximum Availability Architecture (MAA). Unlike any third-party DR
solution, Data Guard can leverage numerous Oracle technologies to deliver a high availability
architecture that provides better data protection, higher availability, better systems utilization, and
better performance and scalability, all under a common management environment. This translates
into lower cost, less business risk, and greater agility to respond more quickly to changing
business requirements.

Conclusion
The Latin phrase Prodeo quod victum, meaning “Go forth and conquer,” is an excellent note on
which to end this first chapter. We have shared enough information to help you understand the
basic architecture of Data Guard and what is possible to achieve. Now you are prepared for
Chapter 2 and ready to begin adding to your knowledge of how to implement, manage, and get
the most out of your Data Guard configuration.

Maximum Availability Architecture
The Oracle Technology network portal for MAA best practices is at http://otn.oracle.com/
goto/maa.

http://otn.oracle.com/goto/maa
http://otn.oracle.com/goto/maa

Chapter
2

Implementing Oracle
Data Guard

31

32 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3

Chapter 2: Implementing Oracle Data Guard 33

ince you have arrived at Chapter 2, you must be ready to start putting your Oracle
Data Guard configuration in place. You have read Chapter 1, haven’t you? Now
that you have a complete understanding of how Data Guard is put together—its
terminology, parts, processes, and functionality—you might realize that a little
knowledge can be a dangerous thing. Many people make the mistake of getting

this far and then jumping straight into Chapter 3 of the Data Guard Concepts and Administration
manual and creating standby databases. Then they wonder why they have problems later. Without
careful thought and planning and a very good understanding of the planned and unplanned
outages you are trying to avoid, you run the risk of your “failure avoidance plan” failing—not a
good situation.

In this chapter, you’ll learn about the various tasks you must perform well before you start
executing Recovery Manager (RMAN) and SQL commands in a Data Guard environment. Then
you’ll learn how to create your standby databases so that they meet every requirement you have
been given.

Plan Before You Implement
We all know that “stuff” happens to our systems, no matter how well designed and implemented
they are. This is a fact of life. Murphy’s Law tells us “Anything that can go wrong will go wrong.”1
We believe that Murphy was being optimistic when he put the ‘If’ at the front of that sentence. It
might be more accurately stated as “Anything can go wrong, and it will.” It is not the occurrence
of anything that brings a business to its knees; it is how the problem is handled and how you
recover from the situation that is important.

Before you start executing any computer commands or buying any hardware, software, or
networks, you need to know which situations you are trying to avoid and how you need to
recover from those situations. The two main pieces of information you need to begin this
journey are your company’s recovery point objective (RPO) and recovery time objective
(RTO), which tell you what you need to implement. Everything about setting up Data Guard is
directly related to the RPO and RTO. (By the way, the much-discussed service level agreement
[SLA] is something that you write after you know what you can actually achieve, not
something you write up front and commit to—at least you should not agree to it without
knowing what you can actually achieve given the requirements and the resources committed
to the task.)

1 See http://en.wikipedia.org/wiki/Murphy’s_law for more about Murphy’s Law.

Data Guard and Oracle Real Application Clusters
The information and procedures discussed in this chapter are structured to set up Data Guard
with single non–Oracle Real Application Clusters (RAC) databases. At the end of the chapter,
you’ll learn about the changes required to make it all work with Oracle RAC databases.

S

http://en.wikipedia.org/wiki/Murphy%E2%80%99s_law

Chapter 2: Implementing Oracle Data Guard 33

Determining Your Requirements
OK, so you’re not scared off yet. Good. You are our kind of person—one who wants to develop
a disaster recovery implementation that will meet your business’s needs. To do that, you must first
know your RPO and RTO requirements.

Recovery Point Objective
An RPO is quite simple. It answers the question “How much data are you willing to lose when the
dreaded failure occurs?” People in the industry generally talk about data loss in terms of time—a
few seconds to double-digit hours—but you need to understand what that means in terms of
transactions. Six seconds of data loss at 3000 transactions per second (tps) means you could
potentially lose 18,000 transactions when you have to failover to your disaster recovery site.

Answers to the following questions will affect your RPO:

 Is data loss acceptable if the primary site fails? ■

 How much data loss is tolerated if a site is lost? ■

 Is potential data loss between the primary and the standby databases tolerated when a ■
standby host or network connection is temporarily unavailable?

 How far away should the disaster-recovery site be from the primary site? ■

 What is the current or proposed network bandwidth and latency between sites? ■

Data Loss If the answer to the first question, “Is data loss acceptable?”, is no, your task is
simple: you must configure your disaster recovery solution not to allow data loss when you have
to failover to your disaster recovery site. If the answer is yes, you need to know how much data
loss is acceptable.

Don’t be fooled by the person who tells you that some data loss is acceptable. This person
might just be trying to save money, having never experienced a data loss situation. If you are
trying to save money, admit that up front and implement accordingly, accepting that you will have
to figure out how to go on after you have lost some data, even if it means bringing in a small army
of retired data entry people to re-enter data from paper documents (which, by the way, could be
happening while you are down).

One company, a payments clearinghouse, decided that it could sustain 20 minutes’ worth of
data loss when production failed and it had to move to the disaster recovery site. The company
accepted the cost of paying for 20 minutes of time that it could never bill to its clients. Sounds
like a reasonable and controllable situation, doesn’t it? But when the same problem happens
several times in a row, the amount of lost revenue can mount up considerably. Another site was

Myth Buster: Zero Data Loss Configurations Have
Too Much Impact on Production Throughput
A common fear among Data Guard implementers is that zero data loss configurations have
too much impact on production throughput to be used. Don’t be put off until you analyze
the true impact of losing that data and know what the requirements really are for achieving
zero data loss. It may not be as bad as you think.

34 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3

Chapter 2: Implementing Oracle Data Guard 35

happy with its 8-hour data loss SLA. But when the primary database went down, the company
discovered that the other 14 databases that fed off the primary were all 8 hours out of sync with
the new primary database. Nobody had considered the impact of that downstream data loss.

If you are still convinced that data loss is acceptable (or, admittedly, unavoidable), you need
to configure accordingly to reduce your exposure. More on that in the next section, “Networks
and Data Loss.”

What about those times when the network to your standby goes down? Or what if you need
to take the standby down for system maintenance? If you have only one standby, you need to
know what you are going to do when production fails, since the changes made to the primary
database during this period will not be present and will be lost at the standby database when the
failover is executed.

Networks and Data Loss Once you have made up your mind on how you need to handle zero
or minimal data loss, you need to pay attention to the network that you will use to transport the
primary database changes to your standby databases. Although Data Guard does not require a
dedicated network, you would be well served to ensure that Data Guard has either a network of its
own or at least enough bandwidth on the existing network to be able to transport the redo your
database generates to meet your requirements. Remember that you cannot force a tennis ball
through a drinking straw without chopping the tennis ball into many small pieces and then
reassembling it at the other end. So, you need to determine your primary database redo generation
rate at peak and steady states so you can determine the network latency and bandwidth you can
sustain and how it will affect your production throughput. In addition, regardless of your zero or
minimal data loss choices, you do need to decide what distance is acceptable to meet all of the
potential disasters your business may encounter—remember Murphy? Configuring and tuning the
network are discussed in the section “Tuning the Network.”

Recovery Time Objective
The RTO is completely different from the RPO. That much is true. Although the RPO is concerned
with data loss, the RTO is defined as how fast you can get back up and running. But the RTO is
often considered to be more important than the RPO, and that belief is usually misplaced. The
following factors can affect your RTO:

 How you have configured your standby ■

 Not having a standby and having to resort to backups ■

 Having the database and applications failover at the same time ■

 Did the middle tier have to failover too? ■

 Are people stressed and make mistakes? ■

Myth Buster: You Must Configure Data Guard
to Be Exclusively Zero Data Loss
If you need zero data loss, you do not have to configure Data Guard to be exclusively zero
data loss. You can mix zero data loss standby databases with minimal data loss standby
databases in the same Data Guard configuration. Each standby database has its own set of
attributes and parameters.

Chapter 2: Implementing Oracle Data Guard 35

We are all concerned about high availability, which is what the RTO is all about. But having
your system available without all the data could be a bigger problem than you might expect. That
is why we’re discussing the RTO after we discuss the RPO. You may not like to hear that but you
didn’t come here to hear things you already know. You came here to learn what the right way to
think of things is and how you can plan and implement for those eventualities. Armed with all of
this information, you will be able to make better decisions.

So what are your RTO expectations? Everyone wants zero downtime, which is an RTO of
zero—who wouldn’t?

An RTO of zero isn’t impossible, depending on how you look at failures. In general, high
availability is viewed as getting users hooked up again as fast as possible, and in a cluster
environment, only the users who were on the failed system actually have to be relocated, which
is done automatically by the cluster software. The users on the surviving systems in the cluster
notice only a slight pause, if anything. Of course, that implies that you are using an Active-Active
cluster environment such as Oracle RAC. If you use a Cold Failover Cluster, you will experience a
longer failover time than with Data Guard. In addition, Data Guard extends high availability to a
distinct copy of the primary database located anywhere from the next computer room to across
the globe. The amazing thing is that it’s not the distance between the primary database and the
standby database that can impact your RTO, it’s how fast you can apply the changes to the
standby database and how fast you can actually execute the failover when necessary. As
mentioned, the distance will affect the RPO, not the RTO.

Armed with your RPO and RTO requirements (and a realistic view of the world), you are now
ready to start examining what Data Guard decisions you need to make. After you make those
decisions, you’ll be ready to start creating Data Guard standby databases.

Understanding the Configuration Options
Disaster recovery and high availability are a set of configuration and operational decisions, not a
black box that you stick onto your system that magically works. Data Guard is no different,
although once set up correctly, it almost becomes a black box for the Oracle database. You need
to understand four main categories of Data Guard before you can make the correct
implementation decisions for your disaster recovery solution:

 Protection modes ■

 Redo transport ■

Myth Buster: A Low RTO Cannot Be Achieved with Data Guard
Many people believe that a low RTO cannot be achieved with Data Guard; in fact, many
think that it takes minutes if not hours to failover to a Data Guard standby. This is just not
true. Like any transition to a different system it is the manual operations that take time.
Remove the manual intervention, however, and failing over to your Data Guard standby can
be accomplished in seconds. (We’ll discuss this in Chapter 8.) Even the manual operation of
moving a Data Guard standby database over to the production role itself takes only a couple
of minutes. It is usually the client reconnections that take the extra time. We’ll show you how
to automate client failover in Chapter 10.

36 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3

Chapter 2: Implementing Oracle Data Guard 37

 Apply methods ■

 Role transitions ■

These four categories are discussed in this order, since you must follow this order when making
your decisions.

For the most part, the discussions that follow center around a single Data Guard parameter
called LOG_ARCHIVE_DEST_n, where the n is a number from 1 to 9—which means you can have
from 1 to 9 standby databases. These parameters define where and how redo is sent to either a
local archive log file or a remote standby database, asynchronously (ASYNC) or synchronously
(SYNC), as introduced in Chapter 1. These parameters also use the attribute SERVICE, which
takes a TNSNAME definition as its argument. All of the nuances of the TNSNAME with regard to
Data Guard are discussed later in this chapter as well as in Chapter 10.

Choosing a Protection Mode
The Data Guard protection modes are, simply put, a set of rules that the primary database must
follow when running in a Data Guard configuration. A protection mode is set only on the primary
database and defines the way Data Guard will maximize your Data Guard configuration for
performance, availability, or protection, so that you achieve the desired RPO when your primary
database or site fails. Once you choose your protection mode, you agree to the set of rules that
your primary database must obey.

Each of the three protection modes is the degree to which your data is protected, and as such
they define two major components of your configuration: how the redo will be transported to the
standby and what the primary database will do when a standby or the network fails. Data Guard’s
automatic failover capability, Fast-Start Failover, adds one more level to the behavior of your
primary database at failure time, which we will discuss in Chapter 8.

NOTE
We discuss the rules, requirements, and behaviors for each mode
here, but the details of the parameters settings are discussed in later
sections of this chapter. The procedure for performing a failover is
discussed in Chapter 8.

Maximum Performance This is the default protection mode that any Oracle database since
Oracle9i Release 2 actually runs in, with or without a standby database. The rule is this: “Allow as
little data loss as possible without impacting the performance of my primary database.” As such,
this protection mode provides the highest degree of performance for your primary database. It is
also the lowest degree of protection you can have, which means that when you have to failover to
a standby database you will lose some data. (We will explain why you lose data in Chapter 8.)
How much data you lose depends on your redo generation rate and how well your network can
handle that amount of redo, which is referred to as transport lag. However, a transport lag of zero
still means you will lose some data at failover time, because when the primary database is a RAC,
the final apply of the remaining redo must find a common point in the redo streams from the
primary, which will result in some data loss, potentially 3 to 6 seconds, regardless of the transport
mode. Bear in mind, though, that even with a non-RAC primary database, there is no guarantee
that zero data loss will be the result in Maximum Performance.

The requirements for this protection mode are 0 (zero) to 9 standby databases using
asynchronous transport (ASYNC), with no affirmation of the standby I/O (NOAFFIRM). You might

Chapter 2: Implementing Oracle Data Guard 37

ask, “How much will ASYNC impact my primary database?” and “How far apart can my primary
and standby databases be?” The answers are, as of Oracle Database 11g, “Almost nothing,” and
“Pretty much across the planet,” respectively. There are times when, even though the standby is
on this planet, the network latency is such that the redo transport cannot keep up with the redo
generation. In such cases, some redo compression might still be in order to help improve the
transport lag. This is discussed in the next section.

While it is not mandatory to have standby redo log (SRL) files in Maximum Performance
mode, we strongly recommend that you configure them. The SRL files must be the same size as
your online redo log (ORL) files, and you also need to have the same number of SRL files as you
do ORL files, plus one. If you have a RAC primary, you need “plus one” per RAC instance. These
files need to be created on your standby as well as on your primary in preparation for switchover.

When a standby database that is operating in Maximum Performance mode is disconnected
from the primary database (either by network, system, or standby database failure), the primary
database is not affected—that is, redo generation is not stopped or even paused. If the primary
database is an Oracle RAC, the node that lost its connection to the standby database will stop
sending redo, but the other nodes in the cluster that can still communicate with the standby
database will continue sending redo. The disconnected standby is ignored by the RAC node that
lost its connection until its Arch ping process can determine that it is reachable again. At that
time, any gaps in the redo will be sent to the standby, but the log writer process (LGWR) will not
restart the Log Network Server (LNS) process for the current redo stream until the next normal log
switch at the primary database. We expect that this behavior will change in a future release, and
a log switch will be executed automatically to reconnect all instances with the recently reconnected
standby database.

The Maximum Performance protection mode is useful for applications that can tolerate some
data loss in the event of a loss of the primary database.

Standby Redo Log Files
While it is true that SRL files are not mandatory in Maximum Performance, you should still
create them because they will improve redo transport speed, data recoverability, and apply
speed. We’ll discuss how to create them later in the chapter.

Automatic Log Switch
Many users set up an O/S batch job to force a log switch at the primary database so that
logs continue to switch even when the database is idle or they have very small redo log
files. This was usually done to ensure a known level of data loss for the standby when you
used the ARCH process to send redo. As the true minimum mode is now ASYNC, it is no
longer necessary to do this. In fact, your ORLs should be larger today. And if you really
want to switch logs on a regular basis, set the ARCHIVE_LAG_TARGET parameter, which will
force a log switch for you.

38 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3

Chapter 2: Implementing Oracle Data Guard 39

Maximum Availability This is the first zero data loss protection mode, with some caveats. The
rule here is, Do not allow any data loss without impacting the availability of my primary database.
This means that when you have to failover to a standby database configured with SYNC transport,
and that is synchronized with the primary database, you will not lose any data provided no redo
was generated at the primary database that was not received by the standby database. In other
words, as long as the primary database or a complete production site failed first, your failover at a
synchronized standby database will result in zero data loss. However, if the network went down
first or the standby went down and didn’t have a chance to resynchronize before the failover, then
all redo generated at the primary database will be lost when you failover. A standby database
cannot recover something that it never received.

The requirements for this protection mode are one or more standby databases using
synchronous (SYNC) redo transport with affirmation of the standby I/O (AFFIRM) and SRL files. A
Data Guard configuration that is in Maximum Availability is not considered synchronized until it
has at least one standby that meets these requirements.

SYNC transport is different from ASYNC transport. A distinct wait time is required for the
LGWR to allow a transaction to commit—the time it takes to send the redo to every SYNC
standby database, to write the redo to the SRL file, and to acknowledge that the deed is done. (Of
course, if a standby database does not answer, the wait time will be the time it takes for the
NET_TIMEOUT value to be exceeded—that is, to become a failed destination. More on that next.)
Although you can place a SYNC standby database across the globe, your production throughput
is going to suffer from the impact of this wait period. If your network has the bandwidth to meet
your redo generation rate and you have tuned it to meet your requirements (more on that later),
you should look at the latency (the distance between the primary and standby sites) for a round-
trip across the network.

Our experience has shown that Data Guard can perform acceptably in synchronous transport
with low production impact at much larger distances than other solutions. Testing has shown
about 4 percent impact to database throughput at 10ms latency up to 10 percent impact at 20ms
latency. Of course, the lower the latency the lower the impact. Network latencies of 1ms to 20ms
translate from 0 miles up to 200 miles (320 km) distance between your primary and your standby.
Of course, some network tuning is always necessary to get the best performance, and this will be
discussed in the next section. If you need to have a standby (or standbys) outside this distance,
you need to test even more diligently to ensure that your production impact is acceptable with
SYNC transport (supporting Maximum Availability). If not, you need to consider using Maximum
Performance and accepting the data loss that you will incur—or find a site closer to your primary
database. If you are ready to accept the performance impact, then read on.

When a standby database that is operating in Maximum Availability is disconnected from the
primary database (either by network, system, or standby database failure), the primary database
will wait the number of seconds defined in the attribute NET_TIMEOUT (which defaults to 30
seconds). If no response from the LNS process is received within that many seconds, the standby
database is marked as failed and the log writer continues committing transactions and ignores the
failed standby database. If a failure response is received in less than the number of seconds
defined in NET_TIMEOUT, then the LGWR and LNS may attempt to reconnect, provided there is
enough time left before abandoning the standby database.

When a SYNC standby database is deemed failed, the primary database forces a log switch to
“fix” the zero data loss point and then begins generating redo that is not sent to that standby
database. In an Oracle RAC primary, this log switch causes all primary instances to stop sending
redo even if they can still see the standby. If this was your last SYNC standby, the protection mode

Chapter 2: Implementing Oracle Data Guard 39

drops to Unprotected; otherwise, the protection mode stays at Maximum Availability. As with
Maximum Performance mode, the failed standby is ignored until the Arch ping process can
determine that it is reachable again. At reconnect time, any gaps in the redo will be sent to the
disconnected standby and a log switch will be forced across all primary nodes to restart the LNS
process for the current redo stream on each thread.

Once the gap resolution is complete and each primary instance is sending the current redo
stream, the status of standby database is marked as SYNCHRONIZED again. If this was the only
standby database (or the last surviving one), the protection level of the primary database also goes
back to Maximum Availability. It is a misconception that the protection mode falls to Maximum
Performance. When the standby database is disconnected, Data Guard stops shipping redo. When
it comes back, it uses the ARCH processes to resolve any gaps and begins sending the redo
synchronously (SYNC) again. Monitoring the protection mode and levels is discussed in Chapter 7.

The Maximum Availability protection mode is useful for those applications that cannot
tolerate data loss in the event of a loss of the production database, but whose SLA requires no
downtime if possible due to standby and/or network failures.

Maximum Protection This is the highest level of zero data loss protection, which has no
caveats but does have different rules and behavior. The rule here is, Do not allow any data loss
even at the expense of the availability of my primary database. This means that when you have to

Myth Buster: Any Zero Data Loss Data Guard Configuration Will Result
in Production Downtime if the Standby Database Is Not Reachable
It is a common misconception that any zero data loss Data Guard configuration will result
in production downtime if the standby database is not reachable. This is simply not true. In
Maximum Availability, a failed standby database will create only a small pause on the
primary database before continuing to process transactions and generate redo. In addition,
starting with Oracle Database 10g Release 2, you can increase your protection by going to
Maximum Availability without taking a production outage. You can always decrease your
protection mode without an outage.

Mixing Standby Databases
Even in the higher protection modes that require SYNC and AFFIRM standby databases, you
can implicitly define other standby databases as Maximum Performance standby destinations
using ASYNC, which implies NOAFFIRM. But these standby databases do not figure in
meeting the requirements for the zero data loss protection modes and are not considered
when Data Guard is evaluating what it is going to do when it runs out of standby databases
that meet the requirements for the higher protection modes. Only if you were to increase
their settings to SYNC and AFFIRM and allow them to become synchronized would they
figure in the higher protection mode rules and evaluation.

40 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3

Chapter 2: Implementing Oracle Data Guard 41

failover to a SYNC standby database running in this mode, you will not lose any data. Maximum
Protection mode provides the highest degree of protection for your data since no redo can be
generated that is not also safe at a minimum of one zero data loss standby database.

The requirements for Maximum Protection mode are the same as those for Maximum Availability
mode—one to nine standby databases using synchronous transport (SYNC) with affirmation of the
standby I/O (AFFIRM) and SRL files. However, to move to this degree of protection, you must bounce
the primary database. If at least one standby database meets these requirements and is reachable at
open time, the primary database will open; otherwise, it will not be allowed to open and the
database will crash. If it crashes, you will see an error message such as the output in the alert log of
the primary database:

LGWR: Primary database is in MAXIMUM PROTECTION mode
LGWR: Destination LOG_ARCHIVE_DEST_1 is not serviced by LGWR
LGWR: Minimum of 1 LGWR standby database required
Errors in file /OracleHomes/diag/rdbms/matrix/Matrix/trace/Matrix_lgwr_8095.trc:
ORA-16072: a minimum of one standby database destination is required
Errors in file /OracleHomes/diag/rdbms/matrix/Matrix/trace/Matrix_lgwr_8095.trc:
ORA-16072: a minimum of one standby database destination is required
LGWR (ospid: 8095): terminating the instance due to error 16072
Instance terminated by LGWR, pid = 8095

As with Maximum Availability, when a standby database that is operating in Maximum
Protection mode is disconnected from the primary database (either by network, system, or standby
database failure), the primary database will wait for the number of seconds defined in the attribute
NET_TIMEOUT. If no response from the LNS process is received within that many seconds, the
standby database is marked as failed and the log writer continues committing transactions, ignoring
the failed standby database as long as at least one synchronized standby database meets the
requirements of Maximum Protection.

This is where the behavior changes between Maximum Availability and Maximum Protection.
If the unreachable standby is the last remaining synchronized standby database, then the primary
instance that can no longer send to a qualified standby database is going to be on its way down
in a hurry. To avoid crashing (so that no redo can be generated by this thread that is not at a
standby database), the LGWR will attempt to reconnect before abandoning the last standby
database. Currently, the LGWR will try a reconnect about 20 times, sleeping for 15 seconds
between each attempt in the hope that it was just a network brownout. During these attempts
(which usually amount to 10 minutes or so), the primary instance is not allowed to generate any
redo at all and is, for all intents and purposes, stalled. Since the LGWR process is stalled, it can
cause the entire RAC to stall as well for the reconnect attempt period.

If the last standby database does come back before the retries are exhausted, the LGWR will
reconnect, send the last bit of redo, and then processing will resume. If the missing standby
database does not come back in time, then that primary instance will crash and another instance in
the Oracle RAC will perform crash recovery, sending all the final bits of redo to its synchronized
standby database. At this point, you will not be able to open the failed primary instance until either
one standby database with the correct requirements is reachable or you lower the protection mode
either to Maximum Availability or Maximum Performance.

You will notice that we use instance in this case. Unlike the other two protection modes, there
is no concept of asking the other nodes to switch logs and mark a point of zero data loss in the
redo stream. This instance is going down. If the other instances can still send to a synchronized

Chapter 2: Implementing Oracle Data Guard 41

standby database, they will continue accepting transactions and generating redo. As each
instance encounters the same problem, it will also go down until the entire database has crashed.
Of course, if you have a single instance primary database, the entire database will go down.

Because of this behavior, you are encouraged to create at least two standby databases that
meet the requirements for the Maximum Protection mode. That way, when one of them becomes
unreachable, the primary database will continue generating redo without a pause of more than
NET_TIMEOUT seconds. As long as the failed standby comes back and is resynchronized before
you lose contact with the second standby database, your production continues to run. This
flip-flopping between the two databases can go on forever—as long as you never lose the second
standby database before the first standby database has come back and been resynchronized.

The Maximum Protection mode is required for applications that cannot tolerate any data loss
whatsoever in the event of a loss of the production database. Of course, the SLA must allow for
downtime due to standby and/or network failures to avoid the possibility of data loss—that is, a
committed transaction at the primary that is not safely at a standby database somewhere.

Setting the Protection Mode As you have seen, each Data Guard protection mode has its own
set of rules. Your rule to live by when you make your protection mode decision is The lower the
impact to my primary database the higher the risk to my data. Or, on a “high” note, The higher
the protection of my data the higher the impact on my primary database.

After you have made a protection mode decision and accepted the rules, caveats, and
behaviors, how do you actually put those rules into play? First, you need to create a standby
database or two, set up the redo transport attributes to meet the requirements of your chosen
mode, create the SRL files on your primary and standby databases, and then execute one of the
following SQL statements on your primary database:

ALTER DATABASE SET STANDBY TO MAXIMIZE PERFORMANCE;
ALTER DATABASE SET STANDBY TO MAXIMIZE AVAILABILITY;
ALTER DATABASE SET STANDBY TO MAXIMIZE PROTECTION;

This will set up the rules in your primary database and communicate the setting to your
standby databases so that they run in the same protection mode when they become the primary
database. You never have to issue the first command to go to Maximum Performance since your
primary database runs in that mode by default, unless you are lowering the protection mode to
Maximum Performance. And remember that you cannot set the protection mode to Maximum
Protection unless your primary database is at the MOUNT state, not OPEN.

After you have made this decision, you need to understand the actual process and parameters
used for creating and configuring your standby databases.

A Note About Parameters
In addition to setting the appropriate transport mode attributes based on the protection mode
and creating the SRL files, you should also be using the parameters DB_UNIQUE_NAME and
LOG_ARCHIVE_CONFIG as well as the DB_UNIQUE_NAME destination attribute when setting
up your Data Guard configuration. By using these parameters, you will avoid all the
historical problems that occur when trying to start up a primary database in Maximum
Availability with an Oracle RAC primary database.

42 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3

Chapter 2: Implementing Oracle Data Guard 43

NOTE
If you decide to run in Maximum Protection, you need to consider
a few factors when you do have to failover to one of your standby
databases. These are discussed in Chapter 8.

Defining the Redo Transport Mode
You should now understand the main parts of your standby redo transport mechanism. If you are
going to run in Maximum Performance mode, your standby databases will be using ASYNC and
NOAFFIRM (which are the defaults in Oracle Database 11g). If you are going to run in either of
the two higher protection modes, the databases will use SYNC and AFFIRM. You are also going to
create SRL files on the primary and standby databases. Remember that even though it is not
mandatory to have SRL files in Maximum Performance mode, best practice is to do so.

So for Maximum Performance mode, the LOG_ARCHIVE_DEST_n parameter will look like this
(we don’t like using defaults because they’re not obvious enough):

LOG_ARCHIVE_DEST_2='SERVICE=Matrix_DR0 ASYNC NOAFFIRM'

And for Maximum Availability or Maximum Protection mode, the parameter will look like this:

LOG_ARCHIVE_DEST_2='SERVICE=Matrix_DR0 SYNC AFFIRM'

Of course, you will want to set the DB_UNIQUE_NAME and VALID_FOR attributes as well as tune
the NET_TIMEOUT and REOPEN attributes, and we will discuss all of the parameters and attributes
in more detail in the sections that follow. The topic of configuring multiple standbys with different
transport attributes is covered in Chapter 8 when we talk about choosing a standby database for a
failover.

Defining your redo transport is only part of the picture. You also need to perform an important
tuning exercise—configuring and tuning the network so that Data Guard can make the most of
what you have. In addition, there are a few things you can do to optimize your ASYNC transport
above and beyond the network tuning.

Tuning the Network
As mentioned, you need to know how much redo your primary database will be generating at
peak times and steady state. This is important, because it is the redo (and only the redo) that Data
Guard transports across the network. In addition, you need to know the network bandwidth and
latency to the furthest standby database at a minimum. Once you have these figures, you can start
to set up the network to allow Data Guard to transport the redo as fast as possible to all standby
databases.

Several categories of configuration and tuning information are required:

 Required bandwidth ■

 Oracle Net Services session data unit (SDU) size ■

 TCP socket buffer sizes ■

 Network device queue sizes ■

 SRL files’ I/O tuning ■

Chapter 2: Implementing Oracle Data Guard 43

All these will have a major impact on how fast Data Guard can send the redo across your
network to the standby database, regardless of how much bandwidth you have. Too little
bandwidth is bad, but more than you need is not necessarily enough if you cannot use it
efficiently. You should (if you can) perform some commonsense tasks before you even start down
this tuning road. If you cannot affect these factors, you need to be aware of them as they will
impact how well Data Guard can function:

 Throw out low-speed interfaces and networks. ■

 Make sure the route your redo is taking goes through high-speed interfaces. ■

 Make sure you have plenty of bandwidth with room to spare. ■

 Use routers sparingly. ■

Let’s start looking at what you can tune to get Data Guard to perform as fast as it can, given your
networks and systems. Don’t worry that we have not yet explained all the details of the Data Guard
parameters—we haven’t even mentioned that how they are set depends on what interface you use
to manage your Data Guard configuration. The examples in this section give you instructions on
how to make Data Guard work the best it can and translate easily to the real parameter definitions
you will be using to create your standby database. We’ll also remind you of this when you start
actually doing some real work.

Network Bandwidth Bandwidth isn’t speed, it is capacity, so high-speed networks is a misnomer
since this usually refers to the larger bandwidth networks. A bit will travel from one end to the other
at the same speed, regardless of network size—for example, an OC-3 with 155 Mbits/sec or a T3
with 45 Mbits/sec on a network of the same length or latency. Bandwidth is the number of bits that
can be sent at the same time. Hence, the highest bandwidth network is not always the fastest route,
which is determined by the latency. An OC-3 (155 Mbits/sec) path that goes from Boston to Newark
via Chicago will not necessarily be better for your redo than the T3 (45 Mbits/sec) that goes directly
from Boston to Newark. However, the longer but broader path will be chosen by the network more
times than you can imagine. Think of Galileo’s alleged experiment 2 in which he proved that two
cannon balls of different sizes both hit the ground at the same time when they were dropped off of
the Leaning Tower of Pisa. (No one is really sure if Galileo actually performed this experiment, and
some reports say that it was vindicated by a similar experiment using a vacuum in 1999, but we
don’t care because we like the legend.)

Using the redo generation rate, you can determine how much bandwidth you will need.
Remember that you cannot push a tennis ball through a drinking straw without a lot of effort and
time. That is not your goal here. Your goal is to allow tennis balls to fly through the pipe so
efficiently that you cannot serve them fast enough.

The easiest method to get your redo generation rate is to use Automatic Workload Repository
(AWR) reports taken during steady state times and peak times. If you do not have AWR licensed,
you can get a good estimation of your redo generation rate by looking at the alert log and
calculating the time between log switches during steady state and peak periods. You can then add
up the megabytes of the archive logs for those log switches and divide that number by the total
time to get the average megabytes per second. You can make it more granular by doing the math
for each log switch. The idea is to get a reasonably accurate number for your redo generation rate.

2 See http://en.wikipedia.org/wiki/Galileo_Galilei for information about Galileo.

http://en.wikipedia.org/wiki/Galileo_Galilei

44 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3

Chapter 2: Implementing Oracle Data Guard 45

Bear in mind that you must do this for all nodes in an Oracle RAC to get a number for each node
and for the total across all nodes. Each node’s number indicates what that node will need, but the
total number is your starting place for calculating the required bandwidth.

If you obtain enough bandwidth to handle the steady state, then during peak times you will
experience performance impact at the primary database in SYNC mode or an increasing transport
lag (and subsequent potential data loss) if you are running in ASYNC mode. If you size the network
for the peak times, Data Guard may be twiddling its thumbs during steady state, which is actually
a better position to be in. In this case more is not less; it’s better.

So let’s say that you have a three-node RAC, and two of the nodes are used for online
transaction processing (OLTP), and the third is used for batch (loads and other processing). You
figure out, using one of the methods just described (or one of your own), that the two OLTP nodes
generate about 2 MB/sec during steady state and 5 MB/sec during peak times. The batch node
generates a steady 12 MB/sec when batch jobs are running. At first glance, this looks like you
need a minimum of 16 MB/sec up to 22 MB/sec bandwidth. You will always need more
bandwidth than your redo rate—how much is the question. At a minimum, it is always a good
idea to start with at least 20 percent more than that number to allow for spikes, network
overhead, and miscalculations, but some schools of thought say perhaps 50 percent more. Only
your testing will show what you really need.

Your numbers grow at least to around 19 MB/sec to 26 MB/sec, so let’s start with those
numbers for the following examples. Since networks are measured in megabits, those numbers
need to be multiplied by 8, or 152 Mbits/sec to 208 Mbits/sec. At the low end, this is about an
OC-33 for the wide area network (WAN) to more than an OC-3, but less than a T4 for the peak
rate and better than fiber distributed data interface (FDDI) for a local area network (LAN) in both
cases. But look closer. Is it possible that these redo rates are not generated at the same time?
Perhaps the OLTP systems run between 2 MB/sec and 5 MB/sec during the day but less than 0.1
MB/sec in the night when the batch jobs are running. That could mean that you really need only
enough bandwidth for the highest rate, 12 MB/sec plus the 20 percent, or 14.4 MB/sec in this
example. Now you are talking 115 Mbits/sec, which is well inside the OC-3 range for the WAN
and just more than FDDI for the LAN. This all depends on your system’s redo generation
characteristics.

Bear in mind that these bandwidth calculations do not take into account the latency or round
trip time (RTT) of the network. If you have chosen Maximum Performance mode, you probably
don’t need to care about the latency with the new Data Guard 11g ASYNC streaming model.

3 See http://en.wikipedia.org/wiki/List_of_device_bandwidths for more about device bandwidths.

Factors that Affect Throughput
You must consider various characteristics of your network and the underlying Transmission
Control Protocol/Internet Protocol (TCP/IP) that will influence the actual throughput that
can be achieved. These include the overhead caused by network acknowledgments,
network latency, and other factors. Their impact will be unique to your workload and
network and will reduce the actual network throughput that you will be able to achieve.

http://en.wikipedia.org/wiki/List_of_device_bandwidths

Chapter 2: Implementing Oracle Data Guard 45

But that requires that you do all of the tuning described in this section, and that your network has
the required bandwidth. There may still be optimization tunings to perform, depending on your
situation, such as increasing your primary database log buffers or using redo compression, which
is discussed later in this chapter in the section “Optimizing ASYNC Redo Transport.” 4

If, however, you have chosen Maximum Availability or Maximum Protection mode, then that
latency is going to have a big effect on your production throughput. Several calculations can be
used to determine latency, most of which try to include the latency introduced by the various
hardware devices at each end. But since the devices used in the industry all differ, it is difficult to
determine how long the network has to be to maintain a 1 millisecond (ms) RTT. A good rule of
thumb (in a perfect world) is that a 1 ms RTT is about 33 miles (or 53 km). This means that if you
want to keep your production impact down to the 4 percent range, you will need to keep the
latency down to 10ms, or 300 miles (in a perfect world, of course). You will have to examine, test,
and evaluate your network to see if it actually matches up to these numbers. Remember that
latency depends on the size of the packet, so don’t just ping with 56 bytes, because the redo you
are generating is a lot bigger than that. For example, here is the output from a ping going from
Texas to New Hampshire (about 1990 miles) at night, when nothing else is going on (edited a bit
to make it fit on the page) using 56 bytes and 64,000 bytes.

Packet size of 56 bytes of data:

ping -c 2 matrix
PING matrix 56(84) bytes of data.
64 bytes from matrix : icmp_seq=0 ttl=57 time=49.1 ms
64 bytes from matrix : icmp_seq=1 ttl=57 time=49.0 ms

--- matrix ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1000ms
rtt min/avg/max/mdev = 49.047/49.122/49.198/0.234 ms, pipe 2

Packet size of 64,000 bytes of data:

ping -c 2 -s 64000 matrix
PING matrix 64000(64028) bytes of data.
64008 bytes from matrix : icmp_seq=0 ttl=57 time=61.6 ms
64008 bytes from matrix : icmp_seq=1 ttl=57 time=72.0 ms

4 For information about setting .LOG_ARCHIVE_TRACE, see the Oracle documentation at http://download
.oracle.com/docs/cd/B28359_01/server.111/b28294/trace.htm#i637070.

Hidden Impact to ASYNC
The amount of data sent by the LNS (the redo write size) can vary depending on the
workload. Knowing the LNS send size enables network and I/O testing to be performed to
determine where the LNS is spending its time. The bigger the maximum write and average
write size, the better for the LNS to communicate with the network layer. You cannot control
this because it depends on your redo generation rate, but you can discover it by using LOG_
ARCHIVE_TRACE.4

http://download.oracle.com/docs/cd/B28359_01/server.111/b28294/trace.htm#i637070
http://download.oracle.com/docs/cd/B28359_01/server.111/b28294/trace.htm#i637070

46 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3

Chapter 2: Implementing Oracle Data Guard 47

--- matrix ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1000ms
rtt min/avg/max/mdev = 61.691/66.862/72.033/5.171 ms, pipe 2

Quite a difference, as you can see. The small packet is getting about 40 miles to the millisecond,
but the larger packet is getting around only 27 miles per millisecond. Still not bad and right around
our guess of about 33 miles to the millisecond. So given this network, you could potentially go
270 miles and keep it within the 4 percent range, depending on the redo generation rate and the
bandwidth, which are not shown here. Of course, you would want to use a more reliable and
detailed tool to determine your network latency—something like traceroute. (As before, this output
is edited to fit on the page and be a bit more readable.)

traceroute matrix
traceroute to matrix, 30 hops max, 38 byte packets
1q6-z2-rtr-1-v222-hsrp 0.381 ms 0.200 ms 0.443 ms
1q7-rtr-13-tg3-2 1.234 ms 0.276 ms 0.233 ms
1q7-rtr-24-g1-9 0.365 ms 1.858 ms 0.299 ms
1q7-rtr-15-g-2-2 0.409 ms 0.357 ms 0.241 ms
1q7-rtr-7-g1-0-0 0.541 ms 0.367 ms 0.463 ms
1-rtr-2-pos5-0-0 49.047 ms 49.086 ms 49.196 ms
1-swi-2-rtr-1-v108 50.313 ms 49.573 ms 50.439 ms
matrix 49.448 ms 49.441 ms 49.196 ms

These examples are just that, examples. A lot of things affect your ability to ship redo across the
network. As we have shown, these include the overhead caused by network acknowledgments,
network latency, and other factors. All of these will be unique to your workload and need to
be tested.

SDU Size Oracle Net buffers data into what is called a session data unit (SDU), with a default
size of 8192 bytes in Oracle Database 11g. These data units are then sent to the network layer
when they are either full, flushed, or read by the client. Generally Data Guard sends redo in
much larger chunks than 8192 bytes, so this default is insufficient, as you can end up having to
send more pieces (chopping up the data) to Oracle Net Services. Since large amounts of data are
usually being transmitted to the standby, increasing the size of the SDU buffer can improve
performance and network utilization. You can configure SDU size within an Oracle Net connect
descriptor or globally within the sqlnet.ora file. To configure the SDU globally, set the following
parameter in the sqlnet.ora file:

DEFAULT_SDU_SIZE=32767

However, most database administrators and network analysts would rather that this change
occur only to a specific connection to reduce the risk of adversely affecting other Oracle Net
connections. With Oracle Database 11g, there is no need to set the SDU globally with Data
Guard. Instead, on the primary database (which is the client in our case), we set it at the
Transparent Networking Substrate (TNS) level in our connection descriptor for our standby
database. Remember the short example parameter we used before?

LOG_ARCHIVE_DEST_2='SERVICE=Matrix_DR0 SYNC AFFIRM'

Chapter 2: Implementing Oracle Data Guard 47

In this case, the TNS name is Matrix_DR0, and in the TNSNAMES.ORA file, we would define the
following definition for Matrix_DR0:

Matrix_DR0.domain=
(DESCRIPTION=
 (ADDRESS=(PROTOCOL=tcp)(HOST=Matrix_DR.domain)(PORT=1521))
 (CONNECT_DATA=
 (SERVICE_NAME=Matrix_DR0.domain))
)

To add in the maximum SDU size of 32,767 bytes (which is the best practice for Data Guard),
we would add the SDU attribute:

Matrix_DR0.domain=
(DESCRIPTION=
 (SDU=32767)
 (ADDRESS=(PROTOCOL=tcp)(HOST=Matrix_DR.domain)(PORT=1521))
 (CONNECT_DATA=
 (SERVICE_NAME= Matrix_DR0.domain))
)

This will cause Data Guard to request 32,767 bytes for the session data unit whenever it makes a
connection to the standby called Matrix_DR0.

Since we have chosen not to use the SQLNET.ORA method, we will also need to set it in the
LISTENER.ORA file at the primary database so that incoming connections from the standby
database also get the maximum SDU size. So, in the LISTENER.ORA, we add the SDU attribute to
the SID list as well:

SID_LIST_listener_name=
 (SID_LIST=
 (SID_DESC=
 (SDU=32767)
 (GLOBAL_DBNAME=Matrix.domain)
 (SID_NAME=Matrix)
 (ORACLE_HOME=/scratch/OracleHomes)))

Notice here that the SID and GLOBAL_DBNAME are Matrix, not Matrix_DR0. This is because we
are still working on the primary database system. We are preparing the primary database to make
outgoing connections to the standby databases and accept incoming connections from the
standby databases using the maximum SDU size of 32,767 bytes.

Now that this is complete, we also need to set up the standby system to use the same SDU
size. At this point, since we have not yet started to create a standby database, we may not have
installed the software at the standby server. That’s all right, though, because we can note down the
following steps to take after we install the software later in this chapter.

Our TNS name and destination parameter is going to be different at the standby server. It will
use a name that points back to the primary database, so that when this standby becomes the
primary database (see Chapter 8), Data Guard will know where to send the redo. We are going to
use Matrix for this purpose. So our parameter would look like this:

LOG_ARCHIVE_DEST_2='SERVICE=Matrix SYNC AFFIRM'

48 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3

Chapter 2: Implementing Oracle Data Guard 49

Now our TNS name is Matrix, so in our TNSNAMES.ORA file we would define the following
for Matrix:

Matrix.domain=
(DESCRIPTION=
 (ADDRESS=(PROTOCOL=tcp)(HOST=Matrix.domain)(PORT=1521))
 (CONNECT_DATA=
 (SERVICE_NAME=Matrix.domain))
)

And to add in the maximum SDU size of 32,767, we would add the SDU attribute:

Matrix.domain=
(DESCRIPTION=
 (SDU=32767)
 (ADDRESS=(PROTOCOL=tcp)(HOST=Matrix.domain)(PORT=1521))
 (CONNECT_DATA=
 (SERVICE_NAME=Matrix.domain))
)

Data Guard will now request 32,767 bytes for the session data unit whenever it makes a
connection to the primary database called Matrix.

Don’t forget the listener file on the standby. As we are not using the SQLNET.ORA method,
we also need to set it in the LISTENER.ORA file at the standby database so that incoming
connections from the primary database also get the maximum SDU size. So, in the standby
LISTENER.ORA, we add the SDU attribute as well:

SID_LIST_listener_name=
 (SID_LIST=
 (SID_DESC=
 (SDU=32767)
 (GLOBAL_DBNAME=Matrix_DR0.domain)
 (SID_NAME=Matrix_DR0)
 (ORACLE_HOME=/scratch/OracleHomes)))

We have now prepared the primary database to make outgoing connections to the standby
databases and accept incoming connections from the standby databases using the maximum SDU
size of 32,767, and vice versa (from standby to primary).

TCP Tuning Setting the Oracle Net SDU is only the first part of tuning a network—the Oracle
part. Now we need to go deeper than Oracle Net and prepare our TCP network layer to handle
the large amounts of redo we are going to throw at it during Data Guard processing. As
mentioned earlier, our redo is usually generated in large amounts, much more than the amounts
of data being sent back and forth between client applications.

Of several aspects of the TCP layer, the most important is the amount of memory on the system
that a single TCP connection can use. All systems have a built-in limit to this amount of memory at
the TCP layer, called the maximum TCP buffer space, and this value is regulated by the operating
system. For example, using sysctl -a, we can find the maximum read and write TCP buffer sizes:

net.core.rmem_max = 524288
net.core.wmem_max = 524288

Chapter 2: Implementing Oracle Data Guard 49

This shows the maximum memory that a TCP connection will ever be allowed to use. For
some Data Guard configurations, this maximum will be sufficient, but as you will see in this
section, it could be necessary to have your system administrator increase this maximum.

Some parameters define the values that a TCP connection will use for its send and receive
buffers, also called the socket size. Using sysctl -a again, they are as follows:

net.ipv4.tcp_rmem = 4096 87380 174760
net.ipv4.tcp_wmem = 4096 16384 131072

This shows the minimum, default, and maximum values for writing and reading the network.
There will never be a need to change the minimum or default values for the sockets, and even the
maximum value for this memory usage can be sufficient when you are tuning your sockets. The
tuning discussed here will include settings you can set at the Oracle Net level and do not normally
require changing any system or network-level parameter unless your socket size turns out to be
larger than the maximum allowable size as defined by the system parameters. If your calculations
do show that the amount of socket size you need is larger than the maximums, you can work with
your system administrators to determine the best approach. We are not recommending that you go
out and blindly change these parameters!

So how does the TCP socket buffer size actually work? An application that makes a
connection over the TCP network can ask for a larger socket buffer than the defaults, which will
allocate more memory to that connection, essentially increasing the bandwidth available to the
connection. TCP will slowly increase the size of the buffer as your database begins to send
redo until it reaches the size you set. The buffer can also shrink if there is a lot of network
congestion. This is a buffer that determines how much data can be transferred to the network
layer before the server stops and waits for acknowledgments of received packets, which can
severely limit your network throughput. Since databases generate a lot of redo, the faster it can be
put on the network the faster it is sent to the standby and protected. This is even more important
when the network latency is high.

But how do you determine what size your socket buffer should be? This is where the
bandwidth-delay product (BDP)5 comes into play. Data Guard’s utilization of the available
bandwidth is essentially bound by the BDP. If the BDP is lower than the latency × available
bandwidth, Data Guard cannot fill the line, since the acknowledgments don’t come back fast
enough. Basically, the socket buffers must be large enough to hold a full BDP of TCP data, plus
some operating system–specific overhead at a minimum. So what is the math that you have to do?
The basic calculation is as follows:

BDP = Bandwidth × Latency

Of course, we’re going to up that number to account for overhead, network congestion that
you didn’t think about, and plain errors. In this case, more really is better. TCP networks often
need a minimum of 2 times the BDP to recover from errors efficiently. But it is a standard belief
that 3 times the BDP is usually required to achieve maximum speed. You need to test your
resultant BDP to see which works best for you. We’ll go with the proposed maximum speed
calculation, 3 times the BDP, for our discussion:

BDP = Bandwidth × Latency × 3

So, taking our example redo generation rate from the start of this section, we’ll go with the
assumption that we have an OC-3 network between our primary database and our standby database.

5 For more on the bandwidth-delay product (BDP), see http://en.wikipedia.org/wiki/Bandwidth-delay_product.

http://en.wikipedia.org/wiki/Bandwidth-delay_product

50 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3

Chapter 2: Implementing Oracle Data Guard 51

That is 155 Mbits/sec of bandwidth available. We’ll also assume to start that we’re going to put our
standby in a location that is 50 miles (80 km) away (Boston, Massachusetts, to Manchester, New
Hampshire) and that we have a tested latency of 8 ms (no one lives in a perfect world). So our
calculation looks like this:

BDP = 155 Mbits/sec × 8 ms × 3

We can plug those numbers into a BDP calculator, like the speedguide.net6 BDP calculator,
and multiply its answer by our overhead of 3:

BDP = 155,000 * 3
BDP = 465,000 bytes

So our socket buffer size would be 465,000 bytes (or about 0.45MB). But how did we really
get that number? Here’s the real math:

Bandwidth: 155Mbits/sec = 155,000,000 bits/sec (155 * 1,000,000)
Latency: 8ms = .008 sec (8 / 1000)
BDP = 155,000,000 * .008 * 3
BDP = 3,720,000 bits / 8 (8 bits to a byte)
BDP = 465,000 bytes

As you can see, these amounts are much larger than the default socket size of 16K.
Now what happens if we move the standby database from Manchester, New Hampshire, and

put it in Newark, New Jersey? That is about 226 miles (361 km), so if we assume we have the same
OC-3 and that we’ll get the same speed as before, our latency is going to go to about 36 ms. So
what does that do to our BDP?

BDP = 155Mbits/sec * 36ms * 3
BDP = 697,500 * 3
BDP = 2,092,500 bytes

So now we need to set our socket size to 2,092,500 bytes, or roughly 2MB. But what about
the case in which we have two standby databases—one in Manchester, New Hampshire (using
SYNC), and the other in Newark, New Jersey (using ASYNC)? Do we add the two bandwidth
delay products together for a combined total of 2,557,500 bytes? No, and that is the beauty of
using Oracle Database 11g: you can configure each standby database to have the appropriate
socket size for its latency, although you do need to take care during role transitions.

6 You can access the “SG Bandwidth*Delay Product Calculator” at www.speedguide.net/bdp.php.

Bits vs. Bytes
In case you’re wondering why we used 1,000,000 to multiply the megabits per second to
get bits per second, it’s because in data communication, one kilobit is 1000 bits, whereas
in data storage, one kilobyte is 1024 bytes. So if we were doing storage calculations, then
155 megabytes would be 155 × 1,024,000, or 158,720,000 bytes. Just thought we’d clear
that up.

www.speedguide.net/bdp.php

Chapter 2: Implementing Oracle Data Guard 51

Which bring us to the job of actually setting these values. For this exercise, we will use a
double standby configuration with one in Manchester and the other in Newark. So we have three
systems, Matrix.domain, Matrix_DR.domain, and Matrix_DR1.domain, and the three databases,
Matrix, Matrix_DR0, and Matrix_DR1. As with the SDU, the socket size must be set at both ends
of the network; otherwise our socket size will be reduced to the lowest common denominator.
And remember that means we get the default of 16K if we are not careful. Matrix (our primary)
will now have two redo destination log_archive_dest_n parameters, as follows:

LOG_ARCHIVE_DEST_2='SERVICE=Matrix_DR0 SYNC AFFIRM'
LOG_ARCHIVE_DEST_3='SERVICE=Matrix_DR1 ASYNC NOAFFIRM'

This means we have two entries in our TNS names file. To set them up to use the appropriate
socket sizes, we add in two more attributes to each entry, just as we did with the SDU. But this
time they will be different for each database:

Matrix_DR0.domain=
(DESCRIPTION=
 (SDU=32767)
 (SEND_BUF_SIZE=465000)
 (RECV_BUF_SIZE=465000)
 (ADDRESS=(PROTOCOL=tcp)(HOST=Matrix_DR)(PORT=1521))
 (CONNECT_DATA=
 (SERVICE_NAME=Matrix_DR0.domain))
)

Matrix_DR1.domain=
(DESCRIPTION=
 (SDU=32767)
 (SEND_BUF_SIZE=2092500)
 (RECV_BUF_SIZE=2092500)
 (ADDRESS=(PROTOCOL=tcp)(HOST=Matrix_DR1.domain)(PORT=1521))
 (CONNECT_DATA=
 (SERVICE_NAME=Matrix_DR1.domain))
)

But we are not done yet. We still have to go to each standby and update the listener, just as
you did with the SDU. In the Matrix_DR system’s LISTENER.ORA, it looks like this:

LISTENER =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = Matrix_DR.domain)(PORT = 1521))
)

Add in the socket sizes (called the send and receive buffers) and it looks like this:

LISTENER =
 (DESCRIPTION =
 (SEND_BUF_SIZE=465000)
 (RECV_BUF_SIZE=465000)
 (ADDRESS = (PROTOCOL = TCP)(HOST = Matrix_DR.domain)(PORT = 1521))
)

52 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3

Chapter 2: Implementing Oracle Data Guard 53

In the LISTENER.ORA on the Matrix_DR1 system, we would use the larger value:

LISTENER =
 (DESCRIPTION =
 (SEND_BUF_SIZE=2092500)
 (RECV_BUF_SIZE=2092500)
 (ADDRESS = (PROTOCOL = TCP)(HOST = Matrix_DR1.domain)(PORT = 1521))
)

At this point, we have configured Matrix to make Data Guard connections to Matrix_DR0
using a socket size of 465,000 bytes and to Matrix_DR1 using 2,092,500 bytes.

To complete our configuration, we need to take into account what we will have to do so that
our configuration works the same way after a role transition. We will set up Matrix_DR0 as the
role transition target first. To configure for a switchover (or failover) to Matrix_DR0, we will have
to set up the TNS names and the listener on the Matrix_DR system to make the same connections
with the correct socket sizes for Matrix and Matrix_DR1. This means that the TNS names file will
need to have the two entries for Matrix and Matrix_DR1 with the correct socket sizes:

Matrix.domain=
(DESCRIPTION=
 (SDU=32767)
 (SEND_BUF_SIZE=465000)
 (RECV_BUF_SIZE=465000)
 (ADDRESS=(PROTOCOL=tcp)(HOST=matrix.domain)(PORT=1521))
 (CONNECT_DATA=
 (SERVICE_NAME=Matrix.domain))
)

Matrix_DR1.domain=
(DESCRIPTION=
 (SDU=32767)
 (SEND_BUF_SIZE=2092500)
 (RECV_BUF_SIZE=2092500)
 (ADDRESS=(PROTOCOL=tcp)(HOST=Matrix_DR1.domain)(PORT=1521))
 (CONNECT_DATA=
 (SERVICE_NAME=Matrix_DR1.domain))
)

Finally, we set up the listener files. We already configured the listener in the Matrix_DR1
system when we did the original setup on Matrix. So a connection from Matrix_DR0 to Matrix_
DR1 will use the socket size of 465,000 bytes. So all that is left is to go back to Matrix and add in
the socket size to the Matrix listener:

LISTENER =
 (DESCRIPTION =
 (SEND_BUF_SIZE=465000)
 (RECV_BUF_SIZE=465000)
 (ADDRESS = (PROTOCOL = TCP)(HOST = Matrix.domain)(PORT = 1521))
)

Chapter 2: Implementing Oracle Data Guard 53

At this point, Oracle Net Services is configured to perform well based on our tuning
calculations regardless of whether or not Matrix or Matrix_DR0 is the primary database. Of
course, we would need to set the log_archive_dest_n redo transport parameters in the
Matrix_DR1 spfile, but we’ll discuss that when we actually get to creating our standbys in the
next section.

Had enough? Well, we’re not quite yet done with this subject. Remember Matrix_DR1 and
Murphy? Murphy, and we agree with him, says that there will come a time when we need to
failover to Matrix_DR1. So we need to configure for it now, not when it happens, because it will
of course occur at 3 a.m. and no one will remember what we did and we would like to keep
sleeping.

We need to set the TNS names descriptors on Matrix_DR1 to point back to Matrix and Matrix_
DR0, as we did on Matrix and Matrix_DR0. But the difference here is that before we had one TNS
descriptor using the smaller size, 465,000 bytes, and one using the larger size of 2,092,500 bytes,
because one standby database was always close and the other farther away. Now, from Matrix_DR1,
both standby databases are far away. For simplicity sake, we assume that the latency from Matrix_
DR1 to Matrix or Matrix_DR0 is the same 36 ms latency. So that means both TNS descriptors need
to use the 2,092,500 setting:

Matrix.domain=
(DESCRIPTION=
 (SDU=32767)
 (SEND_BUF_SIZE=2092500)
 (RECV_BUF_SIZE=2092500)
 (ADDRESS=(PROTOCOL=tcp)(HOST=matrix.domain)(PORT=1521))
 (CONNECT_DATA=
 (SERVICE_NAME=Matrix.domain))
)

Matrix_DR0.domain=
(DESCRIPTION=
 (SDU=32767)
 (SEND_BUF_SIZE=2092500)
 (RECV_BUF_SIZE=2092500)
 (ADDRESS=(PROTOCOL=tcp)(HOST=Matrix_DR.domain)(PORT=1521))
 (CONNECT_DATA=
 (SERVICE_NAME=Matrix_DR0.domain))
)

However, the listeners on Matrix and Matrix_DR0 are both set to 465,000 from our previous
setup. If Matrix_DR1 makes a connection to either of them, the socket size is going to be the
lower of the two, in this case 465,000, which is not going to be enough to get the performance
we need. Of course, after the role transition from Matrix or Matrix_DR0 to Matrix_DR1, we could
always put a procedure in place to have someone update the listener files on both systems and
change the 465,000 to 2,092,000. A better solution is just to set all three listeners to accept
connections up to a socket size of 2,092,000 bytes. That way, when Matrix_DR1 becomes the
primary database and starts sending redo to Matrix and Matrix_DR0, it will get the necessary
2,092,000 socket size and life will be good.

But, wait, says our system and network administrators, that means that when Matrix and
Matrix_DR0 connect (in either direction), they will get a lot more socket size than they need which

54 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3

Chapter 2: Implementing Oracle Data Guard 55

will waste memory and affect our system and network overall performance! Not true. Remember
that a connection between different socket sizes will always result in a connection of the lower
number. So Matrix connecting to Matrix_DR0 asking for 465,000 bytes with a listener willing to
provide 2,092,000 bytes, the connection will be made with 465,000. Now we don’t have to mess
with the listener files on Matrix and Matrix_DR0 after a role transition to Matrix_DR1.

Does all this sound complex? It isn’t really. Setting up Oracle Net Services is something you
have been doing for years for your applications to connect to your database. Now you just need
to do the same things for Data Guard so that databases can connect to each other. The tuning is
necessary because of the amount of data being pushed across the line. In the end, we are left with
the following definitions on the three systems:

 Matrix ■

 Matrix_DR0 TNS using 465000
 Matrix_DR1 TNS using 2092000
 Listener using 2092000

 Matrix_DR0 ■

 Matrix TNS using 465000
 Matrix_DR1 TNS using 2092000
 Listener using 2092000

 Matrix_DR1 ■
 Matrix TNS using 2092000
 Matrix_DR0 TNS using 2092000
 Listener using 2092000

Of course, you could simplify all of this and set everything to 2,092,000, your highest
value, and be done with it. But the system administrator will most definitely complain at this
approach, especially when you are asked to put a standby database in London with a latency of
120 ms (or a socket size of 6 megabytes). That would be a lot of wasted memory for the closer
connections.

Queue Lengths The tuning parameters discussed so far have been changes you can make at the
Oracle Net Services level that affect Data Guard’s ability to use the network efficiently and that
hopefully do not require changing any system or network-level parameter unless your socket size
turns out to be larger than the maximum allowable size, as defined by the system parameters.
Communication drivers also have many tunable parameters used to control their transmit and
receive resources, but here we are concerned only with the parameters that control the transmit
queue and receive queue limits. These queues should be sized so that losses do not occur due to
local buffer overflows. This is especially important for TCP, because losses on local queues cause
TCP to fall into congestion control, which limits the TCP sending rates and as such Data Guard’s
ability to keep your data protected.

These parameters limit the number of buffers or packets that may be queued for transmit or they
limit the number of receive buffers that are available for receiving packets. Careful tuning is required
to ensure that the sizes of the queues are optimal for your network connection, particularly for
high-bandwidth networks. Following are some general guidelines on when to tune these queues:

 Tune the transmit queues when the CPU is faster than the network. ■

 Tune the transmit queues when the socket buffer sizes are large. ■

Chapter 2: Implementing Oracle Data Guard 55

 Tune the receive queues when it is possible to have bursts of traffic. ■

 Tune both queues when there is high rate of small-sized packets. ■

In the last section, we did create larger socket sizes, so tuning the transmit queue will
probably help. But also noteworthy is that many Data Guard configurations have bursts of redo
as well, depending on your workloads. The transmit queue size is configured with the network
interface option txqueuelen, and the network receive queue size is configured with the kernel
parameter netdev_max_backlog. For example, to display the transmit queue setting, use
ifconfig:

 eth0
 Link encap:Ethernet HWaddr 00:11:85:7C:5D:A5
 inet addr:10.149.249.107 Bcast:10.149.251.255 Mask:255.255.252.0
 inet6 addr: fe80::211:85ff:fe7c:5da5/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:4542160 errors:0 dropped:0 overruns:0 frame:0
 TX packets:1503398 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:100
 RX bytes:2635631386 (2.4 GiB) TX bytes:362113440 (345.3 MiB)
 Interrupt:5

Here you can see that txqueuelen is set to a length of 100, the default for Linux. This default is
probably fine for our Matrix to Matrix_DR0 and maybe even for our Matrix to Matrix_DR1 link.
But if you are asked to put that standby database in London and the company springs for a big
bandwidth network, then a length of 100 for txqueuelen is inadequate. A general belief among
network tuning gurus is that for long-distance, high-bandwidth network links, a gigabit network
with a latency of 100 ms, for example, you will benefit from a txqueuelen setting of at least
10000. If you did have to set the transmit queue length to 10000, for example, you would use
ifconfig:

ifconfig eth0 txqueuelen 10000

For the receiver side, there is a similar queue for incoming packets. This queue will build up
in size when an interface receives packets faster than the system can process them. If this queue is
too small (the default is 300), you will begin to lose packets at the receiver, rather than on the
network. The global variable netdev_max_backlog describes the maximum number of
incoming packets that can be queued up for upper-layer processing. Using sysctl –a, you can
find the current length of your receive queue:

net.core.netdev_max_backlog = 300

Since the default transmit queue is 100 and the receive queue on the other end is 300, you
need to keep them in sync. If you have increased the transmit queue length, it is considered a
good idea to increase the receive queue as well. The general consensus is that your receive queue
length is anything from the same as the transmit queue length to two or three times greater. To
change the receive queue length, use sysctl again:

sysctl -w net.core.netdev_max_backlog=20000

If you make these queue length changes, remember to make them in both directions, just as
you did with the TNS connect descriptors and the listeners. When a pair of databases in your Data

56 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3

Chapter 2: Implementing Oracle Data Guard 57

Guard configuration change roles, you will want the same tuning you perform on the primary
system to work in the reverse direction.

Before changing anything, of course, you, your system administrators, and your network
administrators should consult with your operating system vendor for additional information on
setting the queue sizes for various latencies to be sure that you are setting it to a good value. It is
possible to decrease performance if the value is set too high when it is not necessary.

SRL File I/O
The SRL files are where the Remote File Server (RFS) process at your standby database writes the
incoming redo so that it is persistent on disk for recovery. We have mentioned that you should
configure them on the standby databases for better redo transport performance and data
protection. We have also stated that you need to configure them on your primary database as
well in preparation for a role transition.

Why do SRL files provide better performance just by having them? Aside from the fact that in
Maximum Availability or Maximum Protection mode you must have SRL files, they will improve
the performance of redo transport in Maximum Performance mode as well since they are a pool
of already created files of the right size, saving the RFS process (and hence making the LNS
process at the primary wait) from having to create the archive log file. If no SRL files are at the
standby database, then when the primary database starts up and at each log switch, the RFS
process on the standby database that is serving an asynchronous standby destination has to create
an archive log of the right size. Since Data Guard sends the redo as it is created, and that
generation rate is increasing all the time, database administrators have begun to increase the size
of their ORL files to reduce the number of log switches and checkpoints at that log switch—so
you can imagine how long the LNS would have to wait while the RFS creates a 5GB archive log
file at the standby.

It is no longer uncommon to have ORL files of 1GB or larger. At that size, it will take the RFS
process quite some time to initialize that archive log. While the RFS is busy doing this, the LNS
process at the primary database has to wait, getting further and further behind the LGWR, and
your potential data loss grows. Prior to Oracle Database 10g Release 2, the LGWR was also
waiting on the LNS. At least that is no longer true. But the impact is still considerable. If there are
SRL files at the standby, the RFS process registers the previous file to be archived, selects a new
SRL file, and signals the LNS that it is ready to receive the redo.

What about protection? If you are not worried by the performance implications of not using
SRL files, at least the protection dangers should make you sit up and pay attention. In Maximum
Performance mode with asynchronous transport, you are expecting that your data loss will be
minimal. That is supposed to mean that when a primary database failure occurs and you need to
failover, the bulk of the redo sent in the current redo stream will be recovered at the standby.

Myth Buster: Redo Only Gets Sent at Log Switch Time
Data Guard has had the capability to send the redo to the standby database as it is generated,
since ASYNC and SYNC transport modes were introduced in version 9.0.1. As of Oracle
Database 10g Release 1, even ARCH destinations would use SRL files, considerably improving
ARCH transport as well. As mentioned in Chapter 1, the ARCH transport has been deprecated
as of Oracle Database 11g anyway, so all you really have left is ASYNC and SYNC.

Chapter 2: Implementing Oracle Data Guard 57

This is true if you have SRL files when the primary goes down, and the connection to the standby
is terminated causing the corresponding RFS process to run down. The redo that was already
received is safe in the SRL file and can be recovered at failover time. However, without the SRL
file, the redo is lost since that partial archive log file is deleted. So, for example, if you have
500MB ORL files and lose the primary database at megabyte 490, then when you failover, those
490MB of redo that were actually sent to the standby will be lost!

Data Guard no longer tries to save those partial archive log files when a connection from the
primary database is lost. Even though the file that remains on disk looked like a real archive log
file, it was not registered in the control file. Data Guard would not even know it existed unless
you registered it at failover time. However, if you blindly used manual recovery, bypassing the
checks and balances of Data Guard, that partial archive log file would be processed. At that
point, your standby database is finished. Trying to restart recovery, whether manually or using
Data Guard Managed recovery, would result in the dreaded ORA-00326 error:

Media Recovery Log +FLASH/matrix_dr0/…/1_seq_131.419.672830973
MRP0: Background Media Recovery terminated with error 326
Mon Oct 18 23:00:28 2004
Errors in file /scratch/OracleHomes/…/Matrix_DR0_mrp0_540.trc:
ORA-00326: log begins at change 7249201863711,
 need earlier change 7249198180208
ORA-00334: archived log: '+FLASH/matrix_dr0/…/1_seq_131.419.672830973'
Recovery interrupted.
MRP0: Background Media Recovery process shutdown

This error was a clear indication that one of those partial archive logs had been applied. Your
only choice was to finish with an ACTIVATE STANDBY DATABASE, or, if you were not failing
over, re-create the standby database from scratch. Too many people made this mistake, and since
SRL files were used all the time by Data Guard, that functionality was removed from 11g and later
versions of 10g Releases 1 and 2.

You are going to have SRL files, and as such you need to make sure they work as fast as they
can. We’ve explained that as redo is received by the standby it is written to disk. In Maximum
Availability and Maximum Protection modes, the disk write to the SRL file must occur prior to
sending an acknowledgment back to the primary that the redo has been received—called AFFIRM
processing. Even in Maximum Performance mode with NOAFFIRM, without fast SRL files, the RFS
may end up waiting on the asynchronous I/O to empty its buffer, thereby slowing down the LNS.
Therefore, it is important that you optimize I/O of the SRL files on the standby. To improve I/O
performance on the standby, consider the following best practices:

 Ensure that Oracle is able to utilize ASYNC I/O. Note that, by default, the Oracle database ■
is configured for asynchronous I/O. However, you must also properly configure the
operating system, host bus adapter (HBA) driver, and storage array.

 Maximize the I/O write size through all layers of the I/O stack. The layers will include ■
one or more of the following: operating system (including async write size), device
drivers, storage network transfer size, and disk array.

 Place SRL files in an ASM diskgroup that has at least the same number of disks as the ASM ■
diskgroup where the primary ORLs reside.

 Do not multiplex SRLs. Since Data Guard will immediately request a new copy of the ■
archive log if an SRL file fails, there is no real need to have more than one copy of each.

58 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3

Chapter 2: Implementing Oracle Data Guard 59

 Typically, RAID controllers configured in RAID 5 perform writes slower than those ■
configured with mirroring. If the process of writing to the SRL becomes the bottleneck,
consider changing the RAID configuration.

The Proof Is in Your Testing If you don’t believe that all these tuning exercises are worth the
payback, then consider the following. The Oracle Maximum Availability Architecture (MAA) team
made adjustments only to the TCP socket buffer sizes and the network device queue sizes we
have discussed, based on their network bandwidth and latency, and were able to show
considerable network improvements in their test lab.

Using a raw network transport without any Data Guard in place, the team ran a transport test
three times to see what improvement would be realized from its tuning efforts. The baseline
without any tuning was a throughput of 10.8 Mbits/sec for a total of 77.2MB of redo transferred in
60 seconds. That is about 1.28 MB/sec.

After increasing the network socket buffer sizes to 3 × BDP from the default of 16K, the team
was able to achieve a throughput of 731.0 Mbits/sec for a total of 5.11GB worth of data being
transferred in the same 60 seconds. Right away, that was a jump from 1.28 MB/sec to 87.2 MB/
sec—or a 6668 percent improvement over the baseline prior to tuning.

Finally the network queue lengths were increased to 1000 from default of 100 and the same
test rerun. The data transferred grew to 6.55GB and the network throughput grew to 937.0 Mbits/
sec. That is 111.8 MB/sec for an additional 28 percent improvement.

Overall, the tuning exercises increased the raw network transfer throughput by a whopping
8575 percent! While you may not experience this kind of increase in your Data Guard configuration,
you will experience a considerable improvement in redo transport. Only your testing will tell you
exactly how much.

NOTE
You should be aware of some caveats to this tuning exercise if you
are still using Oracle Database 10g Release 2. This information is
contained in the Oracle Maximum Availability paper “Data Guard
Redo Transport & Network Configuration.” 7 At the time of this writing,
the paper had not yet been updated to reflect Oracle Database 11g.

7 See www.oracle.com/technology/deploy/availability/pdf/MAA_WP_10gR2_DataGuardNetworkBestPractices.pdf.

Gap Resolution and Your Network
When Data Guard has to resolve gaps in the redo stream, it will send the redo in 10MB
chunks to the standby that is missing the redo. In prior versions, it was send, wait for an
ACK, and then send some more. Now with Oracle Database 11g, the ARCH processes use
the new streaming architecture, and the amount of redo that will be placed on the network
will increase from previous versions. It is important that you take this into account when
testing your tuning efforts. Create a large gap and verify that Data Guard does not flood
your network with redo beyond your expectations.

www.oracle.com/technology/deploy/availability/pdf/MAA_WP_10gR2_DataGuardNetworkBestPractices.pdf.

Chapter 2: Implementing Oracle Data Guard 59

Optimizing ASYNC Redo Transport
The tuning discussed so far applies both to synchronous and asynchronous redo transport
mechanisms. As you have seen, tuning the network can help you avoid as much of the impact to
your primary database as possible. You have also learned about transport attributes, including
NET_TIMEOUT and AFFIRM, and how they can affect your transport, especially with synchronous
transport. You need to think about two additional factors if you are going to be using Maximum
Performance and ASYNC transport: sizing of the primary database log buffers and compressing
the redo stream before it goes across the network.

Tuning the log buffers on the primary database can reduce I/O to the ORL files, and redo
compression can be performed if a standby destination is starved of bandwidth or you have a
requirement not to use more than a certain amount of bandwidth.

As of Oracle Database 11g, in a Data Guard configuration where redo is being shipped in
asynchronous mode, the LNS process will attempt to read redo directly from the log buffer. In
Oracle Database 10g Release 2, an asynchronous LNS process would read directly from the ORL
file. (While this could cause extra I/O on the primary and potentially get in the road of the LGWR, it
was better than the Oracle9i and Oracle Database 10g Release 1 method of having a user-sized
ASYNC buffer.) In Oracle Database 11g, if the redo to be sent is not found in the log buffer, then the
LNS process will go to the ORL to retrieve it. Since reading from memory (log buffer) is much faster
than reading from disk (ORL), you want to size the log buffer so that LNS is always able to find the
redo that it needs to send within the log buffer. Monitoring the I/O to the ORL files for an increase
above normal will tell you whether the ASYNC LNS processes are falling into the ORL file.
Increasing the LOG_BUFFER parameter can help keep the LNS process reading from memory. As
we mentioned in Chapter 1, the log buffer hit ratio is tracked in the view X$LOGBUF_READHIST.
A low hit ratio indicates that the LNS is frequently reading from the ORL instead of the log buffer.
The default for log buffers is 512KB, or 128KB × CPU_COUNT, whichever is greater. If transactions
are long or numerous, then increasing the size of the log buffer will reduce I/O in general to the
online log file. By reducing the I/O to the ORL file, you will be keeping redo longer in memory so
that the asynchronous LNS process can read as much as possible from memory, thereby avoiding I/O
to the online log files. Of course, in a bandwidth-strapped network, as compared to your redo
generation rate, it is still possible that the LNS will not only fall out of memory to the ORL file but all
the way down to reading from the archive log file if the ORL is archived before it is done.

Increasing the log buffers improves the read speed of the LNS process—that is, how fast the
LNS can get the redo. The rest of LNS’s work is to send that redo across the network. We have
already shown you how to tune the network send and receive buffers so that the LNS process can
use as much of the bandwidth available as possible to obtain the highest level of performance for
redo transport. But what about the case in which you just don’t have the bandwidth? Or perhaps
the bandwidth exists, but you are told that your Data Guard configuration is allowed to consume
only a limited amount of that bandwidth? In such cases, you need to reduce the amount of redo
you are sending to achieve a high rate of transfer to the standby. In the past, the only way to
achieve this was to use some kind of hardware compression unit on the network or enable a
secure shell (SSH) tunnel that would compress the redo stream.

As of Oracle Database 11g, Data Guard provides redo compression as part of the Redo Transport
Services. Before we go any further, remember that redo transport compression is a feature of the
Oracle Advanced Compression option. You must purchase a license for this option before you can
use the redo transport compression feature. Several other compression capabilities are included in
the Advanced Compression option, all of which you can access with a license. For more information
on this option, refer to the Oracle Database 11g Oracle Database Licensing Information manual,

60 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3

Chapter 2: Implementing Oracle Data Guard 61

in the “Advanced Compression” section.8 In a limited bandwidth environment, Data Guard
compression can provide the following benefits:

 Improved data protection by reducing redo transport lag ■

 Reduced network utilization ■

 Faster redo gap resolution ■

 Reduced redo transfer time ■

Data Guard redo compression can be performed while Data Guard is resolving redo gaps and
with asynchronous redo transport on a per-destination basis. As with any compression technique,
Data Guard compression will provide you with the best results when you have low-bandwidth
networks. With higher bandwidth networks, the benefits of using compression are reduced. Using
Data Guard compression will be beneficial in the following situations:

 Data Guard experiences a disconnect from a standby database and needs to resolve ■
the gaps in the redo, but you have a network with bandwidth less than or equal to
100 Mbits/sec.

 There is not enough bandwidth, despite tuning, to meet your primary database redo ■
generation rate when configured with Maximum Performance mode using asynchronous
redo transport.

These reasons to use compression apply to configurations for which you either do not have the
bandwidth to support you redo generation rate or you are required to restrict Data Guard’s access
to the network bandwidth artificially by reducing your tuning efforts.

Once you have decided that you could benefit from using Data Guard compression, you
need to have sufficient CPU resources available for the compression processing. All compression
takes CPU, and somebody has to do all that math. While the compression algorithm is very
efficient, Data Guard will consume CPU resources when it is processing the redo, whether for the
ARCH process doing gap resolution to a standby database or for the LNS process that is sending
the redo to an asynchronous standby database. In addition, CPU consumption will increase in
higher network bandwidth environments since potentially a larger percentage of time is spent
compressing redo compared to transmitting redo. For example, Oracle’s testing of gap resolution
showed that with an OC1 network (51.8 Mbits/sec) and a T3 network (44.7 Mbits/sec), 50 percent
of one CPU was consumed per ARCH process during the compression operation, while with a
100 Mbits/sec network, an entire CPU was consumed per ARCH process.

A good rule of thumb9 is that it is not necessarily a wise idea to enable compression when
you have a network of more than 100 Mbits/sec. So, if you have decided that you need to use
compression, you have a couple of decisions to make.

First, is your redo compressible? It does no good to waste CPU resources when you are going
to get only marginal results from the work required to compress the data. The compression ratio is
not directly dependent on workload; instead, it depends on the compressibility of the data. For
example, if your redo has a lot of unstructured data in it (such as images in binary large object, or
BLOB, or Oracle Intermedia ORDImage columns, for example), you will not get a lot of payback

8 See http://download.oracle.com/docs/cd/B28359_01/license.111/b28287/options.htm#sthref43.
9 http://en.wikipedia.org/wiki/Rule_of_thumb

http://download.oracle.com/docs/cd/B28359_01/license.111/b28287/options.htm#sthref43
http://en.wikipedia.org/wiki/Rule_of_thumb

Chapter 2: Implementing Oracle Data Guard 61

for your compression, because that data is already pretty well compressed. So you could have a
very light workload with lots of this type of data, resulting in very low compression ratios. You
also cannot make a general characterization of the compressibility of batch versus OLTP data,
because it really is the data itself. A simple test is to take a selection of your archive logs and run
them through WinZip to see how much space you save. If it’s not more than 30 to 35 percent, you
shouldn’t bother with compression. Oracle MAA testing showed that with a redo compression ratio
of 35 percent or more, redo transmission time was reduced by 15 to 35 percent, depending on the
size of the network.10 The good news is that compression can be applied to any workload. If you
make a mistake and enable it without checking, the compression back-off algorithm will detect
whether the redo data is insufficiently compressible, and it will respond accordingly and
dynamically.

Second, do you want to perform compression for gap resolution only or for gap resolution and
asynchronous standby destinations? Data Guard, by default, does not compress the redo. You can
configure your standby destination parameters to compress the redo, but it will occur only on
those standby destinations where you actually use the compression attribute. By default, if you
define compression on a standby destination, compression will be used, but only when Data
Guard needs to resolve a gap. However, you can, with the aid of a hidden parameter, tell Data
Guard to compress the redo when sending to one or more of your asynchronous standby
databases. If you decide that you want Data Guard to compress the redo stream to one or more
asynchronous standby databases, set the initialization parameter _REDO_TRANSPORT_COMPRESS_
ALL to TRUE. Changing this hidden parameter requires a restart of the database so use accordingly.
Something else to remember is that when you set this parameter, you are saying only that redo will
be compressed for gaps and asynchronous (ASYNC) destinations when you include the attribute on
a standby database’s redo transport LOG_ARCHIVE_DESTINATION_n parameter. If you define
compression for a synchronous (SYNC) destination, compression will be used only to resolve gaps.
SYNC standby destinations do not use compression at this time.

Once you have determined which of your standby databases require compression, you enable
it by adding the compression attribute to the destination parameter:

LOG_ARCHIVE_DEST_2='SERVICE=MATRIX_DR0 ASYNC NOAFFIRM COMPRESSION=ENABLE'

If you are going to be using the Data Guard Broker, a property is used to set the compression
attribute, and we’ll discuss that in Chapter 5. Remember that the preceding example will use
compression only when resolving gaps to Matrix_DR0, unless you set the hidden parameter
_REDO_TRANSPORT_COMPRESS_ALL; then it will use compression for all redo transport to
Matrix_DR0. If you decide to go with Maximum Availability and choose Matrix_DR0 for your
synchronous standby, Data Guard will use compression only for gaps to Matrix_DR0.

Choosing an Apply Method
Believe it or not, everything discussed so far in the last two sections has dealt with getting your
RPO set at the required level—that is, getting the redo to the standby as fast as possible so it is
protected, reducing or eliminating any data loss at failure time. Nowhere have we actually talked
about getting that redo into a standby database and how long that will take, which is related
directly to your RTO. And the RTO is further influenced by the type of failover configuration you
choose to use, which we will deal with in Chapter 8.

10 Note 729551.1 “Redo Transport Compression in a Data Guard Environment”

62 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3

Chapter 2: Implementing Oracle Data Guard 63

So what are your options for the apply method? Basically, the apply method is the type of
standby database you choose to set up—a physical standby database using Redo Apply or a
logical standby database using SQL Apply. Chapter 1 detailed the differences between these two
types of Data Guard standby databases, so we won’t go over those topics here. (We asked at the
beginning of this chapter if you had read Chapter 1, remember?).

The first important point about the type of standby is that everything we have been discussing
so far in this chapter applies to both types of standby databases. How redo is transported to a
standby, the tuning you can and should do, the SRL files, the protection modes, compression—
everything—is exactly the same regardless of the type of standby database at the other end of the
pipe. How that redo gets processed is what is different.

Now that you have been examining the characteristics of your redo generation rates, you
need to realize what impact it may have on the type of standby you choose. With redo generation
rates in the 1 to 15 MB/sec range, you can tune either type of standby (given sufficient hardware
resources) to meet a short RTO, in seconds to single-digit minutes. Note that in a workload
dominated by LOB inserts, SQL Apply optimizations have been able to handle up to 60 MB/sec
apply rates, beyond which the apply lag, and thus RTO, will grow. Other than the special case for
LOB inserts, once your redo rate passes the 15 MB/sec threshold, the RTO for a logical standby
database will start to grow some as it will begin to fall behind. A physical standby database has
been shown to reach apply rates in the area of 50 to 60 MB/sec for OLTP workloads and more
than 100 MB/sec for batch workloads. Of course, to reach the maximum apply rates, you need to
have enough hardware and you will have to do some tuning of the standby database, system, and
I/O as well as the apply process itself. Those tuning exercises are discussed in Chapters 3 and 4.

In the final parts of this chapter, where you actually get to create something, you will be
configuring a physical standby database since you always start with a physical standby database.
If you want to add in a logical standby database to your configuration, you start by creating a
physical standby database, letting it get caught up with the primary database, and then converting
it to a logical standby database, which will also be discussed.

Considering Role Transitions
One final thing to think about now before we get into creating a standby database. A Data Guard
standby database, like any other kind of disaster recovery solution, is never built just to look
pretty. It is created for a purpose, and that purpose is to save your business when you experience
a failure (remember, it’s when, not if). In addition, Data Guard can be used in a multitude of ways
that are non–failure related to save you precious downtime. These are all accomplished by role
transitions, switchover, and failover. Get used to those words, because you are going to use them
a lot in the future. We will go much deeper into role transitions in Chapter 8.

Relating the RPO and RTO to the Protection Mode
Now that you have made your decisions, understand all of your options, and have performed the
required setup and tuning tasks for your systems and networks, you are finally ready to start
implementing standby databases and putting the operational practices into place.

As you have seen so far in this chapter, disaster recovery and high availability are basically
a set of tradeoffs. You must accept that to get the best performance out of your production system,
you will potentially lose some data at failure time, and you have to examine and tune your
network to meet your RPO. And if you put a standby outside of your local geographical area,
you need a network that can handle the amount of change that will occur on your primary
database.

Chapter 2: Implementing Oracle Data Guard 63

Zero data loss isn’t free by a long shot. Science-fiction writer Robert A. Heinlein put it best
when he wrote TANSTAAFL—There Ain’t No Such Thing As A Free Lunch.11

Creating a Physical Standby Database
Finally, you get to start creating a standby database! If you skipped the first part of this chapter,
these procedures will still get your standby database up and running, but you will not understand
what you are configuring, nor will it perform in the manner you might expect. So make sure
you’ve read everything in this chapter up to this point before you begin.

Choosing Your Interface
Before you get started, you need to make a decision about the interface are you going to use
when you configure, manage, and use your Data Guard setup. You have three choices: Oracle
Enterprise Manager Grid Control, the Data Guard Broker, and SQL*Plus, each with its own
command line interface (CLI) or graphical user interface (GUI), as shown in Figure 2-1.

You need to choose an interface now because, once you choose to use the Broker (either
directly or through Grid Control), you cannot perform Data Guard management using SQL*Plus
unless you completely remove the Broker from the picture. This is because the Broker considers
itself (rightly so) the keeper of your Data Guard configuration’s health, and as such it will put
things back the way it believes things should be, regardless of your changes. Not only will this
become very confusing for you, but it can, in some cases, prevent functions such as switchover
and failover from occurring smoothly, causing you to have to troubleshoot a situation at a time
when you really don’t want your attention diverted from the cause at hand—that is, getting back
up and running in production as quickly as possible.

Choosing one or the other does not mean that you cannot change your mind in the future; it just
means that you have to know what you are doing so the change can happen flawlessly. Grid Control
uses the Data Guard Broker to set up and manage the configuration, so it is very easy to move from
one of those two interfaces as long as you do some basic setup, which is discussed at the end of the
next section. If you want to return to using SQL*Plus to perform management, you need to remove
the Broker configuration, which also means that you can no longer use Grid Control with your Data
Guard configuration other than to monitor some of the performance information. Of course, you
can always use SQL*Plus to look at things in your Data Guard databases, even if you are using the
Broker—but you cannot change things. More on that in Chapter 7.

Another reason to choose your interface now is because you just don’t have to worry about
the following things if you choose to go with Grid Control and the Data Guard Broker:

 Parameter definitions ■

 SRL creation ■

 Force logging ■

 Password file, init files ■

 Starting the apply ■

These are done for you by Grid Control when you use the Grid Control Data Guard Wizard to
create your standby database.

11 See http://en.wikipedia.org/wiki/TANSTAAFL.

http://en.wikipedia.org/wiki/TANSTAAFL

64 Oracle Data Guard 11g Handbook Chapter 2: Implementing Oracle Data Guard 65

Before You Start
In all of the standby creation methods we discuss in the following sections, it is assumed that you
have already performed these prerequisites:

 Enabled archiving on your primary database ■

 Installed Oracle Database 11 ■ g on all systems where you will be creating standby
databases (you do not need to create a database, just do a software only install)

 Configured and started ASM (although ASM is not mandatory, it is recommended) ■

 Created any necessary directories on the standby system ■

 Configured and started the listener on the standby system ■

 Added your primary and all standby databases connection descriptors to all the ■
TNSNAMES files on each system; even if you did not perform network tuning, you must
perform at least this task:

MATRIX_DR0 =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = matrix_dr0.com)(PORT = 1521))
)

Enterprise Manager
GUI

Broker
CLI is DGMGRL

Standby Databases
CLI is SQL*Plus

Primary Databases
CLI is SQL*Plus

FIGURE 2-1. Data Guard management interfaces

Chapter 2: Implementing Oracle Data Guard 65

 (CONNECT_DATA =
 (SERVICE_NAME = Matrix_DR0)
)
)

MATRIX =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = matrix.com)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = Matrix)
)
)

You do not have to add any static entries to the LISTENER files yet. We will tell you when that
is necessary and why. Just remember this: Setting up a Data Guard standby database is no
different from setting up your primary database in the first place. You need a database, which
means the following:

 Listener ■

 TNSNAMES to find the standby and the primary ■

 Initialization parameters ■

 Password file (plus service if you are on Windows) ■

 Control file ■

 Data, undo, and temporary files ■

 Redo logs ■

Pretty much the same things you’ve been doing for years, right?

Using Oracle Enterprise Manager Grid Control
It is beyond the scope of this book to describe the entire installation and setup of Grid Control;
that part is left up to you. However, you will need the following components if you want to use
Grid Control to create and manage Data Guard: an Oracle Management Server (OMS) and its
repository database (which can have its own Data Guard standby) installed and operating
somewhere in your network. Then you will need the Grid Control Agent installed on every system
in your proposed Data Guard configuration—the primary database systems and any standby
database systems.

You can use Grid Control 10.2.0.4 to create and manage Oracle Database 11g standby
databases, but you will not be able take advantage of any of the Data Guard 11g features,
including using the new RMAN method for creating the standby, setting parameters and attributes
that are new in 11g, and using Snapshot Standby or Active Data Guard. In addition, since you
will be using the Oracle Database 10g creation method, any of the network tuning you did at the
TNS name descriptor will be lost unless you chose to put your tuning directly into the sqlnet.ora
file for system-wide configuration. If you have only Grid Control 10.2.0.4, we recommend that
you skip this section and go to “The Power User Method” later in the chapter to create your
standby database. Once done, you can skip to Chapter 5, as instructed, to create the Data Guard

66 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3

Chapter 2: Implementing Oracle Data Guard 67

Broker configuration. When that is done, you will be able to connect to your Data Guard
configuration through Grid Control 10.2.0.4 and manage it, but still without access to any of the
Data Guard 11g features directly. You will have to use the Data Guard Broker CLI DGMGRL to
effect those changes.

Using Grid Control 10.2.0.5 will give you access to everything mentioned so far in this book,
including the new creation methods. In addition, your network tuning will remain as is, since
Grid Control will use the new Broker properties. So once you have installed and configured Grid
Control, log in to Grid Control and connect to your production database.

Step 1: Navigate to Data Guard Setup
Upon launching Grid Control, click the Targets tab and then the Databases tab. Select your
primary database. In our case, this is Matrix.

Once on the home page for the primary database, click the Availability tab.

Under this tab, you will find the Data Guard—Add Standby Database link, as shown here:

Click this link to get started. You are prompted to configure the Data Guard Broker since Grid
Control requires it. Click the Add Standby Database link to get started:

Chapter 2: Implementing Oracle Data Guard 67

Step 2: Choose What You Want to Do
The next page shows you a list of operations that the wizard can perform for you:

Here you can create a new standby database (either physical or logical), manage an existing
standby database (one created outside of Grid Control that does not utilize the Broker), or create
an RMAN backup of the primary database that can be used to create multiple standby databases.
Let’s create a new physical standby database.

Step 3: Choose Your Creation Method
The next screen asks you what type of backup you are going to use to create the standby: Perform
An Online Backup Of The Primary Database or Use An Existing Primary Database Backup. The
first option (which you will see only when your primary database is 11g or higher) is where Grid
Control will use the FROM ACTIVE DATABASE method to create the standby database. We will
explain that feature more in the “The Power User Method” section a bit later. The second option is
a staging operation, where Grid Control will perform a hot backup of each data file and place it
in a staging area, copy the file to the standby system, and restore it to the standby database. This
operation is then repeated for each data file. When your primary database is an Oracle Database
10g database, the staging operation is the only available option.

Your other option is to use a previously existing backup, whether created from a previous
standby creation or any RMAN backup that already exists. We will choose the new Oracle
Database 11g method.

68 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3

Chapter 2: Implementing Oracle Data Guard 69

Step 4: Specify the Backup Files Area
If you chose to use the new 11g method for creating the standby (directly over the network), you
will not be asked to specify where you want to place the backup files, because there won’t be
any. What you will be asked is how many parallel processes you want to use and the primary
system logon credentials, as shown next. If you had previously configured your preferred
credentials, these fields would be filled in for you.

If you chose to use the 10g method, you will have to choose what you want Grid Control to
do with the backup files that will be created to establish your standby database. By default, these
files will go into the Oracle home directory under the DBS directory, but you can place it
wherever you want. You can also compress the backup (which does not require the Advanced
Compression option, as this is the standard compression) to speed up transmission of the backup
to the standby site if you do not have the necessary network bandwidth available. If you choose
to keep this backup file for a future standby creation, you will need more permanent space on
disk, and Grid Control will tell you how much. Since we are using the new Oracle Database 11g
method, you will not be asked for a location to place the backup files, since there is no
staging area.

One other difference is that the Data Guard Wizard will always create the SRL files on the
standby and primary databases. It is important that they always be created, but currently this can
create multiplexed SRL files, which is not recommended at this time. We will discuss this in more
detail a bit later on in the chapter.

Step 5: Specify the SID of the Standby
At this point, you need to specify the system ID (SID) or Instance Name that will be used for the
standby database. This is what you would set your ORACLE_SID variable to when trying to attach
to the standby when you are on the standby server. In addition, you need to specify the standby
database system and Oracle home as well as the username and password for the remote host that
has the privileges to create the standby database, as shown next. Grid Control will assume that

Chapter 2: Implementing Oracle Data Guard 69

you use the same username and password for both systems and will prefill these fields for you, so
you must reenter the data if they are different.

The host for the standby database will default to the same system you are currently on, so you
will have to change it. You can either enter the information manually or click the little flashlight
icon to get a list of all the hosts that Grid Control has discovered, where you can select the
standby host and click Select. The list will contain only hosts that have an Oracle home that
exactly match the Oracle version of the primary database. They must match exactly.

Optionally Choose Your Transfer Method and Standby Locations If you selected the old staging
area method to transfer the data files to the standby system, you will be presented with a File Access
page and asked to provide the disk directories where it can put the backup files on the standby
system. You can also choose how you want the backup copied over to the standby system—via HTTP
or FTP. You won’t see this page when you select the 11g backup method, as we have.

When you use this backup method, Grid Control also provides the option of specifying a network
mount location of the primary host’s backups. This option is a viable solution if you decide that you
cannot afford to have the database copied over the network at creation time by HTTP or FTP. The
second option specifies a directory on the standby system that points to the temporary directory on
the primary system that you specified in step 4. For example, suppose you put the backup that Grid
Control will create in /u03/backups/Matrix. You then mount that directory with NFS or some sort or
network mount on the standby server, perhaps as /u04/primarybackup/Matrix/. You would put that
directory specification in the second option to have Grid Control perform the restore directly from
that directory. This is the directory where the backup of the primary database is located. In this way,
you can avoid doubling the storage for the backup files and let the network mount handle the
transfer of the data as it is being restored.

Step 6: Specify the Location of the Standby Data Files
Since we are using Automatic Storage Management (ASM) on the primary database, Grid Control
insists that ASM also be configured on the standby system. If not, you cannot create your standby

70 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3

Chapter 2: Implementing Oracle Data Guard 71

there using Grid Control. You can, however, create an ASM standby from a non-ASM primary
using Grid Control. Since we’re using ASM, it will ask for the login credentials for the remote
ASM instance.

On the screen shown next, you will be asked where the standby data files and flash recovery
area should be placed—in our case, ASM:

If you are not using ASM, you will enter the normal disk path and directory information. If you
are storing the data files in more than one place, click Customize and enter the different disk
groups, as shown next:

Chapter 2: Implementing Oracle Data Guard 71

You do not have a choice of whether or not to use a flash recovery area. The Data Guard
Wizard in Grid Control enforces the best practices, and having a flash recovery area is a must.

At the bottom of the page (see the next illustration) is a place to specify the location of the
network configuration files on the standby system. This is not where you would like Grid Control
to put the files, but where they are actually located. If you change this to some location and the
files are not there, Grid Control will not be able to build your standby. You would only have to
change this if your system network admin location was somewhere other than what Grid Control
placed in this field.

Step 7: Name the Standby Database
You are almost done. Next, as shown in the following image, you configure three items. First
you specify the Database Unique Name, which must be different from the name of the primary
database. This uniqueness was enforced in prior releases at the Data Guard Broker and Grid
Control levels, but not at the SQL*Plus level. As of Oracle Database 11g, this uniqueness between
a primary database and its standby databases is enforced at the Data Guard level. Grid Control has
never let you specify the same database unique name for the standby in any release since 10g.

72 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3

Chapter 2: Implementing Oracle Data Guard 73

The second parameter is the Target Name, which is the value that Grid Control will use when
displaying the standby database in the Data Guard pages.

Grid Control 10.2.0.5 also allows you to specify the username of the monitoring user so that
you no longer have to configure this after the standby database is created. You can specify a
normal user that does not have SYSDBA credentials (and suffer reduced monitoring capabilities)
or use the SYSDBA username you have already supplied.

At the bottom of the page are two other items of interest—you can choose whether to use the
Broker or not and how Grid Control should set up the network connections.

Grid Control 10.2.0.5 will create a standby database for you using the Broker and will then
remove the Broker configuration when it is done. This means that you must manage your Data
Guard configuration using SQL*Plus. You will be able to do only some basic monitoring or your
Data Guard setup in Grid Control if you choose not to use the Broker.

The next item you can supply is the connect identifier. In previous versions of Oracle
Database, the Data Guard Broker (and Grid Control) would use a specially constructed connect
identifier to connect to the standby database. If you provided it with a TNSNAME identifier, it
would convert that to the full connect descriptor and store that value in its configuration files. As
we mentioned earlier, this would erase all your tuning efforts at the Oracle Net Services and TCP
level. So after clicking the plus sign (+), you would expand the connect identifiers and specify the
TNSNAME that you already created in the TNSNAMES.ORA file, as shown next.

If you want to let the Broker use the old method of connecting to the standby databases, you
can click the appropriate radio buttons. In fact, when you first arrive at this page, the primary
database connect string has already been processed and prefilled in the old style. We erased it
and added Matrix, as you can see.

Chapter 2: Implementing Oracle Data Guard 73

Step 8: Ready To Go!
At this point, you have finished answering questions. The following illustration shows all the
various parts of your configuration and the answers you made to all the preceding questions.

At the bottom of the page you will also see a complete outline of where the wizard will be
placing the various files and redirecting any external directory specifications:

If all is good, the standby creation job will be created. When it is submitted, you will see the
Data Guard home page. On this page, check over everything before you click Finish.

Step 9: The Job Is Submitted
When you proceed, Grid Control will create the Data Guard Broker configuration and then build
and submit a standby creation job; this will actually create the standby. While the job is still
running, it will add the standby database to the Data Guard Broker configuration. The sequence is
displayed in the illustration. Don’t worry about how it is doing the Broker work; this will be
discussed in detail in Chapter 5.

74 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3

Chapter 2: Implementing Oracle Data Guard 75

As it says, the process can be cancelled right up to the point at which it submits the job. After
that point, the job can no longer be cancelled, as shown here:

Step 10: Creation in Progress
Now you can go get a cup of coffee, because it will be awhile before the standby is created. But
as soon as the job is submitted and the standby database is added to the configuration, you will
be returned to the Data Guard home page. On that page, you will see the standby in progress
shown at the bottom of the page, as you see here:

If you click the Creation In Progress link, the Grid Control Jobs page will appear, where you
can monitor the progress of the standby creation job. This is also where you will go if an error
occurs during the creation process. You will be able to find out what went wrong and where by
examining the output log.

Or you can stay here and watch for the creation to be complete. But you won’t see anything
unless you set the refresh speed at the top of the page, as shown here:

Set that to refresh every 30 seconds, 1 minute, or 5 minutes. Or, if you like manual refreshes
better, click the icon with the page and the little green circle arrow on it—that’s the manual
refresh button.

Chapter 2: Implementing Oracle Data Guard 75

Step 11: The Standby Is Ready and Functioning!
Upon successful completion of the job and creation of the standby, a status of Normal will
appear, as shown next. If Normal does not appear, click the link to troubleshoot your standby
creation.

The illustration provides a summary of your configuration including the Protection Mode,
Fast-Start Failover status, and the primary database.

From the Data Guard home page, you can edit the various attributes of the primary database
(the Edit link above), the standby databases (the Edit button at the bottom), add standby database,
perform role transitions, and enable Fast-Start Failover. We will discuss these operations in the
chapters in which those features of Data Guard are discussed.

If you decided in the first part of this chapter to use Maximum Availability mode, you can
now click the Maximum Performance link on the Data Guard home page. This will begin the
Protection Mode Wizard, which will assist you in converting your configuration to the higher
mode. The wizard will make all the changes to the redo transport attributes of the primary and the
standby database you choose to be the synchronous standby destination.

Step 12: Correcting Your SRL Files
You need to pay attention to one more thing before you finish up. Remember we said that the SRL
files could get multiplexed? By default, with ASM they will have been put into both disk groups,
just like the ORL files. If you are not using ASM, they will be multiplexed based on your setting of
the DB_CREATE_ONLINE_LOG_DEST_n parameters and will be multiplexed if you have specified
more than one location.

76 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3

Chapter 2: Implementing Oracle Data Guard 77

On either database, you can query the V$LOGFILE view and obtain a list of the SRL files that
have been created:

SQL> SELECT GROUP#, MEMBER FROM V$LOGFILE WHERE TYPE='STANDBY';
 GROUP# MEMBER
---------- --
 4 +DATA/matrix_dr0/onlinelog/group_4.265.677440617
 4 +FLASH/matrix_dr0/onlinelog/group_4.333.677440625
 5 +DATA/matrix_dr0/onlinelog/group_5.268.677440629
 5 +FLASH/matrix_dr0/onlinelog/group_5.329.677440637
 6 +DATA/matrix_dr0/onlinelog/group_6.300.677440645
 6 +FLASH/matrix_dr0/onlinelog/group_6.292.677440653
 7 +DATA/matrix_dr0/onlinelog/group_7.298.677440663
 7 +FLASH/matrix_dr0/onlinelog/group_7.291.677440669
8 rows selected.

If your SRL files do get multiplexed, you should remove the multiplexed copy of each SRL on
the standby and primary databases—in our case, the ones in the +DATA disk group.

On the primary database, where the SRL files are not currently being used, you can drop the
multiplexed members immediately by executing the following command for each multiplexed
member:

SQL> ALTER DATABASE DROP STANDBY LOGFILE MEMBER
 '+DATA/matrix/onlinelog/group_4.265.677440617';
Database altered.

On the standby database, you first need to stop the MRP and, if possible, redo transport at the
same time. If you do not want to stop the transport, you will receive an error for the SRL currently
being used by the RFS process and you will have to switch log files at the primary database to free
it up before dropping the extra member. You can stop the MRP using SQL*Plus (normally a no-no
but OK this one time!), or you can use Grid Control and stop the apply in the correct fashion:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;
Database altered.
SQL> ALTER DATABASE DROP STANDBY LOGFILE MEMBER
 '+DATA/matrix_dr0/onlinelog/group_4.265.677440617';
Database altered.
SQL> ALTER DATABASE DROP STANDBY LOGFILE MEMBER
 '+DATA/matrix_dr0/onlinelog/group_5.268.677440629';
SQL> ALTER DATABASE DROP LOGFILE MEMBER
 '+DATA/matrix_dr0/onlinelog/group_6.300.677440645';
Database altered.
SQL> ALTER DATABASE DROP STANDBY LOGFILE MEMBER
 '+DATA/matrix_dr0/onlinelog/group_7.298.677440663';
Database altered.
ALTER DATABASE DROP STANDBY LOGFILE MEMBER
 '+DATA/matrix_dr0/onlinelog/group_5.268.677440629'
*
ERROR at line 1:
ORA-00261: log 5 of thread 1 is being archived or modified

Chapter 2: Implementing Oracle Data Guard 77

ORA-00312: online log 5 thread 1:
 +DATA/matrix_dr0/onlinelog/group_5.268.677440629'
ORA-00312: online log 5 thread 1:
 +FLASH/matrix_dr0/onlinelog/group_5.329.677440637'

The last one we’ll try (Group 5) is the one currently in use by redo transport, since we chose
not to turn off transport. Go to the primary database and switch logs. This will free up Group 5 so
that you can drop its member once it has been archived at the standby. When it has been archived
at the standby, you can try the drop again, and this time it will succeed.

SQL> ALTER DATABASE DROP STANDBY LOGFILE MEMBER
 '+DATA/matrix_dr0/onlinelog/group_5.268.677440629';
Database altered.
SQL> SELECT GROUP#, MEMBER FROM V$LOGFILE WHERE TYPE='STANDBY';
 GROUP# MEMBER
---------- --
 4 +FLASH/matrix_dr0/onlinelog/group_4.333.677440625
 5 +FLASH/matrix_dr0/onlinelog/group_5.329.677440637
 6 +FLASH/matrix_dr0/onlinelog/group_6.292.677440653
 7 +FLASH/matrix_dr0/onlinelog/group_7.291.677440669

Now that you have dropped the multiplexed members, you can restart the MRP by going back
to Grid Control and correcting the error status that is displayed. Simply click the error link and
then click Reset.

Step 13: Finished!
You now have a fully functioning Data Guard standby database. You can go back and create
another standby database at a different location, modify this one, or perform role transitions.

You need to take the following into account when creating your standby database with the
Grid Control Data Guard Wizard:

 If you have an Oracle RAC primary database, the wizard will not create an Oracle RAC ■
standby database, even if the system is configured for RAC. You will have to create a
single instance standby and then use the conversion utility to convert it to RAC.

 If you need to go cross-platform (as defined by the Data Guard Cross Platform Note ■ 12),
you cannot use Grid Control to create the standby database.

If you want to create your standby in one of these situations, you will need to use the
procedure outlined in the next section and then import the configuration into Grid Control.

A Last Note
If this was your chosen method for creating your standby databases, you can skip the rest of this
chapter and go directly to Chapter 3. However, if you want to know how things actually function
under the covers, the rest of this chapter will give you in-depth details about how standby
databases are created by hand.

12 Note 413484.1 “Data Guard Support for Heterogeneous Primary and Standby Systems in Same Data Guard
Configuration”

78 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3

Chapter 2: Implementing Oracle Data Guard 79

The Power User Method
So you are here either because you are a die-hard SQL user or you just want to know what goes
on behind the scenes when you use Grid Control. Either way, you will benefit from the following
discussions and examples.

You have always been able to create a physical standby database in many ways. These
methods have traditionally ranged from manually copying the files across the network yourself
(whether hot or cold backup), using a mirroring snapshot, or an RMAN backup. With the
proliferation of ASM on Oracle databases, RMAN is fast becoming the only way to create a Data
Guard standby and is in fact the best method to use.

In this section, you’ll learn two methods for using RMAN to create your standby database—
the original Oracle Database 10g method and the new 11g FROM ACTIVE DATABASE method.
The older method is still a valid way to create a standby database, as there will be situations for
which copying the entire database across the network may not be what you want to do, such as in
the following examples:

 The size of the database makes you nervous about putting that much traffic on the ■
network.

 Your network is sufficient to handle your redo generation rate but it would take days to ■
move the entire database.

 You need to fully re-create a failed primary database as a standby database after ■
performing a failover and you already have a fairly recent full backup at the primary site.

 You have high-speed tape drives at both sites and can transport the backup to the standby ■
site faster than a network transfer.

Both of the RMAN creation techniques use the DUPLICATE FOR STANDBY command, but, as
you will see, the new Oracle Database 11g method eliminates a lot of the work you have to do
with the original method. We will start with the new method so you can see just how easy it is to
use, followed by the older method. But first we need to discuss the parameters and their attributes
that you will need to configure for Data Guard—which Grid Control and the Broker does for you.

Parameters of Interest to Data Guard
Three types of parameters exist as far as Data Guard is concerned: those that are independent of
the role of the database, those that are used only when the database is a primary, and those that
are used only when the database is a standby. While numerous parameters can be used with a
Data Guard configuration, you really need to configure only a few. And because so much of Data
Guard’s functionality is being moved into the code, many of these parameters and attributes have
been deprecated in the last few releases. It is important to note that just like your TNS names,
listeners, and SRL files, these parameters need to be defined on all databases in your configuration
in preparation for role transition. So what are these parameters?

Role-independent Parameters

 DB_UNIQUE_NAME ■ This parameter defines the unique name for a database. Since the
DB_NAME parameter must be the same for a physical standby database and different for
a logical standby database, this was introduced in 10g to provide a way to identify each
database in a Data Guard configuration. You need to set this on all of your databases,

Chapter 2: Implementing Oracle Data Guard 79

but it does require a bounce. If the parameter is not defined, it is defaulted to the
DB_NAME, which means you do not have to take an outage on production to create
a standby. You can set it there later.

db_unique_name='Matrix'

 LOG_ARCHIVE_CONFIG ■ This defines the list of valid DB_UNIQUE_NAME parameters for
your Data Guard configuration. When used with the DB_UNIQUE_NAME attribute of the
destination parameter (discussed in a moment), it provides a security check for Data
Guard that the connection between the two databases is allowed. This parameter is
dynamic as long as you do not use the SEND and RECEIVE attributes. Those are leftovers
from the old REMOTE_ARCHIVE_ENABLE parameter and are no longer needed, so do not
use them.

You need to add only the database unique names of the other databases in your
configuration. The current database unique name is always added behind the scenes. But
for clarity’s sake and to have the exact same parameter defined on all the databases, add
all the names explicitly. There is no requirement as to the order of the names in this
parameter, but it is absolutely mandatory for RAC databases in a Data Guard
configuration. This parameter should be used at all times.

log_archive_config='dg_config=(Matrix,Matrix_DR0)'

CONTROL_FILES Of course, you all know what this parameter is for, but with a standby
database it points to the Standby Control File. This is a special control file that is created
for you or that you create yourself depending on the method you use to create your
standby database. control_files='/Oracle/oradata/Matrix/control01.ctl'

 LOG_ARCHIVE_MAX_PROCESSES ■ We mention this parameter here because the default
setting is still 2, which is not enough. Archive processes on the primary database are
responsible for archiving the ORL files as they become full and for resolving gaps in the
redo stream to a standby database. And on a standby database, they are responsible for
archiving the SRL files and forwarding the archive logs to a cascaded standby database.

On the primary, one archive process is limited to servicing only the ORL files and is not
allowed to talk to a standby database at all. This special ARCH process is referred to as
the “Dedicated ARCH Process.” But the others are all allowed to perform both functions.
While an archive process is sending an archive log to a standby database, it is not
available to assist in archiving the ORL files. Even though the prime directive of an
archive process is “Always archive the online log files first before processing a gap,” it is
still possible in the worst case to have only that one archive process archiving the online
log files. If you do not have enough processes, then in a time of a large gap of a slow
network, you could be reduced to one archive process for the ORL files. And we are all
painfully aware that if the ORL files all get full at the same time, production stalls until
one gets archived. The multi-threaded gap resolution attribute (MAX_CONNECTIONS),
introduced in Oracle Database 10g, allows Data Guard to use more than one archive
process to send a single log file to a standby, which uses even more of the processes. So,
at a minimum, set this parameter at 4 with a maximum of 30.

log_archive_max_processes='4'

80 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3

Chapter 2: Implementing Oracle Data Guard 81

One note on using multiple archive processes: While you need quite a few of them to
ensure that you do not have stalls on production, a large number of archive processes can
slow down switchovers because they all have to be awakened and asked to exit. You can
avoid this by reducing the parameter before starting a switchover. In addition, in Oracle
Database 11g with the new streaming capability, you can saturate your network with too
many archive processes if you happen to suffer a very large redo gap.

 DB_CREATE_FILE_DEST ■ Although this is not a Data Guard–specific parameter, it is
worth mentioning here since you will need to define it at the standby database if you are
using ASM.

db_create_file_dest=+DATA

Primary Role Parameters

 LOG_ARCHIVE_DEST_ ■ n This is the main parameter for Data Guard redo transport and
is usually in action when used on a primary database. Some exceptions to that rule
mainly deal with cascaded standby destinations. This parameter can also be used to
specify where the archive log files from the ORL files or the SRL files are supposed to go.
But as of Oracle Database 10g Release 1 and the introduction of the flash recovery area,
the local archiving is defaulted to the flash recovery area and you no longer need to
define a local destination. We will discuss local archiving and the LOCATION attribute,
but since you should be using the flash recovery area, you will not be setting a local
destination.

This parameter has seventeen attributes, all of which you can configure when setting up
redo transport to a standby database. You need to set only seven of them to have a properly
functioning Data Guard redo transport to a standby database. We will talk about those
seven first and will then show you some examples of how to use them. Then we’ll discuss
the remaining attributes and describe where you may use them and why. We recommend
that you do not use six of them.

The following attributes are required:

SERVICE ■ Specifies the TNSNAMES descriptor you created that points to your standby
database. The network tuning you performed earlier will come from here.

SYNC ■ Specifies that you want the redo sent using a synchronous method, meaning
that the LGWR process will wait for acknowledgment from the LNS before telling
the client that the transaction has committed. This is required on at least one standby
destination for Maximum Availability or Maximum Protection mode.

Standby Dedicated ARCH Process
It is important to note that even a physical standby database has a “Dedicated ARCH” process,
but that this just means that you have one less ARCH process available on the standby database
to archive the SRL files. In a physical standby the dedicated ARCH process is also not allowed
to archive the standby redo log files either.

Chapter 2: Implementing Oracle Data Guard 81

ASYNC ■ This is the default, and if you do not specify a transport type you will get
asynchronous redo transport. This is the Maximum Performance redo transport
method.

NET_TIMEOUT ■ Specifies the number of seconds that the LGWR process will wait for
an LNS process to respond before abandoning the standby as failed. The default is 30
seconds, but 10 to 15 seconds would be a better value depending on the reliability
of your network. Do not set it below 10 as you will experience failed reconnects after
a standby database comes back, since it take a few seconds to reconnect everything.
Reconnection requires the following:

 Stopping a stale LNS process ■

 Starting a new LNS process ■

 Making the connection to the standby database ■

 Detecting and stopping a stale RFS process ■

 Starting a new RFS process ■

 Selecting and opening a new SRL ■

 Initializing the header of the SR ■

 Responding back to the LNS that all is ready to go ■

All of this occurs before the LNS process can tell the LGWR that it is ready to go. If
this process takes longer than your value for NET_TIMEOUT the LGWR will abandon
the standby anew and this whole thing will happen again at every log switch.

REOPEN ■ Controls the wait time before Data Guard will allow the primary database
to attempt a reconnection to a failed standby database. Its default is 300 seconds
(5 minutes), and this is usually the reason people complain that Data Guard isn’t
reconnecting after they abort their standby. Generally speaking, in test mode we all
do things very fast. So the actions are SHUTDOWN ABORT the standby, watch the alert
log of the primary database to see it disconnect from the standby, restart the standby
database, and then switch logs on the primary database in hopes of seeing Data
Guard reconnect. And all of this happens in less than 300 seconds, so Data Guard
does not reconnect at the first log switch or a few more if you try them too fast. This
attribute was designed to avoid a potentially stalling reconnect attempt if a log switch
occurred immediately after a standby database destination failed. You will want to
reduce this attribute to 30 or even 15 seconds so that Data Guard gets reconnected
as fast as possible.

DB_UNIQUE_NAME ■ Using this attribute in your LOG_ARCHIVE_DEST_n parameter
requires that you also set the LOG_ARCHIVE_CONFIG parameter; otherwise, Data
Guard will refuse to connect to this destination. The name you would use here for
a SERVICE destination (a remote one) is the unique name you specified for the
database at the other end of the connection—that is, the standby database.

You must also enter this unique name into the LOG_ARCHIVE_CONFIG parameter on
both databases. When a primary database makes a connection to a standby database,

82 Oracle Data Guard 11g Handbook Chapter 2: Implementing Oracle Data Guard 83

it will send its own unique database name to the standby and ask for the standby’s
unique name in return. The standby will check in its configuration parameter, LOG_
ARCHIVE_CONFIG, to make sure that the primary’s unique name is present. If it is not
the connection is refused. If it is present, the standby will send its own unique name
back to the primary LNS process. If that returned value does not match the value you
specified in this attribute, the connection is terminated.

Like the LOG_ARCHIVE_CONFIG parameter, this attribute is mandatory for RAC
databases in a Data Guard configuration.

VALID_FOR ■ This is the last of the required attributes. Even if you think that your
Data Guard configuration will function just fine without this attribute (and it will), it
is a very good idea to use it anyway. The main function of this attribute is to define
when the LOG_ARCHIVE_DEST_n destination parameter should be used and on what
type of redo log file it should operate.

Following are the legal values for log files:

 ONLINE_LOGFILE ■ Valid only when archiving ORL files

 STANDBY_LOGFILE ■ Valid only when archiving SRL files

 ALL_LOGFILES ■ Valid regardless of redo log files type

Following are the legal values for roles:

 PRIMARY_ROLE ■ Valid only when the database is running in the primary role

 STANDBY_ROLE ■ Valid only when the database is running in the standby role

 ALL_ROLES ■ Valid regardless of database role

A VALID_FOR will allow the destination parameter to be used if the answer to both of its parameters
is TRUE. This attribute enables you to predefine all of your destination parameters on all databases
in your Data Guard configuration knowing that they will be used only if the VALID_FOR is TRUE.
No more enabling or disabling destinations at role transition time.

So what will your LOG_ARCHIVE_DEST_n parameter look like? Up to nine destinations are
available, meaning that you can have up to nine standby databases. In reality, ten destinations are
available, but one is reserved for the default local archiving destination, which we will discuss in a
moment. We’ll use parameter number 2 to start and add a standby database that is in Manchester
and will be our Maximum Availability standby database (edited for appearance):

log_archive_dest_2='service=Matrix_DR0
 SYNC REOPEN=15 NET_TIMEOUT=15
 valid_for=(ONLINE_LOGFILES,PRIMARY_ROLE)
 db_unique_name=Matrix_DR0'

Now let’s add in our Newark standby as parameter number 3, which has a network latency
greater than we would like for SYNC so it will operate in asynchronous mode:

log_archive_dest_3='service=Matrix_DR1
 ASYNC REOPEN=15
 valid_for=(ONLINE_LOGFILES,PRIMARY_ROLE)
 db_unique_name=Matrix_DR1'

Chapter 2: Implementing Oracle Data Guard 83

And of course since we used the proper DB_UNIQUE_NAME attribute, we need to define our LOG_
ARCHIVE_CONFIG parameter, too:

log_archive_config='dg_config=(Matrix,Matrix_DR0,Matrix_DR1)'

The following attributes are optional:

 AFFIRM ■ Default for SYNC destinations. Requires that the LNS process waits for the RFS to
perform a direct I/O on the SRL file before returning a success message. Required for SYNC
in Maximum Availability or Maximum Protection. You do not need to set this as it will
default based on the destination. And even though you can set it for an ASYNC destination
in 10g, there is no reason to do so. In fact, it will slow down the LNS process. AFFIRM is
ignored for ASYNC destinations in Oracle Database 11g.

 NOAFFIRM ■ Default for ASYNC destinations if not specified. Used in Maximum
Performance destinations. Again, there’s no need to specify this as it is the default for
ASYNC destinations. And if you try to set NOAFFIRM with a SYNC destination, your
protection mode will fail to meet the rules and will be marked as being resynchronized.
If this is your only SYNC standby and you are in Maximum Availability mode, you will
not be able to perform a zero data loss failover and you will lose data. If this is your
only SYNC destination, you are running in Maximum Protection mode, and you set
NOAFFIRM, your primary database will crash!

 COMPRESSION ■ This attribute turns on compression using the Advanced Compression
option for this standby destination. By default, this means that any ARCH process that
is sending a gap to this destination will compress the archive as it is sending it. If you
set the hidden parameter,13 then it will also compress as the current redo stream is
being sent. For example, assuming we set the hidden parameter, with our previous two
destinations let’s add the COMPRESSION attribute:

log_archive_dest_2='service=Matrix_DR0
 LGWR SYNC REOPEN=15 NET_TIMEOUT=15
 COMPRESSION=ENABLE
 valid_for=(ONLINE_LOGFILES,PRIMARY_ROLE)
 db_unique_name=Matrix_DR0'

log_archive_dest_3='service=Matrix_DR1
 LGWR ASYNC REOPEN=15
 COMPRESSION=ENABLE
 valid_for=(ONLINE_LOGFILES,PRIMARY_ROLE)
 db_unique_name=Matrix_DR1'

Matrix_DR0 will be compressed only when an ARCH process is sending a gap (no
compression for SYNC, remember?), and Matrix_DR1 will have the redo compressed at all
times. This does not mean that the redo remains compressed on disk, as this compression
is only during transport. The data is uncompressed at the standby side before it is written
to the SRL file.

 MAX_CONNECTIONS ■ This attribute was introduced in 10g Release 2 to allow you to
specify the number of archive processes that should be used for the standby destination

13 Note 729551.1 “Redo Transport Compression in a Data Guard Environment”

84 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3

Chapter 2: Implementing Oracle Data Guard 85

when sending a gap; it is no longer used in 11g. But if you are using 10g, you can specify
1 to 5 (with 1 being the default). If you specify more than 1, whenever this standby
destination needs to receive a gap, that many archive processes will be assigned to send
the archive log. The file will be split up among them, sent in parallel streams across the
network, and reassembled on the standby side.

log_archive_dest_2='service=Matrix_DR0
 LGWR SYNC REOPEN=15 NET_TIMEOUT=15
 MAX_CONNECTIONS=5
 valid_for=(ONLINE_LOGFILES,PRIMARY_ROLE)
 db_unique_name=Matrix_DR0'

Now when Matrix_DR0 suffers a disconnect from the primary, the gap resolution process
on the primary will use multiple streams of redo for each missing archive log file.

CAUTION
Do not use the MAX_CONNECTIONS attribute if you are running Oracle
Database 11g as it will impede the redo transport performance.

 DELAY ■ Rather than delaying the shipment of the redo, which is what a lot of people
think it does, this attribute merely instructs the apply processes of the target standby
database not to apply the redo without a lag of the number of seconds defined by this
attribute. With Flashback Database, this attribute is almost obsolete, especially since we
recommend that you always enable Flashback Database on your standby databases and
your primary database. If you tend to do a lot of things that Flashback Database cannot
handle, then you might want to specify a delay. Flashback Database and Data Guard will
be discussed in Chapter 8.

 ALTERNATE ■ Alternate destinations were originally used to keep a database up and
running when the local disk where you are archiving the ORL files fills up. Using an
alternate destination, you could redirect the archive processes to use an auxiliary disk
for the archive logs. This problem has basically disappeared with the flash recovery area,
which self-manages its space.

You could also use this attribute for remote standby destinations if you had multiple
network paths to a standby database. Obviously, you would use multiple paths to the
standby database with an Oracle RAC, but that is not what ALTERNATE was designed to do.
It is easier in both the single instance with multiple network interfaces case or the Oracle
RAC case to use connect time failover in your TNS descriptor for the standby database.

You are discouraged from using the following attributes:

 LOCATION ■ Prior to Oracle Database 10g Release 2, this attribute was required to
specify a location where the archive processes could store the archive log files. And this
was true on both the primary database (for the ORL files) and the standby database (for
the SRL files). With the flash recovery area and local archiving defaults, you no longer
need to define a destination with this attribute. Destination number 10 will automatically
be set to use the flash recovery area.

SQL> SELECT DESTINATION FROM V$ARCHIVE_DEST WHERE DEST_ID=10;
USE_DB_RECOVERY_FILE_DEST

Chapter 2: Implementing Oracle Data Guard 85

SQL> ARCHIVE LOG LIST
Database log mode Archive Mode
Automatic archival Enabled
Archive destination USE_DB_RECOVERY_FILE_DEST
Oldest online log sequence 19
Next log sequence to archive 21
Current log sequence 2

If you are using a flash recovery area and you want to define a local destination, you
should also use the same syntax:

log_archive_dest_1='location=USE_DB_RECOVERY_FILE_DEST
 valid_for=(ONLINE_LOGFILES,PRIMARY_ROLE)
 db_unique_name=Matrix'

If you are still not using the flash recovery area, you would use the old disk path structure:

log_archive_dest_1='location=/u03/oradata/Matrix/arch/
 valid_for=(ONLINE_LOGFILES,PRIMARY_ROLE)
 db_unique_name=Matrix'

Note that in both cases, the DB_UNIQUE_NAME points to the database on which you
define this destination, not a remote standby database. In this case, we are on the primary
Matrix, so if you are using the DB_UNIQUE_NAME attribute, you need to specify Matrix as
the target DB_UNIQUE_NAME.

NOTE
If you are using a flash recovery area, you do not need to set up a
local archiving destination using the LOCATION attribute.

 MANDATORY ■ This is one of the most dangerous attributes to a standby destination.
Basically, it requires that the redo from an ORL file must be sent to this destination. If
the redo cannot be sent, the ORL file that contains the redo cannot be reused until it
has been sent to this standby database. If the standby database is not reachable and the
primary database cycles through all the available ORL files, production will stall. Of
course, a local destination is mandatory so that the file is on disk somewhere, but you do
not need to set it at that location either. One of your local archiving destinations will be
mandatory by default.

CAUTION
Do not set the MANDATORY attribute.

 MAX_FAILURE ■ This attribute is the most misunderstood of all the attributes. People
tend to think it indicates how many times the LGWR will attempt to reconnect to a failed
standby before giving up and continuing to allow redo to be generated. This is not the case,
however. If you set this attribute, it defines how many times at log switch time the LGWR
will attempt to reconnect to a failed standby database. If you set MAX_FAILURE to 5, for
example, the LGWR will try to connect to a failed standby database five times as it cycles
though its ORL files. If it switches five times and still is unsuccessful in reconnecting to the
standby database, it will stop trying—forever. You will either have to manually reenable the
destination or it will be reenabled when the primary database restarts.

86 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3

Chapter 2: Implementing Oracle Data Guard 87

CAUTION
Do not set the MAX_FAILURE attribute.

 NOREGISTER ■ This is the last of the attributes for the LOG_ARCHIVE_DEST_n parameter
that we will discuss. By default, Data Guard will request that any redo it sends to a
standby gets registered at that standby database when it is archived to disk. For a physical
standby database, that means it will be registered into the standby control file. For
a logical standby database, that means SQL Apply will register the file in its metadata.
Data Guard does not require this attribute. It is useful for Streams target databases when
using downstream capture.

CAUTION
Do not set the NOREGISTER attribute.

 LOG_ARCHIVE_DEST_STATE_ ■ n This is the companion parameter to LOG_ARCHIVE_
DEST_n and was necessary for two reasons in the past: to enable predefinition of primary
role LOG_ARCHIVE_DEST_n parameters on a standby and not have the archive process
try to use them until you enabled the destination with this parameter; and to set up an
ALTERNATE destination as described previously. The first reason is no longer valid (you
now have VALID_FOR for that reason) and unless you are using ALTERNATE, then the
second reason is also unnecessary. Since these default to ENABLE anyway, you do not
need to set them for your destinations.

log_archive_dest_state_1=enable

Standby Role Parameters

 DB_FILE_NAME_CONVERT ■ On a standby database, this parameter allows you to
logically move the data files from their primary database location to your standby
database location. This is necessary if your on-disk structures and layout are different
between the two systems. Until the standby database becomes a primary database, this
translation occurs only at runtime. Once you either switchover or failover to the standby,
these values are hardened into the control file and the data file headers. It functions by
doing simple string replacement.

db_file_name_convert='/Matrix/','/Matrix_DR0/'

This would translate the data filenames from this

'/u03/oradata/Matrix/sysaux.dbf'

to this:

'/u03/oradata/Matrix_DR0/sysaux.dbf'

Similarly,

db_file_name_convert='+DATA','+RECOVERY'

would point the database to the data files in the ASM diskgroup +RECOVERY instead of
+DATA. The rest of the path could remain the same. In our example, standby creation
using ASM, you will not need to define this parameter.

Chapter 2: Implementing Oracle Data Guard 87

 LOG_FILE_NAME_CONVERT ■ The log file convert performs the same function as DB_
FILE_NAME_CONVERT but for the ORL files and any SRL files.

log_file_name_convert='/Matrix/','/Matrix_DR0/'

 FAL_SERVER ■ FAL is the Fetch Archive Log capability that is much more today than it
was in Oracle9i Release 1 Data Guard. It is only used on a physical standby database
and is the process whereby a physical standby can go and fetch a missing archive log file
from one of the databases (primary or standby) in the Data Guard configuration when it
finds a problem, sometimes referred to as reactive gap resolution. But the FAL technology
has been enhanced over the last three releases to the point at which you almost no
longer need to define the FAL parameters. With the arrival of proactive gap resolution, in
Oracle9i Release 2, almost every type of gap request from a physical or logical standby
database can be handled by the ping process of the primary database.

In normal processing on the primary, the archive process, which has been designated as
the ping process, will poll all the standby databases looking for gaps in the redo and also
process any outstanding gap requests that were posted by the Apply processes. A
physical standby database can use the FAL technology when requesting a gap file from
more than just the primary. If, for example, the primary was not reachable when a
physical standby encountered a gap in the redo, it could ask one of the other standby
databases. To do this, you would define the FAL_SERVER parameter as a list to TNS
names that exist on the standby server that point to the primary and any of the standby
databases. On our Matrix_DR0 database, for example, we would add the primary
(Matrix) and our other standby Matrix_DR1:

fal_server='Matrix, Matrix_DR1'

 FAL_CLIENT ■ The FAL client is the TNS name of the gap-requesting database that the
receiver of the gap request (the FAL_SERVER) needs so that the archive process on the
FAL server database can connect back to the requestor. On our standby 'Matrix_DR0'
we would pass the name 'Matrix_DR0' as the client name so that 'Matrix' or
'Matrix_DR1' would be able to make a connection back to 'Matrix_DR0' and send
the missing archive log files.

fal_client='Matrix_DR0'

'Matrix_DR0' must be defined in the FAL server’s TNS names file so that Data Guard
can make a connection to the standby database. Since we will be setting the redo
transport parameters between all of these databases, we would have to set up the TNS
names for them as well, so if you use the same TNS name in the FAL parameters, the TNS
names will already be defined. If you choose to use a different name, you must add the
name(s) to all of the TNS names files on all systems. As with FAL_SERVER, the FAL_
CLIENT parameter is only valid for physical standby databases.

 STANDBY_FILE_MANAGEMENT ■ This is the final parameter we discuss in this chapter.
This simple parameter is used only for physical standby databases. Whenever data
files are added or dropped from the primary database, the corresponding changes are
automatically made on the standby database when this parameter is set to AUTO. As
long as the top level directory exists on the standby or can be found by virtue of the DB_
FILE_NAME_CONVERT parameter, Data Guard will execute the data definition language
(DDL) on the standby to create the data file. It will even go as far as creating any missing

88 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3

Chapter 2: Implementing Oracle Data Guard 89

subdirectories if it can. By default, this parameter is set to 'MANUAL', which means that
the apply process on a physical standby database will not create the new data file and
you will have to unwind its attempt and create the data file manually.

standby_file_management='AUTO'

The only time you may need to change this parameter back to 'MANUAL' is when you
need to manipulate the ORL file definitions on the physical standby. SRL files can be
added without changing this parameter. If you do need to add or drop online log files on
the physical standby database (due to a change on the primary database, for example),
you can dynamically set this parameter to 'MANUAL', execute the DDL, and then set it
back to 'AUTO' without bouncing the standby database.

The End of the Parameters and Attributes
After reading all about the parameters and attributes that you can use (or not use in some cases),
you should have a good understanding of the function of each of them as well as the
ramifications of configuring them incorrectly.

On that note, we hope that you do not already have a headache, because we’re going to
shock you now. If you choose to use the Data Guard Broker (even if you do not use Grid Control)
you do not have to set any of these parameters yourself. The Broker will do it for you. We’ll talk
about that after you create your standby.

Using RMAN in Oracle Database 11g
Oracle Recovery Manager (RMAN) has included the ability to create a standby database from a
backup of the primary database for many releases. While the process was not much different from
the documented procedure in the Data Guard Concepts and Administration manual, it also
required extra storage for the backup of the primary database. And unless you were willing to go
the extra mile and use a more unconventional (but documented) method, you also had to maintain
a connection to the primary database during the entire creation process. RMAN in Oracle
Database 11g implemented a new process that removes both of these complications while adding
the ability to perform transparently most of the setup and file copying that you had to do by hand
just to get up and running. This new creation is invoked by an addition to the DUPLICATE FOR
STANDBY command, FROM ACTIVE DATABASE.

Just how simple is this new procedure for creating a physical standby database? It actually
takes about 75 percent fewer steps. Let’s get started.

Step 1: Prepare the Standby System First we are going to make some more assumptions. You
have performed the tasks outlined earlier in the “Before You Start” section. You have also
configured the network as per your tuning with the TNS names for each database in the correct
files as well as the listener connections. Your next step is to set up the standby system. You need
to do four things:

 1. Create a static listener entry for the standby. Even though we have discussed the Broker
listener entry, in this case, you just need a standard static entry in the standby listener:

SID_LIST_LISTENER =
 (SID_LIST =
 (SID_DESC =
 (GLOBAL_DBNAME = Matrix_DR0)
 (ORACLE_HOME = /scratch/OracleHomes/OraHome111)

Chapter 2: Implementing Oracle Data Guard 89

 (SID_NAME = Matrix_DR0)
))

Make sure you reload the listener after you put this in the listener file:

lsnrctl reload

 2. Create an init.ora file with only the DB_NAME in it. All you need for the parameter file
at this point is a one-line initialization file with any value for DB_NAME. This file will be
replaced by RMAN during the standby creation process.

echo 'DB_NAME=WHATEVER' > $ORACLE_HOME/dbs/initMatrix_DR0.ora
DB_NAME=WHATEVER

 3. Create a password file with the primary database SYS password. To create a standby
database, RMAN requires that the SYS user perform the various setup and database
creation. Oracle Database 11g introduced a new level of security in the password file
that makes it necessary to have a copy of the primary database’s password in order to
operate a physical standby database. Merely creating a new password file with the same
password will no longer work, as internally it will be different between the two systems
and Data Guard will not be able to connect to the standby. To allow RMAN to create
the standby database, you can create a password file with the same SYS password used
by the primary database, because RMAN will copy the password file from the primary
system as part of the procedure.

orapwd file=$ORACLE_HOME/dbs/orapwMatrix password=oracle

 4. Start up the standby instance. Since no control file exists yet for the standby database,
you cannot mount the standby instance, but you must start it up NOMOUNT so RMAN can
attach to the instance:

setenv ORACLE_SID Matrix_DR0
sqlplus '/ as sysdba'
SQL> STARTUP NOMOUNT;

Step 2: Prepare the Primary System Unlike older methods of standby creation, where you had
to take backups of the primary database and make them available to the RMAN duplicate
procedure before you could create the standby database, with the new RMAN functionality in
Oracle Database 11g you need to do very little at the primary database to create your standby
database. Because you should be using SRL files, if you create them on the primary database
before you create the standby, RMAN will create them for you on the standby database provided

The Password File
Whenever a change is made to the primary database SYS password, you must copy the
primary database password to all physical standby databases. You can no longer create a
password manually at the physical standby. Logical standby databases do not have this
restriction as they will execute the password DDL.

90 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3

Chapter 2: Implementing Oracle Data Guard 91

it can find the appropriate directory. We are using ASM, and as such we have defined the
appropriate ASM file creation parameters so we can use the short version of the SRL creation SQL.
Assuming we have three ORL groups of 50MB each, we will create four SRL groups on the
primary database:

db_create_file_dest='+DATA'
db_create_online_log_dest_1='+FLASH'
db_create_online_log_dest_2='+DATA'

SQL> ALTER DATABASE ADD STANDBY LOGFILE '+FLASH' SIZE 50M
SQL> ALTER DATABASE ADD STANDBY LOGFILE '+FLASH' SIZE 50M
SQL> ALTER DATABASE ADD STANDBY LOGFILE '+FLASH' SIZE 50M
SQL> ALTER DATABASE ADD STANDBY LOGFILE '+FLASH' SIZE 50M

You will notice that we added the +FLASH to the ADD STANDBY LOGFILE command. This
was done to prevent the database from multiplexing the SRL files. By not specifying an actual
filename for the SRL, the database will automatically put the file into the flash recovery area using
an Oracle Managed Files (OMF) name. But if you are using ASM (as we are), the database will
automatically multiplex the SRL files just as it does with the ORL files, once in +DATA and once
in +FLASH.

Unlike a fatal error on an ORL file on the primary that will crash the instance, if an error were
to occur on an SRL file, the redo transport would merely be terminated and when the primary
reconnected the new RFS would choose another SRL and the sequence that was en route at the
SRL failure point will be sent as a gap. And since having more than one member for an SRL
increases the I/O, which could have an impact on redo transport, you may not want the extra
overhead.

At this time, we do not recommend using multiplexed SRL files.

Step 3: Create the Standby This is it: time to create the standby database. The following RMAN
script will create your standby database into the standby instance you just started. This script can
be run from the primary system “pushing” the data to the standby system, or from the standby
system “pulling” the data from the primary system. All that’s required is that the TNSNAMES be
set up correctly and that you start up RMAN.

RMAN> CONNECT TARGET sys/oracle@Matrix;
 CONNECT AUXILIARY sys/oracle@Matrix_DR0;
run {
 allocate channel prmy1 type disk;
 allocate channel prmy2 type disk;

Multiplexing SRL Files
Currently, issues with multiplexed SRL files can cause problems in some cases, potentially
at failover time. The presence of a second copy of the SRL files is not always a benefit, as
the extra I/O might slow down redo transport, and any failure of an SRL would be treated
like a gap by Data Guard. We do not recommend multiplexing the SRLs.

Chapter 2: Implementing Oracle Data Guard 91

 allocate channel prmy3 type disk;
 allocate channel prmy4 type disk;
 allocate channel prmy5 type disk;
 allocate auxiliary channel stby1 type disk;
 duplicate target database for standby from active database
 spfile
 parameter_value_convert 'Matrix','Matrix_DR0'
 set 'db_unique_name'='Matrix_DR0'
 set control_files='+DATA/Matrix_DR0/control.ctl'
 set db_create_file_dest='+DATA'
 set db_create_online_log_dest_1='+FLASH'
 set db_create_online_log_dest_2='+DATA'
 set db_recovery_file_dest='+FLASH'
 set DB_RECOVERY_FILE_DEST_SIZE='10G'
 nofilenamecheck;
 }

This simple RMAN script will now go off and do all the work you used to have to do
manually to create your standby database. And it will be doing a live backup of the PRIMARY
database and a live restore of the standby database without any interim storage.

When this script is complete, you will have a fully functioning physical standby database that
is ready to receive redo. Of course, it will not yet be receiving redo nor applying it.

If you log in to the physical standby database, you can see the results of the creation and
where it has put everything:

[Matrix_DR0] sql
SQL*Plus: Release 11.1.0.6.0 - Production on Tue Aug 5 00:33:05 2008
Copyright (c) 1982, 2007, Oracle. All rights reserved.
Connected to:
Oracle Database 11g Enterprise Edition Release 11.1.0.6.0 – Production
With the Partitioning, OLAP, Data Mining and Real Application Testing options
Unique Name Current Role Open Mode Protection Mode
--------------------------- ---------------- ---------- --------------------
Matrix_DR0 PHYSICAL STANDBY MOUNTED MAXIMUM PERFORMANCE

SQL> select name from v$datafile;
 NAME
--
+DATA/matrix_dr0/datafile/system.261.661890009
+DATA/matrix_dr0/datafile/sysaux.269.661890013
+DATA/matrix_dr0/datafile/undotbs1.266.661890103
+DATA/matrix_dr0/datafile/users.267.661890057
+DATA/matrix_dr0/datafile/example.268.661890027

SQL> select type, member from v$logfile
TYPE MEMBER
-------- ---
ONLINE +DATA/matrix/onlinelog/group_3.260.661354309
ONLINE +FLASH/matrix/onlinelog/group_3.296.661354317
ONLINE +DATA/matrix/onlinelog/group_2.258.661354293

92 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3

Chapter 2: Implementing Oracle Data Guard 93

ONLINE +FLASH/matrix/onlinelog/group_2.297.661354303
ONLINE +DATA/matrix/onlinelog/group_1.301.661354277
ONLINE +FLASH/matrix/onlinelog/group_1.298.661354285
STANDBY +FLASH/matrix_dr0/onlinelog/group_4.295.661357229
STANDBY +FLASH/matrix_dr0/onlinelog/group_5.294.661357269
STANDBY +FLASH/matrix_dr0/onlinelog/group_6.293.661357285
STANDBY +FLASH/matrix_dr0/onlinelog/group_6.293.908747594

10 rows selected.

The ORL files still have the name of the primary database in their path at this time. This will
be corrected when you start up the apply process. You will have to move the SPFILE into ASM
manually if required. But since we are using ASM, the data files were all put in the correct place
without the CONVERT parameters.

Of course, you notice that apart from the two parameters DB_UNIQUE_NAME and LOG_FILE_
NAME_CONVERT (needed to correct the SRL filenames), we set no other Data Guard parameters in
our script. This procedure is all you need to do if you are going to use the Data Guard Broker to
manage this configuration. If the Data Guard Broker is your choice, then you are done. You can go
directly to Chapter 5. The beauty of the Data Guard Broker is that when you create the configuration
and add the details about the standby database you just created (a name and a connect identifier),
the Broker will set up all the parameters and operations for you.

If you choose not to use the Data Guard Broker, you can finish the job right here by adding
the necessary parameters to the standby and the primary databases, starting Redo Apply, and
configuring the redo transport at the primary.

Manually add in the standby and primary role initialization parameters to the standby:

SQL> ALTER SYSTEM SET FAL_SERVER=Matrix;
SQL> ALTER SYSTEM SET FAL_CLIENT=Matrix_DR0;
SQL> ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(Matrix,Matrix_DR0)';
SQL> ALTER SYSTEM SET STANDBY_FILE_MANAGEMENT=AUTO;
SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_2='service=Matrix
 ASYNC DB_UNIQUE_NAME=Matrix
 VALID_FOR=(primary_role,online_logfile);

Then start the Apply process on the standby database:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE
 USING CURRENT LOGFILE DISCONNECT;

Return to the primary database and configure redo transport and switch logs and add the standby
role parameters:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(Matrix,Matrix_DR0)';
SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_2='service=Matrix_DR0
 ASYNC DB_UNIQUE_NAME=Matrix_DR0
 VALID_FOR=(primary_role,online_logfile)';
SQL> ALTER SYSTEM SWITCH LOGFILE;
SQL> ALTER SYSTEM SET FAL_SERVER=Matrix_DR0;
SQL> ALTER SYSTEM SET FAL_CLIENT=Matrix;
SQL> ALTER SYSTEM SET STANDBY_FILE_MANAGEMENT=AUTO;

Chapter 2: Implementing Oracle Data Guard 93

We titled this section “The Power User Method” because you are going to create a standby
database manually. The preceding RMAN script and subsequent parameter settings as well as the
starting of the apply and redo transport can all be done in one single RMAN script, which is an
expanded script of the preceding one:

RMAN> connect target sys/oracle@Matrix;
 connect auxiliary sys/oracle@Matrix_DR0;
run {
 allocate channel prmy1 type disk;
 allocate channel prmy2 type disk;
 allocate channel prmy3 type disk;
 allocate channel prmy4 type disk;
 allocate channel prmy5 type disk;
 allocate auxiliary channel stby1 type disk;
 duplicate target database for standby from active database
 spfile
 parameter_value_convert 'Matrix','Matrix_DR0'
 set 'db_unique_name'='Matrix_DR0'
 set control_files='+DATA/Matrix_DR0/control.ctl'
 set db_create_file_dest='+DATA'
 set db_create_online_log_dest_1='+FLASH'
 set db_create_online_log_dest_2='+DATA'
 set db_recovery_file_dest='+FLASH'
 set DB_RECOVERY_FILE_DEST_SIZE='10G'
 set log_archive_max_processes='5'
 set fal_client='Matrix_DR0'
 set fal_server='Matrix'
 set standby_file_management='AUTO'
 set log_archive_config='dg_config=(Matrix,Matrix_DR0)'
 set log_archive_dest_2='service=Matrix LGWR ASYNC
 valid_for=(ONLINE_LOGFILES,PRIMARY_ROLE)
 db_unique_name=Matrix';
 sql channel prmy1 "alter system set

log_archive_config=''dg_config=(Matrix,Matrix_DR0)''";
 sql channel prmy1 "alter system set
 log_archive_dest_2=''service=Matrix_DR0 LGWR ASYNC
 valid_for=(ONLINE_LOGFILES,PRIMARY_ROLE)
 db_unique_name=Matrix_DR0''";
 sql channel prmy1 "alter system set log_archive_max_processes=5";
 sql channel prmy1 "alter system set fal_client=Matrix";
 sql channel prmy1 "alter system set fal_server=Matrix_DR0";
 sql channel prmy1 "alter system set standby_file_management=AUTO";
 sql channel prmy1 "alter system archive log current";

 allocate auxiliary channel stby type disk;
 sql channel stby "alter database recover managed standby database
 using current logfile disconnect";
 nofilenamecheck;
}

94 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3

Chapter 2: Implementing Oracle Data Guard 95

Once this script has run, not only will you have a complete physical standby database created
and running, but all the parameters will be configured (on both the primary and the standby
databases in preparation for switchover), Redo Apply will be started on the standby, and Redo
Transport will be started on the primary database.

Using the RMAN Oracle Database 10g Method
In both Oracle Database 10g and 11g, the RMAN DUPLICATE FOR STANDBY command restores
the data files from backup sets and recovers the database (applying incremental and archived logs
backups) to the current system change number (SCN).

As mentioned, this procedure can be useful for setting up a Data Guard standby database or
reinstantiating the old primary database as a new standby database after a failover operation. But
it is also paramount for recovering a standby database after media failure or a disaster—stuff
happens to standby databases, too!

To get started, you need to meet all the prerequisites set out in the “Before You Start” section
as with the 11g procedure. But a lot more steps and manual work are required to make this work.

 1. Prepare the standby system.

 2. Get the necessary files and create the backups (database and control file).

 3. Copy the required files.

 4. Prepare the standby database.

 5. Restore the backup.

 6. Configure the standby database.

 7. Finalize the primary database.

Step 1: Prepare the Standby System Make sure you have performed the tasks outlined in the
“Before You Start” section. You must configure the network as per your tuning with the TNS names
for the primary database in the TNSNAMES file. In addition, create the various directories for the
dump parameters and, if you are not using ASM, the directories where the data files, control files,
online log files, and archive log files will be placed.

Step 2: Get the Necessary Files and Create the Backups You need to gather four main files
for transport to the target standby system to be able to create a standby database using this
method:

 The initialization parameters ■

 The password file ■

 A backup of the database ■

 The control file backup (as a standby control file) ■

In preparation for these files, create a staging directory in which you will place the required files
so that they can be transferred to the standby system:

mkdir /scratch/oracle/Stage

Chapter 2: Implementing Oracle Data Guard 95

While it is possible to restore the spfile from an RMAN backup, it is easier to obtain a text
version of the parameters from the primary database since you need to edit them by hand on the
standby system before you can create your physical standby database:

SQL> create pfile=/scratch/oracle/Stage/initMatrix_DR0.ora from spfile;

As opposed to the Oracle Database 11g method, you cannot just create a password file with
the same SYS password as the primary database, because RMAN in the 10g method will not copy
the password file from the primary system as part of the procedure. You need to copy the
password file from the primary system to your target standby system. Put a copy of the password
file from the primary database into your staging directory:

cp $ORACLE_HOME/dbs/orapwMatrix /scratch/oracle/Stage/orapwMatrix_DR0

Remember that it is no longer possible to use orapwd and create a password file for the
standby database with the same SYS password. You must copy the password file from the primary
system to each standby system on which you plan on creating a standby database.

Create a compressed backup file of the entire primary database and place it in the staging
directory. It is possible to create a full backup into the usual backup directory (the flash recovery
area, for example), and then make sure that you place it in the same location on the standby
system. However, since our flash recovery area is in ASM, it is easier to place the backup file
directly into our staging area:

rman target /
RMAN> BACKUP AS COMPRESSED BACKUPSET DEVICE TYPE DISK
 FORMAT '/scratch/oracle/Stage/Database%U' DATABASE PLUS ARCHIVELOG;

At this point, you can obtain a copy of the control file for the standby creation. Remember
that you cannot simply copy the current control file, because that will not work to instantiate
a Data Guard standby database. This copy of the current primary database control file will be in
a standby format and must be made after you have created the backup of the primary database.
This can be done with SQL*Plus or RMAN, but since we are already working in RMAN, we will
use the following command:

RMAN> BACKUP FORMAT '/scratch/oracle/Stage/Control%U'
 CURRENT CONTROLFILE FOR STANDBY;

Step 3: Copy the Required Files All of the necessary files are now in your staging directory on
the primary system.

[Matrix] ls –l
total 349912
-rw-r----- 1 matrix g900 10289152 Sep 7 04:25 Control27jpvcq8_1_1
-rw-r----- 1 matrix g900 97857024 Sep 6 22:56 Database23jpupeu_1_1
-rw-r----- 1 matrix g900 247267328 Sep 6 23:01 Database24jpuph9_1_1
-rw-r----- 1 matrix g900 1146880 Sep 6 23:02 Database25jpupqr_1_1
-rw-r----- 1 matrix g900 1366528 Sep 6 23:02 Database26jpuprg_1_1
-rw-r--r-- 1 matrix g900 2182 Sep 6 22:47 initMatrix_DR0.ora
-rw-r----- 1 matrix g900 1536 Sep 6 22:47 orapwMatrix_dr0

Copy these files to your standby system into the same directory using a network copy or some
kind of external transport mechanism—moving the files on tape, for example, or physically

96 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3

Chapter 2: Implementing Oracle Data Guard 97

moving the disks to the standby system. If you are going to be using tape to make the RMAN
backup, the only things you need to copy are the initialization parameter and password files.

Step 4: Prepare the Standby Database If your primary and standby sites are exactly the same,
you do not need to modify many of the parameters in the init.ora file from the primary database.
At a minimum, you need to change the DB_UNIQUE_NAME to the name of the standby, in our case
'Matrix_DR0'.

*.DB_UNIQUE_NAME='Matrix_DR0'

If your disk structure is different, you also need to add in the filename conversion parameters
so that the files go to the correct location on disk. Again, if you are using ASM, this is not necessary
for the creation of the standby but will be required for later data file additions to the primary
database. If you are not using the same disk structure, they would look something like this.

*.DB_FILE_NAME_CONVERT='/matrix/','/matrix_dr0/', '/MATRIX/','/MATRIX_DR0/'
*.DB_LOG_NAME_CONVERT='/matrix/','/matrix_dr0/' , '/MATRIX/','/MATRIX_DR0/'

Step 5: Restore the Backup Once the parameters are all set and the various directories have
been created, start the standby up in NOMOUNT mode, and using RMAN connect to the primary
database as the target (in RMAN terminology) and the standby instance as the auxiliary:

setenv ORACLE_SID Matrix_DR0
sqlplus '/ as sysdba'
SQL> STARTUP NOMOUNT;
rman target sys/oracle@Matrix auxiliary /
Recovery Manager: Release 10.2.0.3.0 - Production on Sun Jan 25 13:53:57 2009

Copyright (c) 1982, 2005, Oracle. All rights reserved.
connected to target database: Matrix (DBID=3892409046)
connected to auxiliary database: Matrix (not mounted)

RMAN> DUPLICATE TARGET DATABASE FOR STANDBY NOFILENAMECHECK DORECOVER;

If you encounter an error, RMAN-06024, when running this command, you have most likely
encountered a bug that was not fixed until release 10.2.0.4. You would see the following output:

RMAN-00571: ===
RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS ===============
RMAN-00571: ===
RMAN-03002: failure of Duplicate Db command at 01/25/2009 15:03:55
RMAN-03015: error occurred in stored script Memory Script
RMAN-06026: some targets not found - aborting restore
RMAN-06024: no backup or copy of the control file found to restore

The problem is that when RMAN sets the SCN to restore to, it sets it too low and the backup save
set with your standby control file in it cannot be used. Above the error, you would see the script
RMAN runs to restore the standby control file:

contents of Memory Script:
{
 set until scn 2463499;

Chapter 2: Implementing Oracle Data Guard 97

 restore clone standby controlfile;
 sql clone 'alter database mount standby database';
}

A LIST BACKUP; in RMAN would show you that your standby control file backup piece is at
an SCN higher than the number it is trying to use:

BS Key Type LV Size Device Type Elapsed Time Completion Time
------- ---- -- ---------- ----------- ------------ ---------------
11 Full 6.86M DISK 00:00:01 25-JAN-09
 BP Key: 11 Status: AVAILABLE Compressed: NO Tag:
TAG20090125T145951
 Piece Name: /scratch/oracle/Stage/Control0dk5mv77_1_1
 Standby Control File Included: Ckp SCN: 2463571 Ckp time: 25-JAN-09

The simple fix to this problem is to switch log files at the primary and restart the duplicate.
There is no need to disconnect your RMAN session from the primary and the standby instance
while the switch is performed.

Step 6: Configure the Standby Database Add the SRL files to the standby database for redo
transport:

SQL> ALTER DATABASE ADD STANDBY LOGFILE '+FLASH' SIZE 50M;
SQL> ALTER DATABASE ADD STANDBY LOGFILE '+FLASH' SIZE 50M;
SQL> ALTER DATABASE ADD STANDBY LOGFILE '+FLASH' SIZE 50M;
SQL> ALTER DATABASE ADD STANDBY LOGFILE '+FLASH' SIZE 50M;

The Temp file has been added for you by RMAN. You can now finish defining the Data Guard
parameters that will be necessary in the standby role as well as the primary role when a switchover
(or failover) occurs:

SQL> ALTER SYSTEM SET FAL_SERVER=Matrix;
SQL> ALTER SYSTEM SET FAL_CLIENT=Matrix_DR0;
SQL> ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(Matrix,Matrix_DR0)';
SQL> ALTER SYSTEM SET STANDBY_FILE_MANAGEMENT=AUTO;
SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_2='service=Matrix
 ASYNC DB_UNIQUE_NAME=Matrix
 VALID_FOR=(primary_role,online_logfile);

And start the Apply process on the standby database:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE
 USING CURRENT LOGFILE DISCONNECT;

This will create and clear the ORL files so that they exist when the standby becomes a primary.

Step 7: Finalize the Primary Database Add the SRL files so that they are in place for a future
role transition:

SQL> ALTER DATABASE ADD STANDBY LOGFILE '+FLASH' SIZE 50M;
SQL> ALTER DATABASE ADD STANDBY LOGFILE '+FLASH' SIZE 50M;
SQL> ALTER DATABASE ADD STANDBY LOGFILE '+FLASH' SIZE 50M;
SQL> ALTER DATABASE ADD STANDBY LOGFILE '+FLASH' SIZE 50M;

98 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3

Chapter 2: Implementing Oracle Data Guard 99

Set the Data Guard parameters on the primary database that will be used to send redo to the
standby. Also set those parameters that will be used when the primary becomes a standby
database after a role transition:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(Matrix,Matrix_DR0)';
SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_2='service=Matrix_DR0
 ASYNC DB_UNIQUE_NAME=Matrix_DR0
 VALID_FOR=(primary_role,online_logfile)';
SQL> ALTER SYSTEM SET FAL_SERVER=Matrix_DR0;
SQL> ALTER SYSTEM SET FAL_CLIENT=Matrix;
SQL> ALTER SYSTEM SET STANDBY_FILE_MANAGEMENT=AUTO;

To start sending redo, switch log files on the primary:

SQL> ALTER SYSTEM SWITCH LOGFILE;

You now have a fully functioning physical standby database. For more details on this
procedure, you can refer to the Oracle paper “Using Recovery Manager with Oracle Data Guard
in Oracle Database 10g.”14 This procedure is similar to the procedure that Grid Control uses to
create standby databases that are in Oracle Database 10g Release 2 or earlier. The FROM
ACTIVE DATABASE method is used for databases that are in Oracle Database 11g.

Creating a Logical Standby
Over the years since logical standby databases were introduced in Oracle9i, the procedure used
to create a logical standby has gotten better, easier, and less intrusive on your primary database.
In Oracle9i you pretty much had to suffer downtime of the primary to take a cold backup and
build the LogMiner dictionary to be sure that SQL Apply would work when you started the logical
standby database. At one point, someone (none of us) wrote a procedure using a hot backup to
create a logical standby database in Oracle9i, but it was fraught with potential failures and did
not always work. We were party, however, to the authoring of a procedure that used a physical
standby database in a very special manner to create a logical standby database in Oracle9i,
which resulted in minimal downtime of the primary database.15 Those procedures became
obsolete and should never be used once you are using Oracle Database 10g Release 1 and later.

In Oracle Database 10g Release 1, you could take a hot backup of your primary database to
create a logical standby database since the concept of a logical standby control file was introduced.
That procedure still stands, but only for 10.1 databases and in a special rolling upgrades case in
10.2 and should otherwise never be used with 10g Release 2 and later.

Starting with Oracle Database 10g Release 2, the procedure became even easier, and next we
are going to describe the procedure you should always follow. The old methods (with the one
exception in 10.2) are obsolete.

Make Sure You Can Support a Logical Standby
Unlike a physical standby database, a logical standby database is not an exact copy of your primary
database. A lookup by ROWID on the logical standby will not return the same data returned by the
primary database. In addition, several data types and storage types are supported by a logical standby.

14 See www.oracle.com/technology/deploy/availability/pdf/RMAN_DataGuard_10g_wp.pdf.
15 Note 278371.1 “Creating a Logical Standby with Minimal Production Downtime”

www.oracle.com/technology/deploy/availability/pdf/RMAN_DataGuard_10g_wp.pdf.

Chapter 2: Implementing Oracle Data Guard 99

It is important that you identify any unsupported objects, as it means the affected table will not be
maintained on the logical standby database and no error message will be written to the alert log or
anywhere else.

You can run two commands on your primary database that will help you identify the parts of
your database that will not be maintained by SQL Apply. The first will show you what schemas in
the database are ignored by default by SQL:

SELECT OWNER FROM DBA_LOGSTDBY_SKIP WHERE STATEMENT_OPT = 'INTERNAL SCHEMA';

Any redo for the schemas listed by this command will be skipped. As such, anything that you
might put into one of these schemas will also be skipped.

The second command will tell you which tables in the primary database that are also in
supported schemas will be skipped automatically by SQL Apply:

SQL> SELECT DISTINCT OWNER,TABLE_NAME FROM DBA_LOGSTDBY_UNSUPPORTED
 ORDER BY OWNER,TABLE_NAME;
OWNER TABLE_NAME
------------------------------ ------------------------------
OE CATEGORIES_TAB
OE CUSTOMERS
OE PURCHASEORDER
OE WAREHOUSES
PM ONLINE_MEDIA
PM PRINT_MEDIA
SH DIMENSION_EXCEPTIONS
 8 rows selected.

The database used for this query was a normal seed database with the demo schemas loaded.
To look further into why a particular table is not supported, you can drill down into the view and
look at the unsupported columns of a table:

SQL> SELECT COLUMN_NAME,DATA_TYPE FROM DBA_LOGSTDBY_UNSUPPORTED
 WHERE OWNER='OE' AND TABLE_NAME = 'CUSTOMERS';
COLUMN_NAME DATA_TYPE
------------------------------ --------------------------------
CUST_ADDRESS OBJECT
PHONE_NUMBERS VARRAY
CUST_GEO_LOCATION OBJECT

Since OBJECT and VARRAY are data types that SQL Apply does not support, all redo for this
table (and all the others in the first query) will be skipped immediately. Do not confuse apply with
transport. The redo for these tables is still going to be sent by Data Guard to the logical standby,
as all redo is. But SQL Apply will ignore the redo for those skipped tables as it finds it in the
redo stream.

One thing to remember is that all of the tables displayed by the first query will exist in the
logical standby because it started its life as a physical standby where everything was supported.
You cannot rely on a simple test that looks for the existence of any data in those tables on the
logical standby, as they will return data, just not any new data. You need to run these queries and
look at each object to make sure you can live without it as well as understand what else will be
discarded based on SQL Apply not supporting the feature, such as OLTP Compression in the
Advanced Compression option.

100 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3

Chapter 2: Implementing Oracle Data Guard 101

Rather than repeat all the unsupported objects here, we suggest that you refer to the Data
Concepts and Administration manual, Appendix C,16 to determine whether your primary database
can sufficiently support a logical standby database. If you are using a version of Oracle prior to
11g, please refer to the manual for that release, as each version has a different set of what is
supported and what is not. If you are using Oracle Database 10g Release 2, also refer to the MAA
“SQL Apply Best Practices” white paper.17

Once you have passed the “supported or not” test, you also need to make sure that those
objects that will be maintained by SQL Apply are uniquely identified. If they are not, you risk
falling dramatically behind the primary database. The following command will give you a list of
all tables that have a uniqueness problem:

SQL> SELECT OWNER, TABLE_NAME FROM DBA_LOGSTDBY_NOT_UNIQUE;
OWNER TABLE_NAME
------------------------------ ------------------------------
SCOTT BONUS
SCOTT SALGRADE
SH SALES
SH COSTS
SH SUPPLEMENTARY_DEMOGRAPHICS

On a side note, the manual says you should cross-check this list with the unsupported list by
adding a NOT IN to the above query, but this no longer seems to be necessary.

SQL> SELECT OWNER, TABLE_NAME FROM DBA_LOGSTDBY_NOT_UNIQUE
 WHERE (OWNER, TABLE_NAME) NOT IN
 (SELECT DISTINCT OWNER, TABLE_NAME FROM DBA_LOGSTDBY_UNSUPPORTED);
OWNER TABLE_NAME
------------------------------ ------------------------------
SCOTT BONUS
SCOTT SALGRADE
SH SALES
SH COSTS
SH SUPPLEMENTARY_DEMOGRAPHICS

However, just because a table shows up in the view doesn’t mean that it really is bad, just that
you will get a lot of extra redo being written to the ORLs and hence sent to the standby databases
(all of them, physical or logical—remember that redo transport has nothing to do with the Apply
services). The view also has a column called, surprisingly enough, BAD_COLUMN, that if equal to
Y, means you have a column that cannot be logged to the redo stream for uniqueness use, so then
you could end up updating the wrong row at the logical standby database. You must fix these
tables by adding some uniqueness or a disabled rely constraint:

SQL> SELECT OWNER, TABLE_NAME FROM DBA_LOGSTDBY_NOT_UNIQUE
 WHERE (OWNER, TABLE_NAME) NOT IN
 SELECT DISTINCT OWNER, TABLE_NAME FROM DBA_LOGSTDBY_UNSUPPORTED)
 AND BAD_COLUMN = 'Y';
no rows selected

16 See http://download.oracle.com/docs/cd/B28359_01/server.111/b28294/data_support.htm#CHDGFADJ.
17 See www.oracle.com/technology/deploy/availability/pdf/MAA_WP_10gR2_SQLApplyBestPractices.pdf.

http://download.oracle.com/docs/cd/B28359_01/server.111/b28294/data_support.htm#CHDGFADJ
www.oracle.com/technology/deploy/availability/pdf/MAA_WP_10gR2_SQLApplyBestPractices.pdf.

Chapter 2: Implementing Oracle Data Guard 101

We don’t have any entries where the BAD_COLUMN is equal to Y, so we’re OK, right? Well, not
really. If you have any tables in the “not unique” view, even without the BAD_COLUMN of Y, you
still need to fix the uniqueness on those as well; otherwise, you are going to be writing out
a large unnecessary amount of redo. For example, take the Sales History SUPPLEMENTARY_
DEMOGRAPHICS table:

SQL> DESC SH.SUPPLEMENTARY_DEMOGRAPHICS
 Name Null? Type
 --- -------- -------------
 CUST_ID NOT NULL NUMBER
 EDUCATION VARCHAR2(21)
 OCCUPATION VARCHAR2(21)
 HOUSEHOLD_SIZE VARCHAR2(21)
 YRS_RESIDENCE NUMBER
 AFFINITY_CARD NUMBER(10)
 BULK_PACK_DISKETTES NUMBER(10)
 FLAT_PANEL_MONITOR NUMBER(10)
 HOME_THEATER_PACKAGE NUMBER(10)
 BOOKKEEPING_APPLICATION NUMBER(10)
 PRINTER_SUPPLIES NUMBER(10)
 Y_BOX_GAMES NUMBER(10)
 OS_DOC_SET_KANJI NUMBER(10)
 COMMENTS VARCHAR2(4000)

All of these columns are going to be written out to the redo stream whether they changed or not,
just so SQL Apply can find the right row on the logical standby. We quote from the Oracle Utilities
manual, Chapter 18, under “Supplemental Logging”:18

If the table has neither a primary key nor a non-null unique index key, then all columns
except LONG and LOB are supplementally logged; this is equivalent to specifying ALL
supplemental logging for that row. Therefore, Oracle recommends that when you use
database-level primary key supplemental logging, all or most tables be defined to have
primary or unique index keys.

By the way, this applies to any table that has this uniqueness problem, even those that SQL
Apply says are unsupported. You will be generating redo for them as well, shipping it to the
standby databases and having it thrown away.

Finally, when you have these uniqueness issues and you resolve them with a disabled RELY
constraint, you still need to go to the logical standby and add an index for the tables that are
supported by SQL Apply; otherwise, you are going to be doing a lot of full table scans and SQL
Apply performance is not going to be very good.

This, too, is documented in the Data Guard Concepts and Administration manual in Chapter 4
for the version you are running.

Start with a Physical Standby
Using one of the methods described in the preceding section of this chapter, create a physical
standby database. If you are using the Broker, do not add this new physical standby database to

18 See http://download.oracle.com/docs/cd/B28359_01/server.111/b28319/logminer.htm#i1021068.

http://download.oracle.com/docs/cd/B28359_01/server.111/b28319/logminer.htm#i1021068

102 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3

Chapter 2: Implementing Oracle Data Guard 103

your Broker configuration. If you are using an existing physical standby that is Broker controlled,
you must disable the target database from the Broker before continuing. Once the new (or existing)
physical standby is synchronized with the primary database, shut down the MRP using the
CANCEL qualifier:

SQL> ALTER DATABASE RECOVERY MANAGED STANDBY DATABASE CANCEL;

You must shut down the MRP at this point because the next thing the physical standby will
see from a Data Guard point of view is the redo you are going to generate when you build the
LogMiner dictionary. If the MRP applied the redo from the dictionary build, you would be past the
point at which you wanted the physical standby to become a logical standby.

At this point, if you are also following the instructions outlined in Chapter 4 of the Data
Guard Concepts and Administration manual, you are told to modify your local archiving
parameters on the primary database to point the archiving of the ORL files to one directory and
the archiving of the SRL files to another directory if the primary might ever become a logical
standby database due to a role transition. Later on in the process, you are told to do the same
thing on the logical standby.

The reason behind this splitting of the archive logs (those generated by the logical standby and
those coming in from the primary database) is due to the fact that in previous versions (Oracle
Database 10g Releases 1 and 2), a logical standby’s incoming archive log files (those being sent
by the primary database) could not be placed in the flash recovery area. This was because the
flash recovery area did not know what they were and considered them “foreign” files, so it did
nothing with them.

If you are not using a flash recovery area, then you do need to make the changes as described
in Sections 4.2.3.1 and 4.2.4.2 of the Data Guard manual.19 Since we are using a flash recovery
area, we need make no archiving parameter changes here since SQL Apply and the flash recovery
area now cooperate fully with each other and the various log files are maintained by the flash
recovery area as normal.

The stage is now set for the dictionary build that has always been necessary to create a logical
standby database. In the past, the build was created as a standby alone command (Oracle9i), as
part of the logical standby control file build (Oracle10g Release 1), and then back as a command
(without the need for a logical standby control file) in 10g Release 2. Go to the primary database
and execute the BUILD command:

SQL> EXECUTE DBMS_LOGSTDBY.BUILD;

This package basically performs these functions:

 1. Enables supplemental logging on the primary database. This is the same result as executing
the following SQL command yourself:

SQL> ALTER DATABASE ADD SUPPLEMENTAL LOG DATA
 (PRIMARY KEY, UNIQUE INDEX) COLUMNS;

 2. Builds the LogMiner dictionary of the primary database metadata so that the logical standby
will know what to do with the redo that is being sent from the primary.

19 See http://download.oracle.com/docs/cd/B28359_01/server.111/b28294/create_ls.htm#i93974.

http://download.oracle.com/docs/cd/B28359_01/server.111/b28294/create_ls.htm#i93974

Chapter 2: Implementing Oracle Data Guard 103

 3. Figures out how far in the redo the MRP will have to process the redo to apply all
transactions that occurred before the build.

 4. Identifies at what SCN in the redo SQL Apply has to start mining redo to get all the
transactions that committed after the MRP finished apply redo to the physical standby
database.

The build process has to wait for all existing update transactions to complete to determine the
recovery SCN for the MRP. These transactions will be those that the MRP has to complete on the
physical standby before it can become a logical standby. Any transactions that start during the
build process are the transactions that SQL Apply has to process and apply after the conversion to
logical standby is complete.

One thing to be careful about with this process: The supplemental logging will be enabled on
the primary database and only on the target physical standby after it becomes a logical standby.
That way, if you switchover between the primary and the logical standby, the new primary will
generate the required supplemental logging. However, if you have other physical standby
databases that are your disaster recovery failover targets and the logical standby is going to be
used primarily as a reporting database, then you must go to each one of the other physical
standbys and execute the ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY,
UNIQUE INDEX) COLUMNS; command to enable supplemental logging on each physical standby
database. Other than the control file being updated, nothing will actually happen until the
physical standby database becomes the primary, at which point it would start generating redo
with the supplemental logging and the logical standby will quite happily follow along. If,
however, you forget to do this and you switchover (or failover) to one of your physical standby
databases, it would start generating redo without the supplemental logging and your logical
standby would be rendered useless. If you forget, you will have to follow the steps in this section
to re-create your logical standby database.

Unfortunately, you do have to shut down all auxiliary instances and disable the cluster on the
target standby if your physical standby is a Real Application Clusters (RAC). Shut down all but the
instance on which the MRP was running—your actual target instance. Once they are all done,
then disable the cluster and bounce the standby.

SQL> ALTER SYSTEM SET CLUSTER_DATABASE=FALSE SCOPE=SPFILE;
SQL> SHUTDOWN IMMEDIATE;
SQL> STARTUP MOUNT EXCLUSIVE;

When you get close to Chapter 8, you will be quite happy to discover that during a switchover,
this RAC instance shutdown is no longer necessary for a logical standby. But that’s another chapter.
Let’s continue, shall we?

Supplemental Logging
If you create a logical standby you must manually enable supplemental logging on all
physical standby databases other than the one that is to become the logical standby database
using the ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY, UNIQUE
INDEX) COLUMNS; SQL command.

104 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al / 162111-3

Chapter 2: Implementing Oracle Data Guard 105

Let’s recap what we’ve done so far. We have

 1. Created a physical standby database

 2. Let it get synchronized with the primary

 3. Stopped the MRP

 4. Built the LogMiner dictionary

 5. Made the standby a single instance temporarily if it was a RAC

If you haven’t done all this, then check to see what you might have missed. The order is very
important.

You are now ready to tell the MRP that it needs to continue applying redo, but only to the
recovery point SCN that was placed in the redo stream by the dictionary build. You would use a
special format of the MRP command:

SQL> ALTER DATABASE RECOVER TO LOGICAL STANDBY MatrixD1;

If you make a mistake at this point and enter the normal managed recovery command, the
MRP will process all the redo it has been receiving, including the dictionary build. If this happens,
you need to start over at the “get synchronized” part and rebuild the dictionary.

On the other hand, if you entered this command but forgot to build the dictionary or the
dictionary build was not successful for some reason, this command will hang. You can, of course,
cancel it by entering the CANCEL command in another window, figure out what went wrong, and
try the build again.

You will notice that the ALTER DATABASE RECOVER TO LOGICAL STANDBY MatrixD1;
command is looking for a database name. If you followed our best practices outlined in this chapter
when you created the physical standby, it will already be set up to run under a new SID and
DB_UNIQUE_NAME—in our case, we used Matrix_DR0 for clarity. Unfortunately, the DB_NAME
parameter is still limited to eight characters (as our primary database is with Matrix). Since everything
else is done with the instance name (SID) and a physical standby has the same DB_NAME as the
primary, this was not a problem. But now you have to change the actual database name of the
standby so it can become a logical standby database. You cannot use 'Matrix_DR1' as that will
exceed the limit. So we leave everything else as is and use 'MatrixD1' as our new name. Data
Guard will change the database name (DB_NAME) and set a new database identifier (DBID) for the
logical standby. Since we are using an SPFILE, the DB_NAME parameter will be changed automatically
for us. If we were using a PFILE, then we must edit the file manually before restarting the logical
standby database to continue the process.

The Password File
In 11g you do not re-create the password file when converting your physical standby to a
logical standby. If you do, it will not work. If you are in 10g, you must continue to re-create the
password file after the RECOVER TO LOGICAL command and before restarting the database.

Chapter 2: Implementing Oracle Data Guard 105

At this point, you can re-enable the cluster database parameter, if you had a RAC, and then
restart and open the new logical standby database:

SQL> SHUTDOWN;
SQL> STARTUP MOUNT;
SQL> ALTER DATABASE OPEN RESETLOGS;

Before you proceed to the next step and actually start SQL Apply, you need to answer one
question: Are you building this logical standby on the same system as the primary database or
on a system with a physical standby database that has the exact same on-disk structure as the
primary? If you are building this logical standby on the same system as the primary database, then
you have to tell SQL Apply to skip any ALTER TABLESPACE DDL; otherwise, SQL Apply could
find the primary or physical standby database’s data files and potentially do some damage when
processing any ALTER TABLESPACE DDL. You do this by executing the following package on
your logical standby database:

SQL> EXECUTE DBMS_LOGSTDBY.SKIP('ALTER TABLESPACE');

This will put information into the logical standby metadata that will tell SQL Apply to ignore any
of these DDL commands it finds in the redo stream. We will discuss this package and more in
Chapter 4.

Everything is ready now. The physical standby has been through its changes and is now ready
to serve in its new capacity as your logical standby. All that remains to do is start SQL Apply. Since
we followed the correct procedure when we created our physical standby, several SRL files have
already been created, so we can start SQL Apply in real-time apply mode using the IMMEDIATE
keyword:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;

SQL Apply will now start up the various processes as outlined in Chapter 1 and start to mine
the redo that was sent during our creation process. New redo from the primary will start coming
in as soon as the primary database switches the online log since redo transport was already set up
for our physical standby. Do not expect to see new data from your primary database appear in the
logical standby tables right away, as SQL Apply must first parse the redo from the primary, find the
dictionary, and build the LogMiner dictionary into the logical standby. After that, the rest of the
redo can be applied until the logical standby is caught up with the primary. Many more details on
logical standby databases and SQL Apply will be discussed in Chapter 4.

Data Guard and Oracle Real Application Clusters
How does all of the material in this chapter differ when RAC is involved? To be honest, not as
much as many people think. Let’s review what is involved in setting up and maintaining a Data
Guard standby. As we said at the beginning of the creation section, you need a database, which
means the following:

 Listener ■

 TNS names to find the standby and the primary ■

 Initialization parameters ■

106 Oracle Data Guard 11g Handbook

 Password file (plus service if you are on Windows) ■

 Control file ■

 Data, undo, and temporary files ■

 Redo logs (online and standby) ■

Considering that you are setting up your primary, Matrix, to have a standby Matrix_DR0 on
a remote system following the steps in this chapter, what do you do and what is different?

You configure the listeners at the primary and standby systems. With RAC, you add listeners at
the appropriate systems—we’re talking about what Data Guard connects to; though you may have
other listeners that the clients use and that perform intelligent load balancing, they do not matter
to us at this point.

You define TNS names to point from Matrix to Matrix_DR0, and from Matrix_DR0 to Matrix on
the two systems. You now have multiple systems, and you add each system address to each of the
TNS names, or you use the virtual IP (VIP) so that each TNS name can find all of the target’s RAC
systems when one node fails. You make sure all nodes in the cluster have the TNS entries. This is
no different from the process you underwent when you set up your client TNS names to the RAC.

Initialization parameters, as far as Data Guard’s parameters are concerned, have to be the
same on each RAC node—that is, *.whatever. Password files are copied to more than one
standby system—nothing different there.

The database is backed up once from the primary, and the backup gets restored once in RAC
and non-RAC cases (ASM or no ASM), so you do not have more than one “database.” You had to
adjust the ORL files to accommodate the extra redo threads, and you do the same for the SRL files.

As far as creation is concerned, that’s it. Setting up the standby RAC itself is the most complex
part. And even that is made easier in Grid Control 10.2.0.5 with standby databases that are in
11.1.0.7. The Convert to Cluster Database Wizard will now convert a physical standby database
from single instance to RAC so you don’t even have to perform those manual steps.

Switchover and failover, the Broker, and especially client failover have some features that
change the way you work when you introduce RAC into the picture, but even those differences
are few and will be discussed in the appropriate chapters.

Conclusion
It has been a long journey, but we hope it has been worth it. We realize that this chapter has offered
a lot of material, but it is important for you to understand what you must do to prepare for Data
Guard and to understand the workings and parameters before you begin creating standby databases.
More than 70 percent of the trouble people have with Data Guard is due to misunderstanding and
incorrect configuration in the standby creation process. If you get this part right, the rest will follow
along smoothly and you will get to sleep at night.

3
Redo Processing

107

108 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 3: Redo Processing 109

he backbone of any physical standby database is essentially its ability to recover
from crashes and other mishaps. Before we go too deep into Data Guard
physical standby and its architecture, you need to understand how redo is
generated and how Oracle’s recovery methodology is leveraged in physical
standby databases.

This chapter discusses redo recovery essentials, and at the end of the chapter, we will piece it
all together by describing the life of a transaction. This chapter also covers best practices and tools
to improve managed recovery rates as well as briefly review the 11g corruption detection failures.

Important Concepts of Oracle Recovery
Recovery deals mainly with redo, data that recovery can use to reconstruct all changes made to the
database. Even “undo” records are protected by redo data. The following describes the important
concepts and components of Oracle recovery:

 Redo change vectors ■ A change vector describing a single change to a single data block.

 Redo record ■ A collection or group of change vectors that describe an atomic change.
The term atomic means that this group of changed blocks is either all successful or all
unsuccessful during recovery.

 System change number (SCN) ■ One of the most important pieces of recovery, because it
describes a point in time of the database. When a transaction starts, its reference point for
database data consistency is relative to the SCN of when it started. The SCN is bumped up
every time a transaction is committed. From a recovery standpoint, the SCN defines where
recovery will start and when recovery may end. The SCN is used in various layers within
Oracle code—for example, data concurrency, redo ordering, database consistency, and
database recovery. The SCN is stored in the redo log as well as the controlfile and datafile
headers.

 Checkpoint ■ A point in time when all items are of a consistent state. The most important
concept of checkpoints is that all recovery is bounded by the database checkpoint—that is,
roll-forward recovery is bounded by the checkpoint. An Oracle database includes several
types of checkpoints, most notably a thread checkpoint (local checkpoint), a database
checkpoint (global checkpoint), and a datafile checkpoint.

 Online redo log (ORL) ■ Also known simply as redo logs, ORL files contain persistently
stored changed redo records. The redo records in the log files are stored in SCN sequential
order—that is, the order in which redo was written. When online redo logs are full, they
become archived to the archive redo logs.

 Archived redo log ■ Archived versions of online redo logs. These files, deemed inactive
files, are archived by the archive processes to one or more defined log archive destinations.

ACID Properties
Oracle’s transactions are protected by the ACID properties, which state that when a transaction is
started, it must follow these basic rules:

 Atomicity ■ The entire sequence of actions must be either completed or aborted. The
transaction cannot be partially successful. This is also referred to as the all-or-nothing rule.

T

Chapter 3: Redo Processing 109

 Consistency ■ The transaction moves the system from one consistent state to another.

 Isolation ■ A transaction’s effects or changes are not visible to other transactions until
the transaction is committed.

 Durability ■ Changes made by the committed transaction are permanent and must survive
system failure.

Notice that the ACID model includes nothing specifically about Oracle; that’s because the
ACID model is an essential component of database theory and is not Oracle-specific. So why is the
ACID model so important for recovery? ACID provides the guarantee of reliability and consistency,
and it is an absolute necessity for any database management system.

Oracle Recovery
Because Oracle’s recovery mechanics are driven by the ACID model, its main purpose is to
provide data integrity and consistency across failures. The three main failures types are transaction,
instance, and media failures. In this section, we focus on instance and media recovery.

Instance Recovery
Instance recovery occurs when the database instance fails—in other words, the contents of the
System Global Area (SGA), or more specifically the buffer cache, are lost. Recovery from instance
failure is driven from the ORL files where the changes have been made persistent (the durability
part of ACID). Crash recovery is simply another case of instance recovery and occurs when a
single-node database has crashed and restarts or when all instances of a RAC database fail. The
first instance to start up will initiate (crash) recovery. Nevertheless, the mechanics of instance and
crash recovery are the same.

The following output from the database alert.log illustrates the recovery progression after the
database has been opened from a previous crash:

ALTER DATABASE OPEN
Beginning crash recovery of 1 threads
Started redo scan
Completed redo scan
 94354 redo blocks read, 2982 data blocks need recovery
Started redo application at
 Thread 1: logseq 62, block 427
Recovery of Online Redo Log: Thread 1 Group 2 Seq 62 Reading mem 0
 Mem# 0: +DATA/Matrix/redo_02a.log
 Mem# 1: +DATA/Matrix/redo_02b.log
Completed redo application
Completed crash recovery at
 Thread 1: logseq 62, block 94781, scn 678972
 2982 data blocks read, 2982 data blocks written, 94354 redo blocks read
Mon Jul 07 21:44:34 2008

Notice that after the database is opened, crash recovery starts by scanning the redo threads of
the failed instance (or instances), which is then read and merged by SCN, beginning at the log
sequence of the last incremental checkpoint for each thread. This scan generates a list of blocks
that require recovery. Recovery then starts at this point, applying recovery redo to these blocks. At
the completion of the recovery, a summary of the redo blocks read as well as data blocks read are
written to the alert log.

110 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 3: Redo Processing 111

Media Recovery
Media recovery occurs when there is a loss of one or more database datafiles or the entire
database. Once the necessary database datafiles are restored, the database needs to be recovered
either to a specific point in time or up to the point just before the failure. It is important to note
that recovery brings the entire database (all online datafiles) to the same consistent point in time,
or SCN. Media recovery is driven from the archived redo logs. Since the physical standby
architecture is built upon media recovery, it is emphasized here.

The following excerpt from the database alert.log displays media recovery for standby
databases:

Completed: ALTER DATABASE RECOVER MANAGED STANDBY DATABASE
 THROUGH ALL SWITCHOVER DISCONNECT USING CURRENT LOGFILE
Wed Jul 23 08:43:54 2008
Media Recovery Waiting for thread 1 sequence 35
Wed Jul 23 08:44:01 2008
Redo Shipping Client Connected as PUBLIC
-- Connected User is Valid
RFS[10]: Assigned to RFS process 20724
RFS[10]: Identified database type as 'physical standby'
Primary database is in MAXIMUM PERFORMANCE mode
Primary database is in MAXIMUM PERFORMANCE mode
RFS[10]: Successfully opened standby log 5:
'+FLASH/Matrix_DR0/onlinelog/group_5.257.660730583'
Wed Jul 23 08:44:04 2008
Recovery of Online Redo Log: Thread 1 Group 5 Seq 35 Reading mem 0
 Mem# 0: +FLASH/Matrix_DR0/onlinelog/group_5.257.660730583
Wed Jul 23 08:44:39 2008
Redo Shipping Client Connected as PUBLIC
-- Connected User is Valid
RFS[11]: Assigned to RFS process 20805
RFS[11]: Identified database type as 'physical standby'
Wed Jul 23 19:12:54 2008
Media Recovery Waiting for thread 1 sequence 36
Wed Jul 23 19:12:55 2008
Primary database is in MAXIMUM PERFORMANCE mode
kcrrvslf: active RFS archival for log 5 thread 1 sequence 35
RFS[10]: Successfully opened standby log 4:
'+FLASH/Matrix_DR0/onlinelog/group_5.257.660730583'
Wed Jul 23 19:14:05 2008
Recovery of Online Redo Log: Thread 1 Group 4 Seq 36 Reading mem 0
 Mem# 0: +FLASH/Matrix_DR0/onlinelog/group_4.256.660730567

Thread Merging
Thread merging of the redo records is performed to ensure that no update is made to the
database out of order, so that all changes are made in the order they were originally made.
Thread merging is discussed in detail in Chapter 8.

Chapter 3: Redo Processing 111

Life of a Transaction
This section will illustrate a walkthrough of “life of a transaction” as it generates its changes and
produces redo, and the log writer process (LGWR) flushes the redo to disk. We will revisit this
transaction life cycle later in the chapter in the section “The Components of a Physical Standby.”

1. When a session is about to make changes to data blocks via Data Manipulation Language
(DML) operations, such as insert, update, and delete, it must first acquire all the buffer
cache locks (exclusive locks).

2. Once the buffer cache locks are obtained, the redo that describes the changes (change
vectors) are generated and stored in the processes’ Program Global Area (PGA).

3. The redo copy latch is obtained, and, while holding the redo copy latch, the redo allocation
latch is also obtained. After successfully acquiring the redo allocation latch, space is then
allocated in the redo log buffer. Once space is allocated, the redo allocation latch is
released. Since this latch has high contention, it must be released as soon as possible.

4. When the logistics of redo space management have been resolved, the redo generated
can be copied from the processes’ PGA into the redo log buffer. On completion of the
copy, the redo copy latch is released.

5. The session foreground can now safely tell the LGWR to flush the redo log buffers to disk.
Note that the database blocks have not yet been updated with DML changes. At this time,
buffer cache buffers are updated.

6. The LGWR flushes the redo buffers to the ORL and acknowledges the completion to the
session. At this point, the transaction is persistent on disk. Notice that no commit has
occurred thus far.

7. At some future time, the database buffers that were previously changed will be written to
disk by the database writer process (DBWR) at checkpoint time.

Note that before the DBWR process has flushed the database buffers to disks, the LGWR
process must have already written the redo buffers to disk. This explicit sequence is enforced by
the write-ahead logging protocol, which states that no changes appear in the datafiles that are not
already in the redo log. The write-ahead logging protocol provides the ability to guarantee that
the transaction can be undone in the event of a transaction failure before it commits, thus
preserving transaction atomicity.

As a final point to the life cycle of a transaction, the transaction must be committed. The
committing of a transaction allocates an SCN and undergoes the same transaction life cycle steps
illustrated earlier. The COMMIT is an important element of the transaction because it marks the
end of the transaction and thus guarantees that the redo previously generated is propagated to
disk. This is also referred to as log-force at commit.

Nologging Operations
The only exception to the write-ahead policy is when direct path writes are employed—for
example, direct path load (sqlload) or CREATE TABLE AS SELECT… insert operations. These
transactions do not originate in the buffer cache and thus explicitly use the write-behind logging
protocol. Nevertheless, redo is generated for direct path write operations and is therefore fully
recoverable. Direct path loads occur above the high water mark of the table, so the data is not

112 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 3: Redo Processing 113

visible until the redo that moves the high water mark is committed. Thus, the redo describing the
load is not written before the blocks.

Most direct path write operations are used in conjunction with the UNRECOVERABLE option.
Nologging, or UNRECOVERABLE, operations can be specified for several DML operations, such as
the following:

CREATE TABLE AS SELECT
CREATE INDEX
ALTER INDEX
ALTER TABLE ..[MOVE] [SPLIT] PARTITION
SQLLOAD

When the UNRECOVERABLE option is specified, no redo is generated for this batch transaction;
however, redo is still generated for the database dictionary tables, and a small amount of redo is
generated to define an invalidation range (with a starting block address and SCN), reflecting the
range of blocks are being changed.

Although the UNRECOVERABLE option is very beneficial when loading large amounts of data
efficiently, it has a huge downside when used in Data Guard environments. When media
recovery encounters the data blocks within this invalidation range, which occurs when the
UNRECOVERABLE operation is used, they are marked as soft-corrupt, since they are missing the
necessary redo. The physical standby database will then throw the following error:

ORA-01578: ORACLE data block corrupted (file # 10, block # 514)
ORA-01110: data file 3: '+data/Matrix_DR0/datafile/users.278.56783987'
ORA-26040: Data block was loaded using the NOLOGGING option

This same error would occur on the primary database if you had to perform media recovery.
For this reason, it is mandatory that you back up the tablespace datafiles on the primary that were
loaded in UNRECOVERABLE mode immediately after the nologging operation is completed. On
the standby, if you see this error, you must manually recover from it using one of the methods we
will describe in a moment.

You can employ several measures to detect an inadvertent use of nologging operations on
your standby database:

 Proactively query for nologging operations on the primary: ■

SQL> SELECT NAME, UNRECOVERABLE_CHANGE#,
 TO_CHAR(UNRECOVERABLE_TIME,'DD-MON-YYYY HH:MI:SS')
 FROM V$DATAFILE;

 Proactively run ■ DBVERIFY to check for nologging operations on the standby:

$ dbv file=users.dbf
DBVERIFY - Verification starting : FILE = users.dbf
DBV-00200: Block, dba 35283426, already marked corrupted
DBV-00200: Block, dba 35283427, already marked corrupted
DBV-00200: Block, dba 35283428, already marked corrupted

If nologging operations are detected, the following steps can be used to recover the affected
datafiles.

Chapter 3: Redo Processing 113

On the standby database:

1. Perform a RECOVER MANAGED STANDBY DATABASE CANCEL. This will stop the redo apply.

2. For the affected nologging files, do this:

ALTER DATABASE DATAFILE <name> OFFLINE DROP

This will offline the affected datafiles.

3. Perform a RECOVER MANAGED STANDBY DATABASE DISCONNECT. This will restart the
redo apply.

On the primary database:

4. Using RMAN, back up the affected datafiles and copy them to the standby database and
replace the affected files.

5. Perform a RECOVER MANAGED STANDBY DATABASE CANCEL. This will stop the redo apply.

6. Online the previously offlined datafiles using this:

ALTER DATABASE DATAFILE <NAME> ONLINE

7. Perform a RECOVER MANAGED STANDBY DATABASE DISCONNECT. This will restart the
redo apply.

The best method, of course, is to avoid this nologging mess and prevent nologging operations
on the primary database in the first place. Following are options that can be used on the primary
database for the various levels of enforcement:

 Database level ■ ALTER DATABASE FORCE LOGGING
This is the recommended Data Guard setting, as this ensures that all transactions are
logged and can be recovered through media recovery or redo apply.

 Tablespace level ■ ALTER TABLESPACE <NAME> FORCE LOGGING
As stated, force logging at the database level is the recommended option; however, in
special cases it is beneficial to set force logging at the tablespace level—for example, if
an application generates large amounts of transient table data where load times are more
important than the recovery of these tables, and the transient table data can be easily
reloaded after media recovery. In these cases, it may be desirable to group and store
all these transient tables into one or more tablespaces that do not have force logging
enabled to allow nologging operations. All other tablespaces will have force logging.
This option provides finer control over force logging; however, it comes at the expense of
higher manageability costs, the need to monitor the use of these nologging tablespaces,
and the need to resolve the unrecoverable datafiles at switchover or failover.

Managed Recovery
Although the Oracle documentation states that you should use ALTER DATABASE MANAGED
STANDBY DATABASE <..> to alter the behavior of managed recovery, you can also use the
shortened version: RECOVER MANAGED STANDBY DATABASE <..>. Remember to always
use the MANAGED keyword; otherwise, you will be performing manual recovery and bypassing
Data Guard.

114 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 3: Redo Processing 115

 Table level ■ [CREATE | ALTER] TABLE <NAME> FORCE LOGGING
This setting is shown only for the sake of completeness. Setting this at a table level can
be cumbersome; therefore, it is recommended to do the force logging at the database
level.

The Components of a Physical Standby
As discussed in Chapter 1, the Data Guard architecture can be categorized into three major
components.

 Data Guard Redo Transport Services ■ Redo Transport Services are used to transfer the
redo that is generated by the primary database to the standby database.

 Data Guard Apply Services ■ Apply Services receives and applies the redo sent by Redo
Transport Services to the standby database.

 Data Guard Role Management Services ■ Role Management Services assist in database
role changes in switchover and failover scenarios.

Figure 3-1 illustrates the various components and the data flow in Data Guard physical standby.
Keep in mind that these services exist in both physical and logical database configurations. In this
chapter, the focus will be on Data Guard physical standby.

It is the combination of transport and apply services that allows the synchronization of a primary
and its standby databases. To make this all happen, several Oracle background processes play a key
role in the physical standby Data Guard framework.

FIGURE 3-1. Data Guard components

Transactions

Primary
Database

Standby
Database

Redo buffer LNS RFS MRP
LSP

Standby
Redo
Logs

LGWR

ARCH
ARCH

Archived
Redo Logs

Archived
Redo Logs

Online
Redo
Logs

Chapter 3: Redo Processing 115

In the primary database, the following processes are important:

 LGWR ■ The log writer process flushes log buffers from the SGA to ORL files.

 LNS ■ The LogWriter Network Service (LNS) reads the redo being flushed from the redo
buffers by the LGWR and performs a network send of the redo to the standby site. The
main purpose of the LNS process is to alleviate the LGWR process from performing the
redo transport role.

 ARCH ■ The archiver processes archives the ORL files to archive log files. Up to 30 ARCH
processes can exist, and these ARCH processes are also used to fulfill gap resolution
requests. Note that one ARCH process has a special role in that it is dedicated to local
redo log archiving only and never communicates with a standby database.

In the standby database, the following processes are important:

 RFS ■ The main objective of the Remote File Server process is to perform a network receive
of redo transmitted from the primary site and then writes the network buffer (redo data) to
the standby redo log (SRL) files. (SRLs are covered later in this section.)

 ARCH ■ The archive processes on the standby site perform the same functions performed
on the primary site, except that on the standby site, an ARCH process generates archived
log files from the SRLs.

 MRP ■ The managed recovery process coordinates media recovery management. Recall
that a physical standby is in perpetual recovery mode.

 LSP ■ The Logical Standby Process coordinates SQL Apply. This process only runs in a
logical standby configuration

 PR0x ■ The recovery server processes read redo from the SRL (when in real-time apply) or
the archive log files and apply this redo to the standby database.

Thus far, we have not discussed the standby redo log files (SRLs). The SRLs were introduced to
solve two major problems:

 Data protection ■ If SRL files are not used, incoming redo is not kept if the connection to
the primary is lost—for example, when the primary database fails, hence when a failover
occurs, the data that was being sent at the time of the disconnect is lost. However, if that
redo data was written in an SRL, it is persistent and available when the failover occurs.

 Performance objective ■ When the LNS (or an ARCH process after Oracle Database
10gR1) made a connection to the standby, it had to wait while the RFS process created
and initialized the archive log on the standby before the LNS/ARCH could start sending
redo. This could cause a considerable pause if the log file size was large—such as 500MB
or 1GB, which are typical redo log file sizes these days. Since this event occurs at log
switch time, the throughput impact on the primary could be high. However, in Oracle
Database 10gR2 and 11g, LNS in ASYNC mode will not inhibit the LGWR log switch, but
it could potentially impact how far behind the standby could get after a log switch.

As it turns out, Real-TimeApply (RTA) is an inherent side benefit with the advent of
configuring the SRL.

116 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 3: Redo Processing 117

SRL files are essentially identical to ORL files, but SLR files are logically distinguished, in that
they contain the current redo that is active only on the standby site. Although the primary database
will also have SRL files defined, these are inactive on the primary database but will become
activated on role management changes (switchover). It is required that the SRL be configured with
the same size as the ORL files or the SRLs will not be used. Furthermore, it is recommended to
have N+1 SRL files per instance defined on the standby site, where N is the total number of redo
log members per thread on the primary site.

The following ps command example shows the important (highlighted) processes on the
standby site:

racnode1 > ps -ef |grep -i Matrix_DR0
oracle 6507 1 0 21:23 ? 00:00:00 ora_pmon_MATRIX_DR0
oracle 6509 1 0 21:23 ? 00:00:00 ora_vktm_MATRIX_DR0
oracle 6513 1 0 21:23 ? 00:00:00 ora_diag_MATRIX_DR0
oracle 6515 1 0 21:23 ? 00:00:00 ora_dbrm_MATRIX_DR0
oracle 6517 1 0 21:23 ? 00:00:00 ora_psp0_MATRIX_DR0
oracle 6521 1 0 21:23 ? 00:00:11 ora_dia0_MATRIX_DR0
oracle 6523 1 0 21:23 ? 00:00:01 ora_mman_MATRIX_DR0
oracle 6525 1 0 21:23 ? 00:00:01 ora_dbw0_MATRIX_DR0
oracle 6527 1 0 21:23 ? 00:00:01 ora_lgwr_MATRIX_DR0
oracle 6529 1 0 21:23 ? 00:00:02 ora_ckpt_MATRIX_DR0
oracle 6531 1 0 21:23 ? 00:00:00 ora_smon_MATRIX_DR0
oracle 6533 1 0 21:23 ? 00:00:00 ora_reco_MATRIX_DR0
oracle 6535 1 0 21:23 ? 00:00:02 ora_mmon_MATRIX_DR0
oracle 6537 1 0 21:23 ? 00:00:00 ora_mmnl_MATRIX_DR0
oracle 6544 1 0 21:23 ? 00:00:00 ora_arc0_MATRIX_DR0
oracle 6546 1 0 21:23 ? 00:00:01 ora_arc1_MATRIX_DR0
oracle 6548 1 0 21:23 ? 00:00:00 ora_arc2_MATRIX_DR0
oracle 6550 1 0 21:23 ? 00:00:00 ora_arc3_MATRIX_DR0
oracle 8329 1 0 21:31 ? 00:00:00 ora_mrp0_MATRIX_DR0
oracle 8333 1 0 21:31 ? 00:00:01 ora_pr00_MATRIX_DR0
oracle 8335 1 0 21:31 ? 00:00:01 ora_pr01_MATRIX_DR0

Now that we have defined the processes that participate in a physical standby Data Guard
environment, let’s piece together the life cycle of a transaction within the context of a Data Guard
environment.

We left off with the LGWR just flushing the redo to disk. This scenario assumes that ASYNC
transport is configured along with RTA.

 1. The LNS reads the recently flushed redo from the redo log buffer and sends the
redo stream to a standby site using the defined redo transport destination (LOG_
ARCHIVE_DEST_n). Since this is ASYNC transport, the LGWR does not wait for any
acknowledgment from the LNS on the network send; in fact, it does not communicate
with the LNS except to start it up at the database start stage and after a failure of a
standby connection.

 2. The RFS on the standby site reads the redo stream from the network socket into network
buffers, and then it writes this redo stream to the SRL.

 3. The ARCH process on the standby site archives the SRLs into archive log files when a log
switch occurs at the primary database. The generated archive log file is then registered
with the standby control file.

Chapter 3: Redo Processing 117

 4. The actual recovery process flow involves three distinct phases, as follows:

Log read phase ■ The managed recovery process (MRP) will asynchronously read
ahead the redo from the SRLs or the archived redo logs. The latter case occurs only
when recovery falls behind or is not in real-time apply mode. The blocks that require
redo apply are parsed out and placed into appropriate in-memory map segments.

Redo apply phase ■ The MRP process ships redo to the recovery slaves using
the parallel query (PQ) interprocess communication framework. Parallel media
recovery (PMR) causes the required data blocks to be read into the buffer cache,
and subsequently redo will be applied to these buffer cache buffers. The “Parallel
Media Recovery” section later in this chapter covers the differences between Oracle
Database 10g and 11g PMR.

Checkpoint phase ■ This phase involves flushing the recently modified buffers
(modified by the parallel recovery slaves) to disk and also the update of datafile
headers to record checkpoint completion.

Steps 1 to 4 are continuously repeated until either recovery is stopped or a role transition
(switchover or failover) occurs.

Real-time Apply
When redo is received by an RFS on the standby system, the RFS process writes the redo data to
archived redo logs or optionally to the SRL. Since Oracle Database 10g, with RTA, which requires
SRL, the Redo Apply will automatically apply redo directly from the SRL. Figure 3-2 illustrates the
Redo Apply process flow.

FIGURE 3-2. Redo Apply process flow

Physical
Standby

Real-Time
Apply

RFS MRP

PR0x

Standby
Redo
Logs

ARCH

Archived
Redo Logs

118 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 3: Redo Processing 119

The following command is used to enable the real-time apply feature in physical standby
databases. This command is issued on the standby site:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE
 USING CURRENT LOGFILE DISCONNECT;

Keep in mind that if SRLs are not defined when enabling real-time apply, the user will receive
an ORA-38500 error message.

To determine whether real-time apply is enabled, query the RECOVERY_MODE column of the
V$ARCHIVE_DEST_STATUS view. If the recovery mode indicates MANAGED REAL TIME APPLY,
then real-time apply is enabled.

SQL> SELECT RECOVERY_MODE FROM V$ARCHIVE_DEST_STATUS
 WHERE DEST_ID=2;
RECOVERY_MODE

MANAGED REAL-TIME APPLY

Note that if the DELAY attribute is specified in the LOG_ARCHIVE_DEST_n parameter, and real-time
apply is enabled, the redo apply lag time is ignored.

In some cases, the redo rate becomes too high and the apply process is unable to keep up
with real-time apply. In these scenarios, the MRP (or LSP) automatically performs the redo apply
using the archive redo log files. When the redo rate has subsided, the apply will again resume
real-time apply using the SRL.

With the advent of real-time apply, Data Guard now provides faster switchover, instant data
access, and reporting for read-only (Active Data Guard) physical standby databases. Real-time
apply is particularly important for Active Data Guard and logical standby databases as it enables
real-time reporting. An additional side benefit of real-time apply is that it allows the apply
services to leverage larger redo logs files. As mentioned earlier in the chapter, at redo log
boundaries, datafile header updates and checkpoints are performed. Since these are expensive
operations, it is recommended that you have larger ORL files (and matching SRL files). Employing
larger redo log files with real-time apply allows apply services to recover for longer periods of
time, thus minimizing the recovery overhead.

Scaling and Tuning Data Guard Apply Recovery
Several recommendations can improve the Redo Apply rate as well as redo transmission. The
following describes how to scale and tune Redo Apply.

Top Six Considerations for Tuning the Recovery Rate
The following considerations and best practices can improve the recovery rate. Note that other
Data Guard tuning considerations, such as redo shipping, were covered in Chapter 2.

 ■ During media recovery, at each log boundary (log switch), Oracle does a full checkpoint
and updates all the file headers. It is recommended that you increase the primary
database’s ORL as well as the standby database’s SRL sizes so that a log switch occurs at
a minimum of 15-minute intervals.

 ■ Use the PARALLEL option while in managed recovery. The next section covers parallel
media recovery in more detail.

Chapter 3: Redo Processing 119

 ■ Implement real-time apply. Although this recommendation does not directly affect
recovery rate, it does directly affect (improves) your recovery time objective (RTO).

 ■ Media recovery hinges on the DBWR’s ability to write out modified blocks from the
buffer cache to disk as efficiently as possible. It is very important that the DBWR
processes have enough I/O bandwidth to perform this task. To increase DBWR
throughput, always use native asynchronous I/O by setting DISK_ASYNCH_IO=TRUE
(default). In the rare case that asynchronous I/O is not available, use DBWR_IO_SLAVES
to improve the effective data block write rate with synchronous I/O.

 ■ As with all cases of database recovery, the most important factor is I/O bandwidth.
Oracle media recovery is driven and predominantly dependent on I/O bandwidth, and
without sufficient I/O bandwidth, the apply process will be stalled. Thus it is important to
ensure that enough I/O bandwidth is available on the standby site. Calibrate_IO is a new
utility introduced in 11g. That allows a user to gauge the overall I/O throughput on the
server. For more details on Calibrate_IO see MetaLink Note 727062.1.1

 ■ Remember that media recovery is heavily dependent on the Oracle buffer cache. Thus a
large database cache size can significantly improve media recovery performance. While in
managed recovery mode, several standby database SGA components can be reduced, and
this memory can be moved and reallocated to the DB_CACHE_SIZE. For example, memory
associated with the JAVA_POOL, DB_KEEP_CACHE_SIZE, DB_RECYCLE_CACHE_SIZE,
and a portion of the SHARED_POOL_SIZE can be reallocated to the DB_CACHE_SIZE.
However, upon switchover or failover, the new primary will require a production-ready set
of initialization parameters that can support the production workload.

Parallel Media Recovery
One of the most frequently asked questions when deploying Data Guard is “How can my standby
database keep up with the redo rate of the primary database?” This question can become even
more interesting when the primary database is a RAC database.

The answer to this question is parallel media recovery (PMR). In both 10g and 11g, the MRP
process will perform a scan (asynchronous read) of the redo logs, and parse and build redo change
segment maps. This part of the recovery phase is easily handled by the single MRP process. Once
this map segment is built, the apply process can begin, and this is where parallelism occurs.
Although Oracle Database 10g and 11g both provide parallel scalable recovery, the two versions
have different semantics and approaches.

In Oracle Database 10g, parallel query (PQ) slaves were employed to perform the parallel
apply. The PQ slaves used messaging to extract redo segments from MRP. The init.ora parameter
PARALLEL_EXECUTION_MESSAGE_SIZE or PEMS defines the size of the message that would be
exchanged between PQ slaves and MRP. In Oracle Database 10g physical standby systems, it is
advised that you set this parameter to 8KB or 16KB, depending on available memory. On 64-bit
systems with large amounts of memory (dedicated to shared pool), an 8KB or 16KB PEMS setting
is sufficient. On these types of configurations and using the appropriate PEMS setting, upwards to
24MB/sec apply rate can be achieved.

The main issue with 10g managed recovery was the overhead of PQ slave messaging. In
Oracle Database 11g, the PQ slave overhead has been assuaged by leveraging Oracle kernel slave

1 See MetaLink Note 727062.1: Configuring and Using Calibrate I/O.

120 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 3: Redo Processing 121

processes (KSV slaves). The KSV slaves can be seen as the PR0x processes. The MRP will relegate
the actual (parallel) recovery to the KSV slaves. The PR0x processes will hash to a segment map,
read from this map, and apply redo to the standby database. Leveraging KSV slaves removes the
need to set the PEMS parameter or even specify the number of slaves needed for recovery. The
number of PR0x processes started is dependent on the number of CPUs on the server.

Tools and Views for Monitoring Physical Standby Recovery
In cases for which media recovery is not keeping up with the apply rate the primary database, the
following views and tools need to be reviewed:

 Review key Data Guard views. ■

 Review Statspack (Oracle Database 11 ■ g with Active Data Guard) top wait events.

 Identify I/O bottlenecks in recovery area and data area. ■

 Monitor CPU usage. ■

NOTE
Chapter 6 covers the V$ database views in greater detail.

Data Guard Views
The following important views can be used to monitor Data Guard physical standby recovery
progress. A sample output of each view is also shown.

V$MANAGED_STANDBY This view displays current status information for specific physical
standby database background processes. This view can be used to determine activity by process.
If your primary database is not a RAC, the column THREAD# in the following query will always
contain the number one:

SQL> SELECT PROCESS, CLIENT_PROCESS,THREAD#, SEQUENCE#,STATUS
 FROM V$MANAGED_STANDBY;
PROCESS CLIENT_P THREAD# SEQUENCE# STATUS
--------- -------- ---------- ---------- ------------
ARCH ARCH 1 0 CONNECTED
ARCH ARCH 1 0 CONNECTED
RFS N/A 0 0 IDLE
RFS N/A 0 0 IDLE
RFS LGWR 1 774 IDLE
RFS LGWR 2 236 IDLE
RFS UNKNOWN 0 0 IDLE
MRP0 N/A 1 774 APPLYING_LOG
8 rows selected.

V$DATAGUARD_STATS This view displays various information about the redo data. This includes
redo data generated by the primary database that is not yet available on the standby database and
how much redo has not yet been applied to the standby database. This indirectly shows how much
redo data (at the current point in time) could be lost if the primary database crashed.

Chapter 3: Redo Processing 121

SQL> SELECT * FROM V$DATAGUARD_STATS;
 NAME VALUE
-------------------------------- ----------------
apply finish time +00 00:00:00.0
apply lag +00 00:00:13
estimated startup time 24
standby has been open N
transport lag +00 00:00:05

V$STANDBY_APPLY_SNAPSHOT This view provides the current redo apply rate in KB/second:

SQL> select to_char(snapshot_time,'dd-mon-rr hh24:mi:ss')
 snapshot_time, thread#, sequence#, applied_scn,
 apply_rate from V$standby_apply_snapshot;
SNAPSHOT_TIME THREAD# SEQUENCE# APPLIED_SCN APPLY_RATE
------------------ -------- --------- --------------- ----------
15-05-08 15:45:08 1 31527 3273334169433 68234
15-05-08 15:45:08 2 23346 3273334169449 68234

V$RECOVERY_PROGRESS This view can be used to monitor efficient recovery operations as
well as to estimate the time required to complete the current operation in progress:

SQL> select to_char(start_time, 'DD-MON-RR HH24:MI:SS') start_time,
 item, round(sofar/1024,2) "MB/Sec"
 from v$recovery_progress
 where (item='Active Apply Rate' or item='Average Apply Rate');
START_TIME ITEM MB/SEC
----------- ------------------------------- --------
07-JUL-08 11:49:44 Active Apply Rate 6.15
07-JUL-08 11:49:44 Average Apply Rate 5.90
06-JUL-08 23:13:34 Active Apply Rate 5.76
06-JUL-08 23:13:34 Average Apply Rate 1.73

Physical Data Guard and Statspack
Analyzing performance of the standby database typically meant navigating through many V$
views to collect the required performance data. In addition, due to the read-only nature of Data
Guard physical standby, the Statspack utility could not be executed on the standby database.
Thus, for database versions of 10g and earlier, any performance analysis of the standby database
was generally a manual effort.

In Oracle Database 11g Release 1, users can now leverage Statspack by invoking Statspack
from the primary database to collect and store performance data from the standby database. The
standby database will need to be opened read-only for the collection, while it is still performing
recovery. Note that this requires using the new Active Data Guard option, which requires an
additional license.

This section will review the steps to implement the standby Statspack. Note that the new
standby Statspack packaging comes with a new set of scripts and packages, most of which start
with sb* and reside in $ORACLE_HOME/rdbms/admin.

Creating the Schema The first step in establishing the standby Statspack infrastructure is to run
the sbcreate.sql script. This installation script creates the standby Statspack schema on the primary
database. This schema is used to house the standby snapshots.

122 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 3: Redo Processing 123

When the sbcreate.sql script is executed, it will prompt for the following items:

 A password for stdbyperf user ■

 Default tablespace ■

 Temporary tablespace ■

Once the script is completed, the standby Statspack schema will be created. In our example,
we specified STDBYPERF as the standby user.

Defining the Standby Database Next, you’ll need to connect to the primary database as the
STDBYPERF user and execute the sbaddins.sql script:

SQL> connect stdbyperf/your_password
SQL> @sbaddins

When the sbaddins.sql script is invoked, it will prompt for the following:

 The Transparent Networking Substrate (TNS) alias of the standby database instance ■

 The password of the perfstat user on the standby site ■

The sbaddins.sql script performs the following tasks:

 Adds the standby instance to the Statspack configuration ■

 Creates a private database link to the perfstat schema on the standby site ■

 Creates a separate Procedural Language/Structured Query Language (PL/SQL) package ■
(on the primary database) for each defined standby database

Creating Statspack Snapshots Once the standby database is defined correctly in the STDBYPERF
schema, you can begin to take standby Statspack snapshots.

The statspack_<instance_name>.snap procedure on the primary database accesses the stats$
views on the standby database via the database link and stores this data in the STDBYPERF on the
primary database. In our example, Matrix_DR0 is defined as our standby database (when sddins.sql
was executed). For example, while the standby is opened read-only, log in to the primary database
as the STDBYPERF user and execute the snap procedure:

SQL> connect stdbyperf/your_password
SQL> exec statspack_Matrix_DR0.snap

Although most of the standby Statspack report is similar to a standard Statspack report, some
very specific standby statistics are collected and presented in the standby report. The following
illustrates two new sections of the standby Statspack report of particular interest to the standby
database:

 Recovery progress stats ■

 Managed standby stats ■

Chapter 3: Redo Processing 123

Top 5 Timed Events

Event Waits Time(s) Avg %Total

--------------------------------- -------- ------- ------ -----

shared server idle wait 32 960 30005 40.0

recovery read 93,398 767 8 31.9

parallel recovery control message 25,432 536 21 22.3

CPU time 28 1.2

latch free 3,813 25 1 1.0

Recovery Progress Stats DB/Inst: Matrix_DR0/Matrix_DR0 End Snap: 360

-> End Snapshot Time: 07-Jun-08 05:37:42

-> ordered by Item, Recovery Start Time desc

Recovery Start Time Item Sofar Units Redo Timestamp

------------------- ----------------- -------------- ------- ------------------

06-Jun-08 06:52:06 Active Apply Rate 1,024 KB/sec

06-Jun-08 06:52:06 Active Time 30,315 Seconds

06-Jun-08 06:52:06 Apply Time per Lo 709 Seconds

06-Jun-08 06:52:06 Average Apply Rat 424 KB/sec

06-Jun-08 06:52:06 Checkpoint Time p 0 Seconds

06-Jun-08 06:52:06 Elapsed Time 81,943 Seconds

06-Jun-08 06:52:06 Last Applied Redo 474,368,821 SCN+Tim 07-Jun-08 05:37:49

06-Jun-08 06:52:06 Log Files 41 Files

06-Jun-08 06:52:06 Redo Applied 33,988 Megabyt

Managed Standby Stats DB/Inst: Matrix_DR0/Matrix_DR0 End Snap: 360

-> End Snapshot Time: 07-Jun-08 05:37:42

-> ordered by Process

Process pid Status Resetlog Id Thread Seq Block Num

----------- ---------- ------------ ----------- ------ ------- -----------

Client Proc Client pid Blocks Delay(mins)

----------- ---------- -------------- --------------

ARCH 262 CLOSING 655982533 1 290 2013185

ARCH 262 758 0

ARCH 264 CLOSING 655982533 1 289 2041857

ARCH 264 1,671 0

ARCH 266 CLOSING 655982533 1 291 2023425

ARCH 266 623 0

ARCH 268 CONNECTED 0 0 0 0

ARCH 268 0 0

MRP0 762 APPLYING_LOG 655982533 1 292 1879769

N/A N/A 2,097,152 0

RFS 17949 IDLE 655982533 1 292 1878764

LGWR 17272 1,006 0

RFS 18121 IDLE 0 0 0 0

UNKNOWN 17524 0 0

RFS 18280 IDLE 0 0 0 0

UNKNOWN 17517 0 0

124 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 3: Redo Processing 125

The following table displays various scripts used to support and manage the standby Statspack:

Procedure
Name

Description Prompted Info

sbreport Generates the standby statistics report. Database ID, instance number, high and
low snapshots ID to create the report

sbpurge Purges a set of snapshots. The script
purges all snapshots between the low
and high snapshot IDs for the given
instance.

Database ID, instance number, low
and high snapshots IDs

sbdelins Deletes an instance from the
configuration, as well as associated
PL/SQL packages.

Instance name

sbdrop Drops the stdbyperf user and
tables. The script must be run when
connected to SYS (or internal).

sbaddins Execute this script from the primary
database to add a standby instance to
the configuration.

TNS alias of the standby database
instance, password of the perfstat user
on the standby site

NOTE
We have authored a MetaLink note2 on using Statspack and an Active
Data Guard standby database. As the use of Statspack with Data
Guard evolves, we will update this note.

Physical Standby Corruption Detection
Earlier in this chapter, we discussed how to detect and avoid user-created corruption problems
when nologging operations are allowed on the primary database. But Data Guard can help you
detect and recover from many other hardware-created corruption events much faster than many
other disaster recovery solutions.

11g New Data Protection Changes
This section covers several of the new corruption detection features introduced in Oracle
Database 11g. Note that these features are not all specifically for physical standby databases, but
for completeness we’ll describe the feature and show how standby databases leverage them. The
next section will cover the new corruption features for the physical standby.

In Oracle Database 11g, various database components layers and utilities can automatically
detect a corrupt block and record it in the V$DATABASE_BLOCK_CORRUPTION view. In pre-11g
versions, only RMAN was capable of recording into this view. An Enterprise Manager alert can be
triggered whenever a new block (from an unrecoverable event) is recorded in the V$DATABASE_
BLOCK_CORRUPTION view.

2 See MetaLink Note 454848.1: Installing and Using Standby Statspack in 11g R1.

Chapter 3: Redo Processing 125

Oracle Database 11g also introduced an internal mechanism to provide even better data
protection with a thorough block checking mechanism in the database. This block checking can
be enabled by setting the DB_ULTRA_SAFE initialization parameter to TRUE. This parameter lets
data corruptions be detected in a timely fashion. The DB_ULTRA_SAFE parameter includes the
following checks and validations:

 Detects redo corruptions. ■

 Provides checksum and internal metadata checks. ■

 Ensures redo is “next change” appropriate to data block. ■

 Detects lost writes and data block corruptions. ■

 Validates data block during reads and after updates. ■

 Detects data block corruption through checksum during reads and through ■ db_block_
checking after DML block operations.

 If ASM redundancy is in use, it then enforces sequential mirror writes on ASM-based ■
datafiles.

The DB_ULTRA_SAFE initialization parameter implicitly enables the setting of other
protection-related initialization parameters, including DB_BLOCK_CHECKING, DB_BLOCK_CHECKSUM,
and DB_LOST_WRITE_PROTECT.

Note that there may be a performance impact on the application when the DB_ULTRA_SAFE
parameter is set on the primary database. The performance impact may vary depending on the
number of block changes and available system resources, but generally varies from 1 to 10 percent.
This performance impact is higher on the physical standby than on the primary database.

Data Protection and Checking on a Physical Standby
Physical standby databases inherently provide a strong level of data protection. Out of the box,
physical standby’s redo apply mechanism implicitly verifies redo headers for correct format and
compares the version of data block header with the tail block for accuracy. When DB_BLOCK_
CHECKSUM is set on the physical standby database, it compares the current block checksum with
the calculated value. Checksums catch most data block inconsistencies.

In addition, DB_BLOCK_CHECKING validates more internal data block data structures such as
Interested Transaction Lists (ITLs), free space, and used space in the block.

So how does this 11g new checking capability work with Data Guard physical standby?
When DB_LOST_WRITE_PROTECTION is set to TYPICAL on the primary database, the database
instance logs buffer cache reads for read-write tablespaces in the redo log; however, when the
parameter is set to FULL on the primary database, the instance also logs redo data for read-only
and read-write tablespaces.

When DB_LOST_WRITE_PROTECTION is set to TYPICAL or FULL on the physical standby
database, the instance performs lost write detection during media recovery.

When the DB_LOST_WRITE_PROTECTION=TYPICAL is set on the primary and standby database
instances, the primary database will record buffer cache block reads in the redo log, and this
information can be used to detect lost writes in the standby database. This is done by comparing
SCN versions of blocks stored on the standby with those in the incoming redo stream. If a block
version discrepancy occurs, this implies that a lost write occurred on either the primary or standby
database.

126 Oracle Data Guard 11g Handbook

Lost writes generally occur when an I/O subsystem acknowledges the completion of a write
block I/O, when the write did not get persistently stored on disk. Lost writes occur for various
reasons—the most common are faulty host bus adapters (HBAs), firmware bugs, or faulty storage
hardware. Lost writes are essentially silent data corruptions in that the corrupted blocks go
undetected until the subsequent read, which could be days, weeks, or months later. For this
reason, lost writes are extremely difficult to diagnose when they occur. On the subsequent block
read, the I/O subsystem returns a block, which is effectively a stale version of the data block.

If the block SCN on the primary database is lower than on the standby database, it detects
a lost write on the primary database and throws an internal error (ORA-752). The recommended
procedure to repair a lost write on the primary database is to failover to the physical standby and
re-create the primary. If the SCN is higher, it detects a lost write on the standby database and
throws an internal error (ORA-600 3020). To repair a lost write on a standby database, you must
re-create the standby database or affected data files. In both cases, the standby database will write
the reason for the failure in the alert log and trace file.

If database corruption is detected on the primary, this can be resolved by failing over to the
standby database and restoring data consistency.

It is highly recommended that DB_LOST_WRITE_PROTECT be set to TYPICAL on your primary
database and all physical standby databases for the greatest data protection. This setting provides
the highest protection with the minimum performance impact. If greater data protection is required
and redo apply performance can be slightly sacrificed, set DB_ULTRA_SAFE.

Conclusion
Oracle Data Guard ensures high availability, data protection, and disaster recovery for enterprise
data. However, to appreciate Data Guard fully, you need to understand the essentials of Oracle
recovery mechanisms. We hope that this chapter has provided you with a better understanding of
the major recovery components and how they fit into the Data Guard framework, as well as more
information on the various V$ views used to support and manage a Data Guard environment.

Chapter
4

Logical Standby

127

128 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 4: Logical Standby 129

ata Guard logical standby was introduced in Oracle Database 9i Release 2 as part
of the Enterprise Edition. The idea behind a logical standby database is simple:
mine the primary database redo and reconstruct the higher level “equivalent” SQL
operations that resulted in the database changes, and then apply these equivalent
SQL statements to maintain a standby database. The benefits are obvious: the

standby database can not only be open for reads, but it can also support additional entities such
as indexes and materialized views that can be too expensive to maintain at the primary database.
In addition, you can add other tables or even entire schemas to a logical standby database and
have complete read-write access to those tables as they are not maintained by SQL Apply. Logical
standby databases are a fully integrated feature of Oracle Data Guard and support all role
transition operations that are available in the context of a physical standby database.

Here are some of the ways that you can use a logical standby database:

 Offload any application that uses the data replicated from the primary but does not ■
modify it: from running Business Intelligence (BI) analysis on current data as they are
replicated, to offloading complete applications. For instance, in the case of a telephone
company, this could mean offloading the billing and customer relationship management
applications to the logical standby while keeping the call usage tracking application
isolated in the primary database.

 Leverage your logical standby database to do a rolling upgrade of Oracle RDBMS ■
software (both between major and minor releases as well as between patch sets). This
feature is available for upgrades from a database running the Oracle RDBMS software at
versions 10.1.0.3 or later.

 Use a logical standby database as a staging system to propagate changes (either by running ■
local streams capture or by using asynchronous change data capture mechanism) to other
databases that may need only a subset of the primary database’s data. This is possible
only from Oracle Database 11g onward.

Three major aspects should be considered when you’re dealing with a logical standby
database:

 Dataset available at the logical standby ■ This has two parts: First and foremost, you
need to characterize what tables are maintained at the logical standby database and
how to customize the set of replicated tables. Second, you need to understand how to
customize a logical standby database to take advantage of its true power: the ability to
offload your applications, allowing the creation of additional schema objects such as
materialized views, indexes, and so on.

 Steady state operational issues ■ At steady state, you need to focus on two components:
The first is the redo transport service that makes sure that redo generated at the primary
database arrives at the standby site promptly and all network disconnections are handled
transparently. This was discussed in detail in Chapter 2. The second is the SQL Apply
service that mines and applies the redo records to maintain the logical standby database
and provides near real-time reports and queries. We will concentrate on the SQL Apply
services in this chapter.

D

Chapter 4: Logical Standby 129

 Role transitions ■ The SQL Apply service also provides the ability to change roles
between a primary and a logical standby database. Role transition can be more complex
in logical standby as opposed to steady state operational processes, because application
connectivity needs to be considered in addition to the processes involved with database
role transitions on the new primary. Role transition, in the context of SQL Apply, should
be routinely tested in your disaster recovery (DR) environment. Role transition will not be
covered in this chapter, as a more detailed discussion is provided in Chapter 8.

Characterizing the Dataset Available
at the Logical Standby
In this section, we will discuss various issues related to the replicated data: what gets replicated,
how replicated data is protected from accidental modification, and how you can write customize
solutions where native redo-based replication support is lacking. Then we will discuss various
issues related to customizing a logical standby to realize its full potential—including the ability to
offload applications from the primary database.

Characterizing the Dataset Replicated
from the Primary Database
A logical standby is first and foremost a standby, so some questions arise naturally:

 What part of the primary database’s dataset will be replicated at the logical standby? ■

 Can we pick and choose the tables that are replicated at the logical standby? ■

 What prevents users from modifying the replicated data at the logical standby database? ■

 Is there any way to replicate schema objects that do not have native redo-based ■
replication support?

Determining What Gets Replicated at the Logical Standby Database
Data Guard logical standby will replicate database schema objects unless they fall under the
following three categories:

 The object belongs to the set of internal schemas that SQL Apply does not maintain ■
explicitly.

 The object contains a data type for which native redo-based support is lacking in ■
SQL Apply.

 The object is the target of an explicit skip rule specified by the DBA. ■

Determining the Set of Internal Schemas Not Maintained by SQL Apply You can find the
set with the following query:

SQL> SELECT OWNER FROM DBA_LOGSTDBY_SKIP

 WHERE STATEMENT_OPT = 'INTERNAL SCHEMA' ORDER BY OWNER;

130 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 4: Logical Standby 131

If you issued this query on a database running the 11g R1 software, it will return 17 schemas
that are automatically skipped by SQL Apply. The two most important ones to point out are SYS
and SYSTEM. Why does SQL Apply skip these? Most objects in these schemas (such as the tables
OBJ$, COL$, and so on in SYS schema) are maintained through Data Definition Languages
(DDLs) or invocations of supplied PL/SQL procedures. SQL Apply replicates DDLs and such
invocation of supplied PL/SQL logically, and thus DMLs encountered on system metadata tables
are replicated logically by invoking the higher level operations. So remember that if you are
planning to use a logical standby database, do not create a user table in one of these internal
schemas. They will not be replicated in your logical standby database.

Determining the Tables Not Being Replicated Because of Unsupported Data Types You can
find the set of tables with a simple query as well:

SQL> SELECT DISTINCT OWNER, TABLE_NAME FROM DBA_LOGSTDBY_UNSUPPORTED;

If you want to use an undocumented view that will return the results faster, try the following:

SQL> SELECT OWNER, TABLE_NAME FROM LOGSTDBY_UNSUPPORTED_TABLES;

We mentioned the presence of explicit skip rules in the list of characteristics as something
that will stop replication of a given table. We explore this in more detail in the next section.

Customizing a Logical Standby Database to Replicate Only a Subset of Tables
Data Guard allows you to specify rules so that you can skip the replication of a table or a set of
tables at the logical standby database. Remember, though, that 100 percent of the redo is always
transferred to the standby database. The skipping in this case applies to what SQL Apply will
actually process at the standby database with that redo.

Using DBMS_LOGSTDBY.SKIP to Skip Replication of Tables Data Guard provides an
interface that allows you to use the power of pattern matching to specify set of objects that should
not be replicated at the logical standby database. Let’s look at the interface in more detail:

DBMS_LOGSTDBY.SKIP (
STMT IN VARCHAR2,
SCHEMA_NAME IN VARCHAR2 DEFAULT NULL,
OBjECT_NAME IN VARCHAR2 DEFAULT NULL,

Myth Buster: Standard Log-based Replication Can Give You
an Equivalent of a Logical Standby Database
As with all myths, there is an element of truth to this. If all you want is data stored in your
tables, you can get an equivalent of a logical standby through third-party replication
solutions. But your database is more than the data contained in your tables. What about
your jobs? What about your Virtual Private Database (VPD) policies? What about planned
and unplanned events and the guarantee of zero data loss? What about transparent
migration of your applications that depend on sequences? The truth is, if you want a
turnkey one-way replication of your whole database that provides you with high availability
and disaster recovery in one package, there is no substitute for Data Guard Logical Standby.

Chapter 4: Logical Standby 131

PROC_NAME IN VARCHAR2 DEFAULT NULL,
USE_LIKE IN BOOLEAN DEFAULT TRUE,
ESC IN CHAR1 DEFAULT NULL);

In essence, you can specify the type of statements (Data Manipulation Language [DML] or DDL),
as specified by the stmt argument, on which to apply the skip rules. The schema_name and
object_name arguments can take wildcards. The use_like indicates whether SQL Apply
should use the LIKE condition to match the pattern or look for an exact match, and esc behaves
the same way you would expect the escape character to behave when used in a LIKE condition.

The most important argument is proc_name, which you can specify for DDL statements. It
allows you to specify a procedure that will be invoked before the DDL statement can be executed,
and it can return a new DDL statement for SQL Apply to execute or ask SQL Apply to stop with an
error. Note that you cannot specify a user-supplied procedure in the proc_name argument if you
are specifying a DML skip rule; attempting to do so will result in an ORA-16104 error.1

Suppose, for example, we want to skip replication of the table HR.EMPLOYEE. We can issue
the following statement:

SQL> ExECUTE DBMS_LOGSTDBY.SKIP(STMT => 'DML', SCHEMA_NAME => 'HR', -
 OBjECT_NAME => 'EMPLOYEE');

That is simple enough. Note that since we specified DML explicitly, this will skip only DMLs on
HR.EMPLOYEE; DDL statements encountered for this table will still be replicated. If we want to
skip those, too, we can issue the following statement:

SQL> ExECUTE DBMS_LOGSTDBY.SKIP(STMT => 'SCHEMA_DDL', SCHEMA_NAME => 'HR', -
 OBjECT_NAME => 'EMPLOYEE');

What if we want to skip all DML operations on all objects in the HR schema? It is simple:

SQL> ExECUTE DBMS_LOGSTDBY.SKIP(STMT => 'DML', SCHEMA_NAME => 'HR', -
 OBjECT_NAME => '%');

If we want to be more selective and skip all DML operations on tables with the prefix EMP,
we can write that too:

SQL> ExECUTE DBMS_LOGSTDBY.SKIP(STMT => 'DML', SCHEMA_NAME => 'HR', -
 OBjECT_NAME => 'EMP%');

We will look at examples of the procedure invocation in later sections. Now that we know
how to specify the patterns that govern what will not be replicated at the logical standby
database, we are in a position to answer the question we posed in the first subsection: What
objects are not being replicated because of the presence of skip rules?

Determining Which Tables Are Not Being Replicated Because of Skip Rules First, here’s the
catalog view to query to find out which skip rules are active in your logical standby database:

SQL> SELECT OWNER, NAME, USE_LIKE, ESC FROM DBA_LOGSTDBY_SKIP
 WHERE STATEMENT_OPT = 'DML';

1 In other words, SQL Apply does not allow you to transform a DML statement into a different DML statement.
However, it allows you to do such a transformation on a DDL statement.

132 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 4: Logical Standby 133

Although this will show you the skip rules in effect, the query does not provide the list of
tables being skipped. That is a little more complicated. We will do this in two steps: First, we will
show you how to determine whether a table will match any of the patterns as identified by the
skip rules. Second, we will iterate over all tables that are present at the logical standby and apply
the determinant on each of them. We will present it as three procedures to highlight the steps
involved.

 1. Create a function that takes a schema and a table name and returns TRUE if the table is
skipped at the logical standby and FALSE otherwise:

CREATE OR REPLACE FUNCTION SYS.IS_TABLE_SKIPPED(
TAB_OWNER IN VARCHAR2, TAB_NAME IN VARCHAR2)
RETURN NUMBER
IS
COUNT_MATCH NUMBER := 0;
BEGIN
 SELECT COUNT(*) INTO COUNT_MATCH FROM DBA_LOGSTDBY_SKIP S
 WHERE STATEMENT_OPT = 'DML' AND ERROR = 'N' AND
 1 = CASE
 WHEN USE_LIKE = 'Y' THEN
 CASE
 WHEN ESC = 'Y' THEN
 CASE
 WHEN TAB_OWNER LIKE S.OWNER ESCAPE ESC AND
 TAB_NAME LIKE S.NAME ESCAPE ESC THEN 1 ELSE 0
 END
 WHEN ESC = 'N' OR ESC IS NULL THEN
 CASE
 WHEN TAB_OWNER LIKE S.OWNER AND
 TAB_NAME LIKE S.NAME THEN 1 ELSE 0
 END
 END
 WHEN USE_LIKE = 'N' THEN
 CASE
 WHEN TAB_OWNER = S.OWNER AND TAB_NAME = S.NAME THEN 1 ELSE 0
 END
 ELSE 0
 END;
RETURN COUNT_MATCH;
END IS_TABLE_SKIPPED;

 2. Now create the necessary types for the table function that will allow us to iterate over
all tables in the DBA_ALL_TABLES view and determine whether the table is explicitly
skipped at the logical standby:

SQL> CREATE TYPE STANDBY_TAB AS OBjECT (
TABLE_OWNER VARCHAR2(32),
TABLE_NAME VARCHAR2(32));
/
SQL> CREATE TYPE STANDBY_SKIPPED_TAB AS TABLE OF STANDBY_TAB;

Chapter 4: Logical Standby 133

 3. Now create the table function:

SQL> CREATE OR REPLACE FUNCTION GET_ALL_SKIPPED_TABS
RETURN STANDBY_SKIPPED_TAB PIPELINED
IS
 TYPE REF1 IS REF CURSOR;
 OUT_REC STANDBY_TAB := STANDBY_TAB(NULL, NULL);
 CUR1 REF1;
BEGIN
 OPEN CUR1 FOR 'SELECT OWNER, TABLE_NAME FROM DBA_ALL_TABLES';
 LOOP
 FETCH CUR1 INTO OUT_REC.TABLE_OWNER, OUT_REC.TABLE_NAME;
 ExIT WHEN CUR1%NOTFOUND;
 IF (SYS.IS_TABLE_SKIPPED(OUT_REC.TABLE_OWNER, OUT_REC.TABLE_NAME) <> 0)
 THEN
 PIPE ROW(OUT_REC);
 END IF;
 END LOOP;
 CLOSE CUR1;
 RETURN;
END GET_ALL_SKIPPED_TABS;
/

You can now use the table function to get all skipped tables:2

SQL> SELECT * FROM TABLE(SYS.GET_ALL_SKIPPED_TABS) ;

Adding a Previously Skipped Table to the Set of Replicated Tables Now we have a way of
knowing what tables are skipped at the logical standby due to explicit skip rules. What if we
change our minds midway through? Well, it seems simple. All we need to do is to use DBMS_
LOGSTDBY.UNSKIP and remove the rule from our set of skip rules. And it is almost that simple.
However, we cannot simply start replicating changes to the table; we first need to get a current
snapshot of the table. Data Guard provides a way to do this via its DBMS_LOGSTDBY.INSTANTIATE_
TABLE procedure. Note that SQL Apply must be stopped before we can invoke this procedure, so
for a large table, we need to perform this operation during off-peak hours.

SQL> ExECUTE DBMS_LOGSTDBY.INSTANTIATE_TABLE (-
 SCHEMA_NAME => 'SALES', TABLE_NAME => 'CUSTOMERS', -
 DBLINK3 => 'INSTANTIATE_TABLE_LINK');

How does this work? The procedure internally uses the Oracle Data Pump network interface
to lock the source table momentarily to obtain the current system change number (SCN) at the
primary database. It then releases the lock and gets a consistent snapshot of the table from the
primary database; it also remembers the SCN associated with the consistent snapshot. Now you

2 The example does not filter out tables that you have created locally at the logical standby database. Ideally, these
tables are in schemas that are separate from those being replicated from the primary database, and you can filter
them out by adding a predicate to the query.
3 The DBLINK should point to the primary database.

134 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 4: Logical Standby 135

can see why SQL Apply needs to be stopped before you can issue INSTANTIATE_TABLE. It is
essential that SQL Apply has not been applied past the SCN at which the table snapshot was
taken, since we need to apply all changes that occurred to the table in question after this SCN.

Protecting Replicated Tables on a Logical Standby
Now that you know what tables are being replicated at the logical standby database, you’re
probably asking, “So I have the tables, but what prevents some user from connecting to the
standby database and modifying them?” In a physical standby database or in the recently
introduced Active Data Guard, the answer is easy. Even if you made a mistake and issued a DML,
it will fail since the database is either mounted or open in read-only mode. But a logical standby
database is an open, read and write database! Fear not. Data Guard is not just a cool feature
name—indeed it does guard and protect your data from accidental modification by a user.

A database GUARD can have three possible values: NONE, STANDBY, and ALL. By default, on a
primary database, the GUARD is set to NONE. This means that user applications are free to modify any
tables to which they have privileges necessary to perform modifications. When the database-level
GUARD is set to STANDBY, user applications cannot modify any tables that are being replicated by
SQL Apply, but users are free to create new tables or modify tables (either through DDL or DML)
that are not being replicated from the primary database. A GUARD setting of ALL (the default for a
logical standby) is the most stringent, as it prevents user modifications to all tables in a database,
replicated by SQL Apply or not. The NONE and ALL settings are available to all databases (primary
or otherwise), whereas the STANDBY setting is meaningful only on a logical standby database.

You can set the GUARD to STANDBY by issuing the following SQL statement:

SQL> ALTER DATABASE GUARD STANDBY;

You probably do not want to set the logical standby GUARD on the primary database
explicitly. If you were to do so, it would quickly bring production to a halt.

SQL> CONNECT SYS/ORACLE AS SYSDBA
CONNECTED.
SQL> ALTER DATABASE GUARD STANDBY;
DATABASE ALTERED.
SQL> CONNECT SCOTT/TIGER
CONNECTED.
SQL> UPDATE EMP SET SAL=9999 WHERE EMPNO=7902;
UPDATE EMP SET SAL=9999 WHERE EMPNO=7902
 *
ERROR AT LINE 1:
ORA-16224: DATABASE GUARD IS ENABLED

You would get the same results with ALL on the primary database. Of course ALL is a very
quick way to make your production database a read-only database without a shutdown.

Myth Buster: Standard Log-based Replication Can Give You
an Equivalent to Logical Standby – Part 2
Without Oracle’s integrated SQL Apply solution, a replication solution cannot provide the
built-in protection of the GUARD.

Chapter 4: Logical Standby 135

Replicating Unsupported Tables
Let’s look at the list of data types that SQL Apply will not support in the current release of Oracle
RDBMS (11g Release 1):

 Object types and REFs ■

 Collections (■ VARRAYs and nested tables)

 XML stored as object-relational and binary XML ■

 SecureFile large objects (LOBs) ■

 Compressed tables ■

So what do you do if you have such data types in your primary database, and you simply
cannot do without them at the logical standby database? The situation is not as bleak as you
might think. With some amount of programming, you can still deploy a logical standby database
as long as you can ensure the following:

 The rate of modification on these tables is not very high. ■ 4

 You can control when DDL statements are executed on these tables that change the ■
shape of the table (add/drop/modify columns).

If you can ensure the two prerequisites, Data Guard provides you with the means to
overcome the native limitation of SQL Apply: Extended Datatype Support (EDS).5 It does it by
allowing you to fire triggers at the logical standby database as changes are being applied to the
maintained tables. Now usually triggers are disabled in the context of SQL Apply processes. Why?
Say, for example, that you have a table HR.EMPLOYEES in the primary database, with a trigger
defined such that every time a new employee is added in the table, an entry is inserted into
IT.EMPLOYEES to start a work order to allocate a new computer for the employee. So in the redo
stream, you will see redo records related to the original insert to HR.EMPLOYEES followed by a
triggered insert to IT.EMPLOYEES.

You obviously do not want SQL Apply to fire the trigger at the logical standby database
when it inserts the row in the HR.EMPLOYEES table, since it is going to encounter the insert to

4 We realize that this is vague. However, whether the rate is high or low depends so much on your data and
hardware configuration that we are unable to be more specific.
5 See the MAA paper “Extended Datatype Support: SQL Apply and Streams” at www.oracle.com/technology/
deploy/availability/pdf/maa_edtsoverview.pdf.

Myth Buster: Standard Log-based Replication Can Give You
an Equivalent to Logical Standby – Part 3
Third-party replication products do not have the ability to disable firing of the triggers. So to
deploy them, you will have to disable the triggers yourself. This can be problematic,
however, since on a role transition, before applications can connect to the new primary
database, you will have to run a PL/SQL procedure to enable all triggers that you had
previously disabled. This increases your downtime.

www.oracle.com/technology/deploy/availability/pdf/maa_edtsoverview.pdf.
www.oracle.com/technology/deploy/availability/pdf/maa_edtsoverview.pdf.

136 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 4: Logical Standby 137

the IT.EMPLOYEES in the redo log anyway. However, you do want the trigger to be present at the
logical standby database, in case you switchover or failover to it.

So what does this have to do with replicating unsupported data types? Well, a traditional
DML trigger has what Oracle calls the fire_once_only property: the RDBMS fires them only
when a regular user process issues a DML operation. These triggers are automatically disabled in
the context of SQL Apply processes. However, you can create a trigger and set the fire_once_
only property to FALSE.6 In this case, Oracle RDBMS will fire the trigger no matter which
process is issuing the DML.

Now that you know you can write a trigger that will also fire at the logical standby database
in the context of the SQL Apply processes, let’s explore how it can be used to maintain an
otherwise unsupported table.7 For each table you want to replicate using triggers that fire at the
logical standby, you will need to create three schema objects:

 A logging table ■ This will be used to capture the transformed modification to the base
table such that SQL Apply can replicate the logging table.

 A base table trigger ■ This will fire at the primary database to capture the changes in the
logging table.

 A logging table trigger ■ This will fire at both the primary and the logical standby
databases, but it will need to be written in such a way that it makes modifications only at
the logical standby database.

Let’s look at the characteristics of each of these.

Characteristics of a Logging Table For efficient space management, you need to design the
logging table as a messaging table (so that the logging table size does not grow proportionally
with the base table). Thus, you will need to capture the modification type to the logging table.
The logging table must contain the following columns:

 A column to store the action to be taken at the logical standby database. ■

 Columns to represent each column in the base table: ■

The columns in the base table that can be natively supported by SQL Apply can be ■
identically defined in the logging table.

For unsupported columns in the base table, one or more columns needs to be created ■
in the logging table using data types that are natively supported by SQL Apply.

 User-defined types with attributes of scalar types need to be represented as ■
separate columns using the same scalar types.

 ■ VARRAY columns can be represented as BLOBs. You can convert the VARRAY
into a BLOB using the Oracle-provided operator SYS_ET_IMAGE_TO_BLOB in
the base-table trigger, and back into a VARRAY using SYS_ET_BLOB_TO_IMAGE
inside the logging table trigger.

6 There is no way to create a trigger with the fire_once_only property set to FALSE. You must take three steps
to set the trigger: You create a trigger as disabled. You change the fire_once_only property to FALSE. Then
you enable the trigger.
7 Suppose, for example, that you have a table that contains one or more columns of the unsupported data types.

Chapter 4: Logical Standby 137

 SDO_GEOMETRY ■ columns can be represented as a character large object (CLOB).
Use the TO_WKTGEOMETRY in the base table trigger and FROM_WKTGEOMETRY
inside the logging table trigger. Both procedures are defined in the SDO_UTIL
package, in the MDSYS schema.

 You need additional columns in the logging table to identify the row of the base table. ■
These are needed to process the UPDATE and DELETE statements correctly. Let’s call
these columns identification columns.

For tables with a primary key, the columns making up the primary key should be the ■
identification columns.

If your table does not have a primary key, but has a non-null unique index, make ■
these columns your identification columns.

If your table does not have either a primary key or non-null unique index, you will ■
need to use all columns in your identification set.8

Characteristics of the Trigger on the Base Table The base table trigger can exist at both the
primary and the logical standby databases. Since this is a regular DML trigger, it will not fire in
the context of a SQL Apply process.

 The trigger should be a regular trigger with the ■ fire_once_only property set to TRUE.

 For any DML on the base table, the trigger should ■

first insert a row in the logging table identifying the operation and logging all values ■
needed to replay the operation inside the logging table trigger at the logical standby
database;

next delete the row from the logging table to prevent the size of the logging table ■
from increasing.

Characteristics of the Trigger on the Logging Table The logging table trigger must have the
following characteristics:

 The ■ fire_once_only property should be set to FALSE.

 The trigger should not perform any changes at the primary database. You can determine ■
whether the trigger needs to perform any action by invoking the dbms_logstdby.is_
apply_server function inside the trigger body.

 The trigger needs to perform the corresponding action in the base table as indicated by ■
the DML_TYPE column in the logging table. If you are working on LOB columns (used
to replicate VARRAY or SDO_GEOMETRY), you will need the trigger to perform a second
UPDATE statement following any insert or UPDATE of the base table.

Example of Trigger-based Replication in Action The following example shows the logging
table definition and trigger source for the EMPLOYEE table in the TEST schema, which contains

8 In this case, your base table better be small in size or have a very low update rate, since you are going to incur the
cost of a full-table scan for every updated/deleted row.

138 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 4: Logical Standby 139

an object column that is the user-defined type NAME_TYP. The table has a primary key defined
on the column ID.

 1. Determine the base table definition and the definition of the user-defined type used by
the table:

SQL> SET LONG 32009
SQL> SELECT DBMS_METADATA.GET_DDL(OBjECT_TYPE => 'TABLE', NAME =>
 'EMPLOYEE', -
 SCHEMA => 'TEST') AS TABLE_DEF FROM DUAL;
TABLE_DEF
--
CREATE TABLE "SYS"."EMP"
 ("ID" NUMBER,
 "NAME" "TEST"."NAME_TYP" ,
 CONSTRAINT "TEST_EMP_PK" PRIMARY KEY ("ID")
 USING …10
 TABLESPACE "TEST_TBS" ENABLE
) …11 TABLESPACE "TEST_TBS"

SQL> SELECT DBMS_METADATA.GET_DDL(OBjECT_TYPE => 'TYPE', NAME =>
'NAME_TYP', -
 SCHEMA => 'TEST') AS TYP_DEF FROM DUAL;

TYP_DEF
--
CREATE OR REPLACE TYPE "TEST"."NAME_TYP" AS OBjECT (
FIRST_NAME VARCHAR2(32),
LAST_NAME VARCHAR2(32));

Since you used DBMS_METADATA.GET_DDL you already know the primary key for the
table: in this case, it consists of one column, ID. The logging table must track the old and
new values of ID (the old value is to determine the row to be modified). If a table does
not have a primary key defined, you will of course need to use a non-null unique index.

Run the following statement on the primary database to create the logging table. SQL
Apply will create the table automatically on the standby database. The logging table
contains only built-in data types supported by SQL Apply. The attributes (first_name,
last_name) from the NAME_TYP user-defined type are represented as separate columns
(log_first_name, log_last_name) in the logging table using the same built-in data
type as the type attribute.

9 We need to set this, since dbms_metadata.get_ddl returns a CLOB, and by default SQL*Plus shows only the
first 80 characters of a CLOB column.
10 For readability, we do not show the complete output here.
11 We have truncated the output here as well.

Chapter 4: Logical Standby 139

All remaining columns from the base table (in our case dept) are represented in the
logging table (log_dept) using the same data type used in the base table.

SQL> CREATE TABLE TEST.LOG_EMPLOYEE (
 ACTION VARCHAR2(1),
 LOG_ID_OLD NUMBER,
 LOG_ID_NEW NUMBER,
 LOG_FIRST_NAME VARCHAR2(32),
 LOG_LAST_NAME VARCHAR2(32),
 LOG_DEPT NUMBER);

SQL> ALTER TABLE ADD CONSTRAINT TEST_LOG_EMP_PK PRIMARY KEY (LOG_ID_OLD);

 2. Create the base table trigger that will be fired on the primary database for any DML
against the base table (TEST.EMPLOYEE in our example). The trigger will insert a row in
the logging table for each row modified on the base table.

SQL> CREATE OR REPLACE TRIGGER TEST.EMPLOYEE_PRIMARY_TRIG
 AFTER DELETE OR INSERT OR UPDATE ON EMPLOYEE FOR EACH ROW DISABLE12
DECLARE
L_THIS_ROW ROWID := NULL;
BEGIN

-- INSERT: 'I', LOG_ID_OLD AND LOG_ID_NEW BOTH GET THE SAME VALUE
IF INSERTING THEN
 -- INSERT (ACTION = 'I'):
 INSERT INTO TEST.LOG_EMPLOYEE VALUES ('I' , :NEW.ID, :NEW.ID, :NEW.ID,
 :NEW.NAME.FIRST_NAME, :NEW.NAME.LAST_NAME, :NEW.DEPT)
 RETURNING ROWED INTO L_THIS_ROW;
ELSIF UPDATING THEN
-- UPDATE (ACTION = 'U'): LOG_ID_OLD AND LOG_ID_NEW ARE DIFFERENT
 INSERT INTO TEST.LOG_EMPLOYEE VALUES ('U' , :NEW.ID, :NEW.ID,
 :NEW.NAME.FIRST_NAME, :NEW.NAME.LAST_NAME, :NEW.DEPT)
 RETURNING ROWID INTO L_THIS_ROW;
ELSIF DELETING THEN
 -- DELETE (ACTION = 'D'): AND WE ONLY NEED LOG_ID_OLD VALUE TO BE LOGGED
 INSERT INTO TEST.LOG_EMPLOYEE(ACTION, LOG_ID_OLD) VALUES ('D', :OLD.ID);
END IF;
-- DELETE THE ROW FROM THE LOGGING TABLE.
-- THE STANDBY TRIGGER WILL NOT FIRE ON THE DELETE.
DELETE FROM TEST.LOG_EMPLOYEE WHERE ROWED = L_THIS_ROW;
END;
/

12 You need to create this as disabled in order to synchronize the capturing of the changes with the instantiation of
the unsupported tables at the logical standby database.

140 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 4: Logical Standby 141

 3. Creating the logging table trigger. You can create it at the primary database and have SQL
Apply replicate it automatically. It is fired on the logical standby database for any DML
against the logging table (EMPLOYEE_LOG in this example) that occurs on the standby
database.

CREATE OR REPLACE TRIGGER TEST.EMPLOYEE_STANDBY_TRIG
AFTER INSERT OR UPDATE ON TEST.EMPLOYEE_LOG
FOR EACH ROW BEGIN
-- ONLY RUN ON STANDBY DATABASE
IF DBMS_LOGSTDBY.IS_APPLY_SERVER() THEN
 IF INSERTING THEN
 CASE :NEW.ACTION
 -- IF INSERT ACTION, INSERT THE NEW ROW
WHEN 'I' THEN
INSERT INTO PLAYERS VALUES (:NEW.LOG_ID_NEW,
NAME_TYP(:NEW.LOG_FIRST_NAME, :NEW.LOG_LAST_NAME),
:NEW.LOG_DEPT);
-- IF UPDATE ACTION, THEN UPDATE ROW IN BASE TABLE
WHEN 'U' THEN
 UPDATE TEST.EMPLOYEE E SET
 E.ID = :NEW.LOG_ID_NEW,
 E.NAME.FIRST_NAME = :NEW.LOG_FIRST_NAME,
 E.NAME.FIRST_NAME = :NEW.LOG_LAST_NAME,
 E.DEPT = :NEW.LOG_DEPT
 WHERE E.ID = :NEW.LOG_ID_OLD;
-- IF DELETE ACTION, THEN DELETE ROW FROM BASE TABLE
WHEN 'D' THEN
 DELETE FROM PLAYERS WHERE ID = :NEW.LOG_ID_OLD;
END CASE;
END IF;
END IF;
END;
/

 4. Set the fire_once_only property of the logging table trigger to FALSE. You need to do
this on both the primary and the logical standby databases.

SQL> ExECUTE DBMS_DDL.SET_TRIGGER_FIRING_PROPERTY (-
 SCHEMA_NAME => 'TEST', -
 TRIGGER_NAME => 'EMPLOYEE_STANDBY_TRIG', -
 FIRE_ONCE => FALSE);

 5. Get a snapshot of TEST.EMPLOYEE from the primary database, and enable the logging
table trigger while keeping the table locked. You will need to use SQL*Plus sessions in
the database:

A. (SESSION#1) LOCK THE TABLE, SO THAT NOTHING CAN UPDATE IT. THIS

STATEMENT WILL WAIT FOR TRANSACTIONS THAT ARE IN THE MIDDLE OF UPDATING

THE TABLE TO COMMIT OR ROLLBACK, BEFORE RETURNING.

SQL> LOCK TABLE TEST.EMPLOYEE IN SHARE MODE;

Chapter 4: Logical Standby 141

B. (SESSION#1) WE NEED TO SWITCH THE LOGFILE HERE, TO GET THE SCN TO BUMP UP

SQL> ALTER SYSTEM SWITCH LOGFILE;

C. (SESSION#1) WE CAN NOW QUERY V$DATABASE TO GET THE CURRENT SCN OF THE DATABASE

SQL> SELECT CURRENT_SCN FROM V$DATABASE;

CURRENT_SCN

52018672

D. (SESSION#2) ENABLE THE LOGGING TABLE TRIGGER

SQL> ALTER TRIGGER TEST.EMPLOYEE_PRIM_TRIG ENABLE;

E. (SESSION#1) ISSUE COMMIT TO RELEASE THE LOCK. SO THE WRITE OUTAGE ON THE TABLE

IS MINIMAL.

SQL> COMMIT; -- RELEASE THE LOCK

F. (SESSION#1) USE THE SCN OBTAINED IN STEP C, TO ExPORT THE CONTENTS OF THE TABLE

USING THE FLASHBACK_SCN CLAUSE OF DATAPUMP ExPORT

SQL> ExPDP TEST/TEST TABLES=EMPLOYEE DIRECTORY=DPUMP_DIR1

DUMPFILE=EMP_SCN.DMP

FLASHBACK_SCN = 52018672

 6. Import the data for TEST.EMPLOYEE at the logical standby database:

SQL> IMPDP TEST/TEST TABLES=EMPLOYEE DIRECTORY=DPUMP_DIR1
DUMPFILE=EMP_SCN.DMP

 7. Restart SQL Apply

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;

Customizing Your Logical Standby Database
(or Creating a Local Dataset at the Logical Standby)
Now that you know how to determine what dataset your logical standby database is maintaining,
it is time to explore the capabilities that made you want to deploy a logical standby database in
the first place: the ability to customize it to offload processing from the primary database.

Creating Materialized Views on the Logical Standby Database
SQL Apply does not replicate any DDLs related to the materialized views (MVs) or MV logs.13
However, you are free to create MVs and MV logs on maintained tables at the logical standby
database, and these local MVs will be refreshed in a way that you expect: On-commit refresh will
be triggered as SQL Apply processes commit a transaction with modifications to a base table;

13 However, since a logical standby is created from a physical standby, the MVs and MV logs that were created at
the primary database before you converted your physical standby database into a logical standby will remain in the
logical standby database.

142 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 4: Logical Standby 143

on-demand incremental or full refreshes can be scheduled at the logical standby database using
DBMS_SCHEDULER or you can issue the refresh directly.

SQL> ExECUTE DBMS_RNVIEW.REFRESH (-
 LIST => 'CUSTOMER.TRADE_TRACK_MV', METHOD => 'F');

Yes, it is that simple!

Creating Scheduler Jobs on the Logical Standby Database
You can create a scheduler job on the logical standby in the usual way. However, you need to
know a little bit more about DBMS_JOBS and DBMS_SCHEDULER and their interaction with the
logical standby database.

Jobs created with the DBMS_JOBS package at the primary are replicated automatically on
the logical standby database. This way, the jobs are available on the logical standby when you
switchover or failover to it. You can also create local jobs on your logical standby database.

Jobs created with the DBMS_SCHEDULER package at the primary database are not replicated
to the logical standby database. However, jobs created with DBMS_SCHEDULER are role-aware.
By default, scheduler jobs created on a database inherit the role of the database, so scheduler jobs
created at the primary database will have PRIMARY as their database_role and those created at
the standby database will have LOGICAL STANDBY as their database_role attribute. A job can
become executable only when its database_role matches the attribute in the V$DATABASE
view. Suppose, for example, that you have two databases, Matrix and Matrix_DR0, with Matrix
being the current primary and Matrix_DR0 being the current logical standby database.

 Case 1: ■ You want scheduler job REFRESH_TRADE_TRACK_MV to run on the primary
regardless of which one of the databases is the primary database:

(A) AT MATRIx:
ExECUTE DBMS_SCHEDULER.CREATE_jOB (jOB_NAME => 'REFRESH_TT_MV_PRIM', -
 jOB_TYPE => 'PLSQL_BLOCK', -
 ENABLED => FALSE, AUTO_DROP => FALSE, START_DATE => SYSDATE, -
 LIST => 'CUSTOMER.TRADE_TRACK_MV',-
 REPEAT_INTERVAL => 'FREQ=HOURLY;INTERVAL=>12' , -
 jOB_ACTION => 'BEGIN DBMS_MVIEW.REFRESH(-
 LIST => 'CUSTOMER.TRADE_TRACK_MV', METHOD => 'F'); END; ');
SQL> ExECUTE DBMS_SCHEDULER.SET_ATTRIBUTE(NAME => 'REFRESH_TT_MV_PRIM', -
 ATTRIBUTE => 'ENABLED', VALUE => 'TRUE');
(B) AT MATRIx_DR0:
SQL> ExECUTE DBMS_SCHEDULER.CREATE_jOB ((jOB_NAME => 'REFRESH_TT_MV_STDBY', -
 jOB_TYPE => 'PLSQL_BLOCK', -
 ENABLED => FALSE, AUTO_DROP => FALSE, START_DATE => SYSDATE, -
 REPEAT_INTERVAL => 'FREQ=HOURLY;INTERVAL=>12', -
 jOB_ACTION => 'BEGIN DBMS_MVIEW.REFRESH(-
 LIST => 'CUSTOMER.TRADE_TRACK_MV', METHOD => 'F'); END; ');
SQL> ExECUTE DBMS_SCHEDULER.SET_ATTRIBUTE(NAME => 'REFRESH_TT_MV_STDBY', -
 ATTRIBUTE => 'DATABASE_ROLE', VALUE => 'PRIMARY');
SQL> ExECUTE DBMS_SCHEDULER.SET_ATTRIBUTE(NAME => 'REFRESH_TT_MV_STDBY', -
 ATTRIBUTE => 'ENABLED', VALUE => 'TRUE');

Chapter 4: Logical Standby 143

Note that at the logical standby Matrix_DR0, you needed an additional step of changing
the database_role attribute for the job to PRIMARY as it will default to the role of the
database, which is currently LOGICAL STANDBY.

 Case 2: ■ You want scheduler job CHECK_SQL_APPLY_PROGRESS to run on the database
that happens to be the logical standby database at any given moment:

SQL> CREATE TABLE SYSTEM.SQL_APPLY_PROGRESS_GATHER AS
 SELECT SYSDATE, TIME_COMPUTED, NAME, VALUE FROM V$DATAGUARD_STATS;
SQL > CREATE OR REPLACE PROCEDURE SYSTEM.SQL_APPLY_PROGRESS_GATHER AS
BEGIN
 ExECUTE IMMEDIATE 'INSERT INTO SYSTEM.SQL_APPLY_PROGRESS_GATHER
 SELECT SYSDATE, TIME_COMPUTED, NAME, VALUE FROM V$DATAGUARD_STATS;
 COMMIT;
END;
/

At both Matrix and Matrix_DR0:

SQL> ExECUTE DBMS_SCHEDULER.CREATE_jOB (jOB_NAME => 'SQL_APPLY_STATS', -
 jOB_TYPE => 'PLSQL_BLOCK', -
 ENABLED => FALSE, AUTO_DROP => FALSE, START_DATE => SYSDATE, -
 REPEAT_INTERVAL => 'FREQ=MINUTELY;INTERVAL=>15', -
 jOB_ACTION => 'BEGIN SYSTEM.SQL_APPLY_PROGRESS_GATHER; END; ');
SQL> ExECUTE DBMS_SCHEDULER.SET_ATTRIBUTE(NAME => 'SQL_APPLY_STATS', -
 ATTRIBUTE => 'DATABASE_ROLE', VALUE => 'STANDBY');
SQL> ExECUTE DBMS_SCHEDULER.SET_ATTRIBUTE(NAME => 'SQL_APPLY_STATS', -
 ATTRIBUTE => 'ENABLED', VALUE => 'TRUE');

Note in this example that we could have created the job as ENABLED when we created it
at Matrix_DR0 and skipped the next two steps, since it would have inherited the correct
database_role attribute there.

 Case 3: ■ You want scheduler job UPDATE_BILLING_SUMMARY to run on only Matrix_DR0
and only when Matrix_DR0 is a logical standby database:

AT MATRIx_DR0
SQL> ExECUTE DBMS_SCHEDULER.CREATE_jOB (-
 jOB_NAME => 'UPDATE_BILLING_SUMMARY', jOB_TYPE => 'PLSQL_BLOCK', -
 ENABLED => FALSE, AUTO_DROP => FALSE, START_DATE => SYSDATE, -
 REPEAT_INTERVAL => 'FREQ=HOURLY;INTERVAL=>24', -
 jOB_ACTION => 'BEGIN SYSTEM.UPD_BILLING_SUMMARY; END; ');

 Case 4: ■ You want scheduler job UPDATE_BILLING_SUMMARY to run only on Matrix_
DR0, regardless of the role of the database:

AT MATRIx_DR0
SQL> ExECUTE DBMS_SCHEDULER.CREATE_jOB (-
 jOB_NAME => 'UPDATE_BILLING_SUMMARY', jOB_TYPE => 'PLSQL_BLOCK', -
 ENABLED => FALSE, AUTO_DROP => FALSE, START_DATE => SYSDATE, -
 REPEAT_INTERVAL => 'FREQ=HOURLY;INTERVAL=>24', -
 jOB_ACTION => 'BEGIN SYSTEM.UPD_BILLING_SUMMARY; END; ');

144 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 4: Logical Standby 145

SQL> ExECUTE DBMS_SCHEDULER.CREATE_jOB (-
 jOB_NAME => 'UPDATE_BILLING_SUMMARY', jOB_TYPE => 'PLSQL_BLOCK', -
 ENABLED => FALSE, AUTO_DROP => FALSE, START_DATE => SYSDATE, -
 REPEAT_INTERVAL => 'FREQ=MINUTELY;INTERVAL=>15', -
 jOB_ACTION => 'BEGIN SYSTEM.SQL_APPLY_PROGRESS_GATHER; END; ');
SQL> ExECUTE DBMS_SCHEDULER.SET_ATTRIBUTE(NAME => 'UPDATE_BILLING_
SUMMARY', -
 ATTRIBUTE => 'DATABASE_ROLE', VALUE => 'PRIMARY');
SQL> ExECUTE DBMS_SCHEDULER.SET_ATTRIBUTE(NAME => 'UPDATE_BILLING_
SUMMARY', -
 ATTRIBUTE => 'ENABLED', VALUE => 'TRUE');

Offloading Log-based Replication (Streams Capture) to the Logical Standby
You may be familiar with Oracle Streams capture, which is Oracle’s log-based multi-master
replication solution. Streams capture and apply have a lot in common with Data Guard logical
standby, since both features take advantage of a lot of the common infrastructure inside the
Oracle RDBMS. You can use a logical standby database in conjunction with Streams capture.

Suppose you have an online transaction processing (OLTP) database with a physical and
logical standby, and you need to replicate a table T to a third database. You can of course set up
Streams capture on the primary database. In this case, if you were to failover or switchover to your
physical standby, the Streams capture will continue to run14 on the new primary database.
However, since you already have a logical standby database in the mix, you can simply create the
Streams capture on the logical standby, as long as the table T is being maintained at the logical
standby. This way, you can offload the Streams capture overhead from the primary database. There
will be additional latency in capturing changes, however: when you are running at the logical
standby, the capture process has to wait for the changes to be shipped from the primary to the
logical standby and applied by SQL Apply. In most cases, it is in the order of a few seconds, and in
many cases it is a small price to pay to be able to offload applications from the primary database.

You do need to keep one particular item in mind. If you have only two databases, the primary
(say, Matrix) and a logical standby (say, Matrix_DR0), you will not be able to move the Streams
capture processing from one database to the other as you go through role transitions. For
instance, if you created a Streams capture on Matrix_DR0 when it was a logical standby, the
Streams capture will remain on Matrix_DR0, even when Matrix_DR0 becomes the primary as a
result of a role transition operation such as switchover and failover. For the Streams capture to
continue working on the logical standby, you will need to write a role transition trigger like the
following:

CREATE OR REPLACE TRIGGER STREAMS_AQ_jOB_ROLE_CHANGE1
AFTER DB_ROLE_CHANGE ON DATABASE
DECLARE
CURSOR CAPTURE_AQ_jOBS IS
 SELECT jOB_NAME, DATABASE_ROLE
 FROM DBA_SCHEDULER_jOB_ROLES
 WHERE jOB_NAME LIKE 'AQ_jOB%';

14 The physical standby database has the same DBID and global database name as the primary database, so the
Streams capture will not even realize that a switchover or failover has happened underneath it. It would look like
someone simply bounced the database instances.

Chapter 4: Logical Standby 145

U AQ_jOBS%ROWTYPE;
MY_DB_ROLE VARCHAR2(16);
BEGIN
 DBMS_SYSTEM.KSDWRT(DBMS_SYSTEM.ALERT_FILE, 'CHANGING ROLE OF AQ jOBS');
 CURRENT_DB_ROLE := DBMS_LOGSTDBY.DB_ROLE();
 OPEN AQ_jOBS;
 LOOP
 FETCH AQ_jOBS INTO U;
 ExIT WHEN AQ_jOBS%NOTFOUND;

 IF (U.DATABASE_ROLE != MY_DB_ROLE) THEN
 DBMS_SCHEDULER.SET_ATTRIBUTE(U.jOB_NAME,
 'DATABASE_ROLE',
 MY_DB_ROLE);

 DBMS_SYSTEM.KSDWRT(DBMS_SYSTEM.ALERT_FILE,
 'AQ jOB ' || U.jOB_NAME || ' CHANGED TO ROLE ' || MY_DB_ROLE);
 END IF;
 END LOOP;
 CLOSE AQ_jOBS;

ExCEPTION
 WHEN OTHERS THEN
 BEGIN
 DBMS_SYSTEM.KSDWRT(DBMS_SYSTEM.ALERT_FILE,
 'FAILED TO CHANGE ROLE OF AQ jOBS');
 RAISE;
 END;
END;

Understanding the Operational Aspects of a Logical Standby
Before delving into the operational aspects of SQL Apply, it helps to get an idea about how it is
implemented. So we will take a brief detour inside the internals of SQL Apply.

Looking Inside SQL Apply
SQL Apply is the layer of code (and also the process group) that maintains the Oracle logical
standby database. Three software components are responsible for maintaining a logical standby
database: the redo transport service that ships the redo stream of the primary database and
performs gap resolution, the mining service that mines the redo and reconstructs the equivalent
SQL statements and original transaction grouping, and the apply service that schedules the mined
transactions for concurrent application and actually applies them. A fourth service is hidden in
plain sight—the core database engine that performs the modification as directed by the apply
service. Although this may be obvious to everyone, we mention it to highlight an important fact
about a logical standby database: it is an independent database, although it serves as a standby to
the primary database, and as a result all aspects of best practices related to database tuning and
management that you generally employ in keeping your database running without interruption
still apply in the context of a logical standby database.

146 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 4: Logical Standby 147

Stating it differently, you should have a regular backup scheduled for your logical standby
database, you should have database flashback enabled at your logical standby, and the first place
to go to analyze your performance problem should still be the Automated Workload Repository
(AWR) and Active Session History (ASH) reports.

Since this chapter is focused on logical standby, we will look at the mining and apply engines
under SQL Apply in more detail. The mining and apply engines form a producer-consumer pair,
with the mining engine producing transactions to be consumed by the apply engine. The mining
engine transforms the redo records into logical change records (LCRs) and stages them in System
Global Area (SGA) memory. You can specify how much SGA memory will be used by SQL
Apply to stage the LCR. Two other producer-consumer setups exist in the whole SQL Apply
processing: one formed by the transport services (producer) and the mining engine (consumer),
and the other formed by the apply engine (producer) and the rest of the RDBMS code (consumer).
So if you have a RDBMS tuning issue or a saturated I/O system (we are aggregating the
hardware under RDBMS here), the apply engine will become slow. In that case, although you
will notice the slowdown in SQL Apply, the underlying problem is the system or I/O load. So
keep in mind all three of these producer-consumer pipelines and look at all of them when
trying to tune SQL Apply for your logical standby database. Remember that it is, after all, only
another database.

Understanding the Process Architecture of SQL Apply
As we said earlier, SQL Apply consists of two components: the mining engine and the apply
engine. When you issue the alter database start logical standby apply statement,
the first background process to start is the logical standby coordinator process (LSP0). This is the
COORDINATOR process for SQL Apply. This in turn spawns two sets of processes: the mining
processes (in 11g these have the prefix ora_ms, implying mining servers) and the apply processes
(in 11g these have the prefix ora_as, implying apply servers).

The mining engine comprises three types of processes:

 READER ■ There is only one reader process. Its job is to read the redo stream (either
from the archived logs or from the standby redo log file [SRL]). It does not do any
transformation of the redo records except to make a copy in its shared buffer.

 PREPARER ■ There can be multiple preparers. Data Guard uses a step function to
determine the right number of preparers with a step of 20. So for the first 20 appliers,
only a single preparer will be spawned. A second preparer will be spawned if you were
to ask for 21 to 40 appliers, and so on. Each preparer reads a set of redo records and
does the initial transformation of the redo records into an LCR. A single redo record can
generate multiple LCRs (think of a direct load block).

 BUILDER ■ There is only one builder process. The builder is the process interfacing
with the pipeline between the mining and the apply engines. The builder handles three
different kinds of tasks:

Grouping LCRs into transactions. ■

Merging of multiple LCRs into a single LCR (in case of chained rows for instance). ■

Performing administrative tasks such as paging out memory, advancing the log ■
mining checkpoints, and so on. We will talk about these administrative tasks shortly.

Chapter 4: Logical Standby 147

The apply engine comprises three types of processes (we include the COORDINATOR
process here as well, since it mostly does apply-specific work):

 ANALYZER ■ There is only one such process. Its job is to fetch transactions from the
mining engine and compute a safe schedule that can be used to order the commits of the
transaction.

 COORDINATOR ■ There is only one such process. It coordinates between the appliers,
assigning work to the APPLIER processes and coordinating commit ordering.

 APPLIER ■ There can be multiple APPLIER processes. These are the true workhorses inside
the SQL Apply engine, and they actually replicate the changes.

Where can you find information about the processes? Look at v$logstdby_process view.
In the next section, we discuss a few aspects of how the mining and apply engines work.

Understanding the Memory Management Inside SQL Apply
Since the overall SQL Apply engine can be considered a producer-consumer setup with the LCR
cache in the middle used as the pipeline, the salient memory-related issue is how the memory
gets managed. As we indicated earlier, you can set the size allocated to LCR cache. A good rule
of thumb in today’s machines with a large amount of shared pools is to set the memory allocated
to the LCR cache to 200MB, like so:

SQL> ExECUTE DBMS_LOGSTDBY. APPLY_SET ('MAx_SGA', 200);

Let’s look in more detail at the organization of the LCR cache.
As shown in Figure 4-1, the LCR cache is divided into four main components: one that holds

the redo records (the size of this is constant), another where the redo records are transformed into
LCRs (but not yet grouped into transactions), a third where LCRs are grouped into transactions
and are ready for consumption by the apply component, and a fourth section that is made up of
unused memory. The reader process reads from the redo logs (archived logs or the SRL) and fills

FIGURE 4-1. Inside the LCR cache

LCRs grouped into transactions
(apply component consumes these)

LCRs being worked on Unused memory

Redo Records Read from Logs/SRLs

LCR CACHE

148 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 4: Logical Standby 149

in the region allocated for redo records. The preparers read the redo records and perform the first
level of transformation from redo record to LCR. The builder process moves the LCRs into the
apply-visible section of the LCR cache by grouping LCRs into transactions and performing
second-level transformation such as chained row processing, merging LCRs related to LOB DMLs,
and so on.

How is this memory managed? Based on your setting of MAx_SGA, the mining engine will start
consuming memory from the LCR cache. Depending on the workload you are running at the
primary database and the redo generation rate, you may not see the entire memory being used by
SQL Apply. But on a very active system with a high redo generation rate, the mining engine will
consume all of the LCR cache and fill it with transactions to be applied by the apply engine.
Usually the mining component is much faster than the apply component (hence the ratio of 20:1
between the appliers and preparers) and will fill the entire memory allocated to LCR cache before
the appliers have a chance to start consuming the prepared transactions. The mining engine then
backs off and goes to sleep until the appliers consume and release enough transactions so that
the LCR cache is 50 percent empty. At this point, the mining processes will wake up and look for
additional redo records to transform into LCRs and group into transactions. If you want to find out
how much of the MAx_SGA is actually getting used by SQL Apply processes, you can issue the
following query:

SQL> SELECT USED_MEMORY_SIzE FROM V$LOGMNR_SESSION
 WHERE SESSION_ID = (SELECT VALUE FROM V$LOGSTDBY_STATS
 WHERE NAME = 'SESSION ID');
USED_MEMORY_SIzE

167600

Why do you need to issue the subquery to restrict the output to a single session_id? Refer
back to the section, “Offloading Log-based Replication (Streams Capture) to the Logical Standby.”
The core mining engine15 used underneath SQL Apply is also used underneath Streams capture,
and mining sessions active for a Streams capture will also show up in the shared v$logmnr_
session view. If you were to run this query every few seconds and chart the output, you would
see the memory used by LCR cache increasing up to 95 percent of the MAx_SGA setting and then
gradually reducing until it reaches 50 percent of the MAx_SGA setting before going back up again.

So what happens if you do not allocate enough memory to SQL Apply? You may notice that the
mining engine is paging out memory from LCR cache to disk (system.logmnr_spill$ table).
A moderate amount of paging out is tolerable, but if you have grossly underconfigured the size of

15 The mining engine is also used underneath other Oracle features such as Asynchronous Change Data Capture
(CDC) and underneath the redo-based auditing feature in Oracle Audit Vault.

Setting Various SQL Apply–Related Parameters
You can change almost all aspects of SQL Apply by using dbms_logstdby.apply_set()
without first having to stop SQL Apply. The exception to this rule is the parameter preserve_
commit_order. If you want to change this parameter, you will first need to stop SQL Apply.

Chapter 4: Logical Standby 149

your LCR cache, the performance will deteriorate drastically. Later in this chapter in the section
“Tuning SQL Apply” we discuss how to determine whether page out16 activity is excessive.

Understanding How SQL Apply Uses Checkpoints
Two kinds of checkpoints are used inside SQL Apply. The apply engine has to remember which
transactions it has successfully applied, so that it does not try to apply them again. This is done by
inserting a row identifying the XID17 that was assigned at the primary database into a metadata
table (system.logstdby$apply_progress) as part of the transaction that replicates the
changes done at the primary database. We can hear you screaming already, “Wait! SQL Apply
can run forever. This table will get huge and eat up my whole database!” Yes, it would. But SQL
Apply periodically purges the table by creating a new partition and dropping the old one, and it
remembers an SCN below which all transactions have been successfully applied. This SCN
(shown in v$logstdby_progress.applied_scn) and the rows in system.logstdby$apply_
progress form the apply engine’s checkpoint information.

The mining engine needs to keep more elaborate checkpoint information. Imagine the
following scenario: Some rogue application (one that forgot to log you out of your session even
after it has been left idle for a couple of days) started a write transaction W and left it open for
couple of days. The transaction made a few changes, but it did not commit or roll them back.
Now it is two days later, and you stop SQL Apply. Obviously, SQL Apply could not commit the
changes done by transaction W. It cannot wait indefinitely for W to make up its mind. So it stops
after applying changes such that the database is at a consistent state. Now when you start SQL
Apply again, it really would have to go back to the archived logs where W made its changes and
read two days’ worth of archived logs (most of which is useless work, since W may have made
only one change two days back). But all these inefficiencies are avoided, since SQL Apply would
have checkpointed the changes made by W in one of its metadata tables (system.logmnr_age_
spill$).

The mining engine has a counterpart to v$logstdby_progress.applied_scn and this is
v$logstdby_progress.restart_scn. The mining engine will read only redo logs that contain
redo records with SCN greater than or equal to restart_scn. Since the mining engine’s
checkpoint contains more elaborate information, it has to weigh the costs and benefits related to
such checkpoints. The name LOGMNR_AGE_SPILL$ suggests what is going on underneath: the
mining engine is spilling data based on its age.

You need to keep two things in mind. First, age is a relative thing. If you have a system that is
generating redo at a rate of 100MB/hour, you can say no transaction is old unless it has remained
uncommitted for 10 hours. Why is that? The cost of rereading 1GB worth of redo through the
mining engine and discarding most of it is quite small. It will probably take no more than a minute
to do this. However, if you are working on a system that is generating 10MB/sec, you cannot use
10 hours as your yardstick to determine age, because you may have to read 360GB of redo. So the
mining engine computes age based on how much redo has been generated since the candidate
redo to determine whether a redo record is old. This adapts nicely with the rate of redo generation:
as the redo generation rate waxes and wanes in the primary database, so does the checkpoint
intervals. By default, the mining engine sets the redo threshold to be 5 x MAx_SGA. Thus if you

16 In your interactions with Oracle tech support, you may also encounter the term logminer memory spill. This is
the same as logminer paging out memory from the LCR to the spill tablespace in the database.
17 XID refers to the transaction identifier that is assigned by the Oracle RDBMS to every transaction that modifies
the database.

150 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 4: Logical Standby 151

are running with MAx_SGA size of 200MB (which is a reasonable lower bound for SQL Apply), a
redo record will become a candidate for checkpointing once 1GB of redo has been generated (and
mined by the mining engine) since the time it was mined at the logical standby site.

The second aspect of such a checkpointing scheme is to avoid checkpointing for a large
transaction (a transaction that modifies a large number of rows). Why is this? Well, in a sense, any
transaction is already checkpointed in the redo stream, except it may be done in a sparse manner.
So, ideally, the mining engine should checkpoint only sparse, small transactions and leave large,
dense transactions alone.

Getting back to our scenarios in the last paragraph, suppose you are generating 10MB/sec of
redo with a direct load of 10 million rows in one transaction X. Also assume that each row results
in 200 bytes’ worth of redo, and this large load is interspersed with some small OLTP-like
transactions. Our large load by itself will generate 2GB worth of redo records. According to the
default settings, if we were running with 200MB of MAx_SGA, the mining engine will encounter
1GB of redo from the large load as a candidate for checkpointing. However, SQL Apply’s
checkpointing algorithm detects the fact that transaction X is a large transaction, and it is not
cost-efficient to checkpoint parts of this transaction, so the mining engine will not checkpoint any
data from this transaction. As a result, the restart_scn column in v$logstdby_progress will
get stuck at the SCN at which X started to modify the database, until SQL Apply has successfully
committed all changes made by X. If you notice that v$logstdby_progress.restart_scn is
not moving for a long time, you have likely encountered one or more large transactions, and the
mining engine has suspended its checkpointing until the large transactions have all been
successfully committed.

Understanding Transaction “Chunking” Inside SQL Apply
One important way that SQL Apply differs from most other log-based replication solutions
available for Oracle Database is its ability to apply large transactions even before the transaction
has been committed at the primary database. SQL Apply uses an internal heuristic to determine
whether a transaction is large or not.18 The mining engine delivers a small transaction as a whole
unit, once it encounters the commit record, to the apply engine. Large transactions are divided
into chunks,19 and chunks are delivered to the apply engine as they are filled. It is this ability of
chunking transactions and starting to work on them even before the transaction has committed at
the primary database that sets SQL Apply apart from other replication solutions.

This chunking of transactions has two beneficial effects. First, since chunks can be applied
eagerly (in other words, without having to know whether the transaction will commit or rollback),
the memory consumed by a large transaction can be kept to a minimum as long as you allocate
enough apply processes to the task. Second, it allows for an adequately sized logical standby to
keep its data close to synchronized with the primary database, providing for near–real-time
availability of the data at the logical standby database, regardless of transaction size. Chunking of

18 The threshold value is partly determined by the hidden SQL Apply parameter _EAGER_SIzE, which is defaulted
to 201. So a transaction that does less than or equal to 200 DML operations is deemed to be a small transaction by
SQL Apply.
19 The hidden SQL Apply parameter _EAGER_SIzE also sets the default number of LCRs making up a transaction
chunk. However, not all transaction chunks contain the same number of LCRs. There can be more (for instance,
during a partition load operation on a table with LOB columns) or less (for instance, in case of transactions
involving product data markup language [PDML] operations). So you should not make any assumption about the
number of operations contained within a transaction chunk.

Chapter 4: Logical Standby 151

transactions and its associated optimistic scheduling do have a subtle impact on SQL Apply
performance, and that is the topic of our next subsection.

Understanding How DML Transactions Are Scheduled
SQL Apply allows for two modes of transaction application: one where the commit ordering at
the primary database is maintained strictly at the logical standby (this is the default setting of
transaction scheduling), and the other where the commit ordering is not strictly enforced as long
as no row dependency exists between two transactions. You get the second, less strict setting and
potentially one with more performance, especially if your workload is OLTP-like with small/
medium-sized transactions committing at high rate. You do this with the following statement:

SQL> ExECUTE DBMS_LOGSTDBY.APPLY_SET (NAME => 'PRESERVE_COMMIT_ORDER', -
 VALUE => FALSE);

Note that no matter which mode you set, SQL Apply will preserve transaction boundaries
(changes that committed atomically at the primary database commit atomically at the standby
database) and will honor row dependencies (if two transactions modify the same row, they will
be committed in the same order at the logical standby as they were at the primary database).

NOTE
Many third-party replication solutions do not offer the integrity of the
transaction boundary. The performance numbers that they cite are
often collected when they are violating the integrity of the transaction
(by applying changes that happened together in the context of
multiple transactions).

For some applications, this may be enough. But if you are running the supply chain of a
major retailer, you cannot afford to update the cargo manifest in three different transactions when
it was done in a single transaction at the primary. So what does strict ordering mean? Strict
ordering (or preserving commit order) means that commits are issued and executed in the same
order as in the primary. A valid transaction history (H1) is shown in Table 4-1.

Table 4-2 shows a possible transaction history at the logical standby if the property
preserve_commit_order is set to TRUE. Note that although at the primary database, rows R3
and R4 of table T2 were updated after transaction X has committed, SQL Apply is free to apply
them before it commits X, since X and Y modify disjoint sets of rows. SQL Apply will, however,
delay the commit of transaction Y and issue it after X has been successfully committed, since we
have directed it to preserve the commit ordering encountered at the primary database.

Let’s now see how this will differ if preserve_commit_order was set to FALSE (see Table 4-3).
Note that in this case, SQL Apply can go ahead and commit Y, since transactions X and Y are
truly independent.20 Had they not been independent (or, in other words, there is a row that both X
and Y modified), the scheduling of commits would need to be identical regardless of the
preserve_commit_order setting. In other words, if true row dependency exists between two
transactions, the setting of the preserve_commit_order parameter does not matter; we always
have to honor commit ordering that we saw at the primary database.

20 In other words, they do not modify overlapping sets of rows.

152 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 4: Logical Standby 153

Time (or SCN) Transaction X Transaction Y

10 Update Row R1 of Table T1 Insert Row R1 of Table T2

20 Insert Row R2 of Table T2

30 Update Row R2 of Table T1

40 Commit X

50 Insert Row R3 of Table T2

60 Insert Row R4 of Table T2

70 Commit Y

TABLE 4-1. An Example Transaction History H1 at the Primary Database

Time (or SCN) APPLIER#1 APPLIER#2

100 Update Row R1 of Table T1 Insert Row R1 of Table T2

110 Insert Row R2 of Table T2

120 Insert Row R3 of Table T2

130 Insert Row R4 of Table T2

140 Update Row R2 of Table T1

150 Commit X

160 Commit Y

TABLE 4-2. An Example Transaction History (Associated with H1) at the Logical Standby with
preserve_commit_order Set to TRUE

Time (or SCN)
APPLIER#1
(Applying X)

APPLIER#2
(Applying Y)

100 Update Row R1 of Table T1 Insert Row R1 of Table T2

110 Insert Row R2 of Table T2

120 Insert Row R3 of Table T2

130 Insert Row R4 of Table T2

140 Update Row R2 of Table T1 Commit Y

150 Commit X

TABLE 4-3. An Example Transaction History (Associated with H1) at the Logical Standby with
preserve_commit_order Set to FALSE

Chapter 4: Logical Standby 153

This brings us to the next topic of discussion: How does SQL Apply compute row
dependency? It does this by computing several hash values for each LCR, one for each unique
constraint on the table of interest, and then uses the hash values to determine whether two LCRs
have any collisions. If so, the transaction with the later commit SCN will wait for the first
transaction to commit before applying the change that collided with the former. SQL Apply
computes the dependency for all complete transactions and for some of the chunks of the large
transactions. One reason it does not compute dependencies for all LCRs is the fundamental issue
in software engineering (and all other disciplines of engineering): there is always a cost associated
with every computation. In this case, the cost is paid in memory consumption. You need memory
to stage the dependency computation, and you need memory to stage the dependency graph. So
SQL Apply uses a different strategy to handle large transactions. It assumes that if two transactions
X and Y are ongoing at the same time, Oracle row-locking strategy must have prevented them
from acquiring the same row lock, and hence they must be independent. (This is not strictly true,
since Oracle does allow transactions to lock rows with “select for update” and then release them
by issuing a rollback to savepoint statement.) So dependency computation is useful only when
you are trying to apply a change that occurs after the commit of another transaction. In this case,
you need the dependency to tell you whether you need to wait for the other transaction to
commit first (as in Case 2) or whether you can go ahead without having to wait for the other
transaction to commit (Case 1). So what do you do when you have suspended dependency
computation for a given transaction? You wait for that transaction to commit before you can
schedule any LCR that occurred after the commit of that transaction. This is essentially an apply
barrier, and it is raised any time a large transaction commits.

Understanding How DDL Statements Are Handled Inside SQL Apply
Now that we have explored how SQL Apply schedules DML transactions, it is time to look at
DDL scheduling. Two aspects of DDL transactions are important to keep in mind: DDL
statements act as the barrier synchronization point in the context of SQL Apply, and DDL
statements are scheduled serially by SQL Apply (with the exception of Create Table As
Select statements, which may be scheduled concurrently).

Myth Buster: Third-party Replication Products Provide Better Latency,
Because the Mining Is Usually Done at the Primary Site
This myth has the potential for being true only for small transactions. Remember that the
latency of interest is not just in how quickly the data is captured, but when it is applied. In
almost all cases, third-party replication products do not have the eager transaction
scheduling feature that’s available in SQL Apply. Thus the response time for a large
transaction involving millions of rows will be quite high. Assuming that a transaction will
take equal time to apply both at the primary and the standby (a good assumption for data
loads), if you start a data load that takes 2 hours to complete, most third-party replication
solutions will not start applying the transaction until they have seen the commit of the large
transaction. So if the load completes at 12 p.m. at the primary, that data will be available at
2 p.m. at your standby—not a good place to be in terms of data loss. SQL Apply will start
applying the transaction as soon as it is deemed to be large and will have the data available
at the standby much faster.

154 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 4: Logical Standby 155

Let’s look at the barrier synchronization aspect of DDL transactions. Although this seems like
an obscure academic fact, it turns out that you can use this to your advantage to ameliorate the
effects of serial DDL execution. Whenever the mining engine encounters a commit redo for a DDL
transaction that it needs to examine and apply to its internal data dictionary (also known as the
LogMiner dictionary), it raises a barrier. The barrier condition is not satisfied until all transactions
that have committed before the commit of the DDL transaction have been applied successfully.

Until the barrier condition is satisfied, no new transactions that committed after the DDL
transaction are handed out to the ANALYZER process. Once the barrier condition is satisfied, the
mining engine applies the DDL to the LogMiner dictionary, lifts its barrier, and then hands the
DDL transaction to the ANALYZER process to be scheduled. The mining engine barrier shows up
in the v$logstdby_process view for the BUILDER process:

SQL> SELECT STATUS_CODE AS SC, STATUS FROM V$LOGSTDBY_PROCESS
 WHERE TYPE = 'BUILDER' ;
SC STATUS
----- ---
44604 BARRIER SYNCHRONIzATION ON DDL WITH xID 1.15.256 (WAITING ON 17
 TRANSACTIONS)

This tells you that the mining engine is waiting to apply transaction 1.15.256 and that
17 transactions need to be applied for the barrier condition to be satisfied. The apply engine also
enters a barrier synchronization point when it receives the DDL transaction. This means although
the mining engine’s barrier is lifted and the ANALYZER process can start receiving transactions that
committed after the DDL, the COORDINATOR process will not assign any transaction until the
DDL transaction (except for Create Table As Select statements) at hand has been applied
successfully. What does this mean? It means that when a DDL transaction is getting applied, all
DML transactions that committed before the DDL have been successfully applied and no transaction
chunk that committed after the DDL transaction (or handed to the ANALYZER after the DDL
transaction, since there can be two transactions that commit at the same SCN) is in process of
being applied by an APPLIER process.

From this description, it follows that SQL Apply schedules DDL statements (other than
Create Table As Select statements) serially. This is done to maintain safety, but it does have
an impact. Suppose you performed partition maintenance operations on two tables concurrently
at the primary, and each took one hour to complete. At the logical standby site, they will be
scheduled serially, and hence will take a total of two hours to complete. Thus it is important to
offload large reorganization operations to off-peak hours. SQL Apply also allows you to skip
specific DDL operations if you would like to do them out-of-band. We can take advantage of the
barrier synchronization that we discussed earlier to perform DDL statements concurrently
out-of-band without violating safety. Remember the following points:

 The DDLs that you are planning to perform concurrently should be safe for concurrent ■
operations. Examples of such operations are index rebuilds on separate tables, segment
shrink operations on separate tables, and so on.

 You have control over such DDLs and know that the DDLs are not issued by some ■
application unbeknownst to you during the normal processing hours. This is unlikely,
however, since you would have noticed the slowdown.

Chapter 4: Logical Standby 155

So the idea is to stop SQL Apply at the right point, perform the operations concurrently and
out-of band at both the primary and the logical standby, and then restart SQL Apply so that it
does not try to execute the DDL statements itself.

 1. First make sure that SQL Apply does not execute INDEx REBUILD statements itself.
Suppose you have identified two large indexes, TRADE_HISTORY_IDX and PAYMENT_
HISTORY_IDX, both in the CUSTOMER schema, that are candidates for nightly rebuilds.
You can direct SQL Apply not to apply ALTER INDEx statements for these two indexes
with the following statements:

SQL> A1TER DATABASE STOP LOGICAL STANDBY APPLY;
SQL> ExECUTE DTMS_LOGSTDBY.SKIP(STMT => 'ALTER INDEx', -
 SCHEMA_NAME => 'CUSTOMER', OBjECT_NAME => 'TRADE_HISTORY_IDx');
SQL> ExECUTE DTMS_LOGSTDBY.SKIP(STMT => 'ALTER INDEx', -
 SCHEMA_NAME => 'CUSTOMER', OBjECT_NAME => 'PAYMENT_HISTORY_IDx');

 2. Next you need to make sure that SQL Apply stops before it encounters such an index
rebuild operation. You can design it by always performing a sentinel DDL at the primary
database before you rebuild the indexes, and registering a skip handler at the logical
standby so that SQL Apply will stop when it sees the sentinel DDL. To keep the discussion
simple, assume that the sentinel DDL is a TRUNCATE operation, so that you can issue it
over and over again.

Create the sentinel table first:

SQL> CREATE TABLE TEST.STOP_SQL_APPLY(A NUMBER);

At the logical standby, you need to do two things: stop SQL Apply when you see the
TRUNCATE operation on the test.stop_sql_apply table, and once the index rebuilds have
been done successfully and SQL Apply has been restarted, you need to make sure you do
not stop again on encountering the TRUNCATE table. So you need to write two
procedures at the logical standby: one needs to be invoked before you start the index
rebuild operations at the primary, and the other after the index rebuilds are done at the
logical standby:

SQL> CREATE TABLE TEST.SQL_APPLY_MESG(CHECK_MSG VARCHAR2, MSG_TIME DATE);
SQL> CREATE OR REPLACE PROCEDURE SYS.STANDBY_START_REBUILD AS
BEGIN
 INSERT INTO TEST.SQL_APPLY_MESG VALUES ('STOP', SYSDATE);
 COMMIT;
END;
/
SQL> CREATE OR REPLACE PROCEDURE SYS.STANDBY_END_REBUILD AS
BEGIN
 DELETE FROM TEST.SQL_APPLY_MESG;
 COMMIT;
END;
/

156 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 4: Logical Standby 157

You also create a procedure for the primary database (which is simply to truncate the
sentinel table):

SQL> CREATE OR REPLACE PROCEDURE SYS.PRIMARY_START_REBUILD AS
BEGIN
 ExECUTE IMMEDIATE 'TRUNCATE TABLE TEST.STOP_SQL_APPLY';
END;
/

 3. Now you can write the skip handler at the logical standby that will stop only on
encountering the TRUNCATE operation on the test.sentinel_table only if there is a row
in the test.sql_apply_mesg table:

SQL> CREATE OR REPLACE PROCEDURE SYS.STOP_SQL_APPLY_ON_DDL
(OLD_STMT IN VARCHAR2,
STMT_TYP IN VARCHAR2,
SCHEMA IN VARCHAR2,
NAME IN VARCHAR2,
xIDUSN IN NUMBER,
xIDSLT IN NUMBER,
xIDSQN IN NUMBER,
ACTION OUT NUMBER,
NEW_STMT OUT VARCHAR2)
AS
CHECK_MSG NUMBER := 0;
BEGIN
SELECT COUNT(MESSAGE_BODY) INTO CHECK_MSG FROM TEST. SQL_APPLY_MESG;
-- WE ARE SIMPLY CHECKING WHETHER A ROW ExISTS OR NOT IN THE TABLE
IF (CHECK_MSG = 1) THEN
 ACTION := DBMS_LOGSTDBY.SKIP_ACTION_ERROR;
 NEW_STMT := NULL;
ELSE
 ACTION := DBMS_LOGSTDBY.SKIP_ACTION_APPLY;
 NEW_STMT := OLD_STMT;
END IF;
END;
/

 4. You now need to register the skip handler to a specific DDL operation:

SQL> ExECUTE DBMS_LOGSTDBY.SKIP(STMT => 'TRUNCATE TABLE', -
 SCHEMA_NAME => 'TEST', OBjECT_NAME => 'STOP_SQL_APPLY');

Now that you have all the building blocks, you can describe the procedure for index rebuilds:

STEP 1: AT THE LOGICAL STANDBY:
MAKE SURE THAT SQL APPLY WILL STOP AT THE APPROPRIATE TIME.
SQL> ExECUTE SYS.STANDBY_START_REBUILD;

STEP 2: AT THE PRIMARY DATABASE:
MAKE SURE THAT SQL APPLY STOPS BEFORE IT ENCOUNTERS THE INDEx REBUILD
OPERATIONS
SQL> ExECUTE SYS.PRIMARY_START_REBUILD;

Chapter 4: Logical Standby 157

At the primary database, you can start your index rebuilds in parallel. You will have to
wait for SQL Apply to stop before you can start the rebuild operations. You do not need to
take any more actions at the primary related to the index rebuilds. At the logical standby
though, once the rebuilds have been finished, you will need to make sure that on restart,
SQL Apply does not stop on encountering the TRUNCATE operation on the sentinel table:

STEP 3: AT THE LOGICAL STANDBY DATABASE:
SQL> ExECUTE SYS.STANDBY_END_REBUILD;
SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;

Note that this time, although the skip handler (sys.stop_sql_apply_on_ddl) is active and
will be invoked for the truncate table DDL, it will apply it and continue on.

Tuning SQL Apply
If you were to look at the SQL Apply engine as a producer-consumer setup, the tuning at a high
level involves choosing the three levers that you have:

 Increase the buffer between the producers (the mining servers) and the consumers ■
(the apply servers). The only way to do this is to increase the MAx_SGA parameter that
controls the size of the LCR_CACHE.

 Increase the throughput of the producer or the mining engine if the producer side of the ■
system is the bottleneck.21 The mining processes can be the bottleneck for several reasons:

There are not enough mining processes. In this case, you can increase the number of ■
mining processes.

The workload is causing the mining engine to do unproductive work (such as paging ■
out memory or performing checkpoints).

 Increase the throughput of the consumer, or the apply engine, if the consumer side of the ■
system is the bottleneck. This can occur for several reasons:

You have not allocated enough apply processes. In this case, you can increase the ■
number of appliers.

The workload is causing throughput to reduce. As discussed earlier, DDLs are ■
applied serially at the logical standby. If you have an overabundance of DDLs in
your workload, you may see a slowdown.

The performance tuning exercise should proceed in the following manner:

 1. Determine whether SQL Apply is lagging more than expected.

 2. If so, first determine whether SQL Apply is indeed the bottleneck:

Is the redo transport experiencing issues with the network? ■

Has SQL Apply encountered a problematic workload? ■

Look at AWR and ASH reports to rule out other components of the RDBMS. ■

21 This is rarely the case, since it takes a lot less instructions to transform a redo records into LCRs than to apply an
LCR via SQL to the database.

158 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 4: Logical Standby 159

 3. At this point, you know that SQL Apply is indeed part of the problem. Which engine is
the bottleneck? Is it the mining or the apply engine?

If it is the apply engine, increase the number of appliers. ■

If it is the mining engine, do you need to increase memory size for the ■ lcr_cache
or the number of mining processes?

 4. Repeat the steps.22

Some Rules of Thumb
The default values for several parameters that control SQL Apply are not ideal for production
systems. So we suggest the following:

 Set ■ MAx_SERVERS to 8 × number of cores:

SQL> ExECUTE DBMS_LOGSTDBY.APPLY_SET23 ('MAx_SERVERS', 64);

 Set ■ MAx_SGA to 200MB:

SQL> ExECUTE DBMS_LOGSTDBY.APPLY_SET('MAx_SGA', 200);

 Set ■ _HASH_TABLE_SIzE to 1000000024 (10 million):

SQL> ExECUTE DBMS_LOGSTDBY.APPLY_SET('_HASH_TABLE_SIzE', 10000000);

 Defer DDLs to off-peak hours. ■

 Set ■ PRESERVE_COMMIT_ORDER to FALSE.

Note that for many applications, the default strict ordering imposed by SQL Apply is not
necessary, and you can relax this without affecting the correctness of your applications that are
offloaded to the logical standby.

SQL> ExECUTE DBMS_LOGSTDBY.APPLY_SET('PRESERVE_COMMIT_ORDER', FALSE);

Determining Whether SQL Apply Is Lagging
This is quite simple. A simple select from the V$DATAGUARD_STATS view will provide you with
the apply statistics:

SQL> SELECT NAME, VALUE, UNIT FROM V$DATAGUARD_STATS;
NAME VALUE UNIT
-------------------- ------------ ------------------------------
APPLY FINISH TIME +00 00:00:03 DAY(2) TO SECOND(1) INTERVAL
APPLY LAG +00 00:00:05 DAY(2) TO SECOND(0) INTERVAL
TRANSPORT LAG +00 00:00:00 DAY(2) TO SECOND(0) INTERVAL

22 You need to repeat the ASH and AWR analysis. Although the RDBMS tuning was not needed initially, once you
allocate more memory and processes to SQL Apply, it may then highlight the need to tune the RDBMS or the I/O
subsystem. We have encountered a number of such instances in the field.
23 Assuming you have a four-CPU box with dual core processors.
24 HASH_TABLE_SIzE determines the size of an internal structure used to track dependencies between different
transactions.

Chapter 4: Logical Standby 159

The values of interest are apply lag and transport lag. The apply lag value indicates how
current the replicated data at the logical standby is, and the transport lag value indicates how
much of the redo data that has already been generated is missing at the logical standby in terms
of redo records. So if apply lag is larger than your expected value, you have an issue and you
need to drill down. The view also answers the redo transport question of the next step.

NOTE
If the [apply lag > expected lag at the logical standby] but [(apply
lag – transport lag) < expected lag at the logical standby], then it is
the redo transport that is keeping SQL Apply behind, and you need to
look at your network.25

Determining Whether SQL Apply Is the Bottleneck
We have already shown you how to eliminate the redo transport as the bottleneck. The next
thing to do will be to look at your AWR and ASH report. This will enable you to identify other
bottlenecks in the system. For instance, you may be able to identify a query that is doing a full
table scan and competing with SQL Apply in terms of CPU and I/O resources, or you may find
that an update statement issued from SQL Apply is using a bad plan and not picking up an index
that it should have, and so on.

Determining Which SQL Apply Component Is the Bottleneck
Once you have established that SQL Apply is indeed the bottleneck, you need to find out which
part of SQL Apply to focus on. The first query to make such a determination is to look at the
producer-consumer pipeline. Is the pipeline full?

SQL> SELECT NAME, VALUE FROM V$LOGSTDBY_STATS WHERE NAME LIKE
 'TRANSACTIONS%';
NAME VALUE
-------------------- -------
TRANSACTIONS APPLIED 3764
TRANSACTIONS MINED 4985

The depth of the pipeline at any given time is (transactions mined – transactions applied). You
will have to run this query around 10 or more times at 1-minute intervals. If the size of the pipeline
is always around two times the number of appliers or more, the mining engine is doing its job just
fine, and it is the apply component that is behind. If, on the other hand, the size of the pipeline is
decreasing or staying at a low value, you have to look at the mining engine more closely.

Tuning the Mining Engine
You can tune the mining engine in two ways: increase the number of preparers26 or increase the
size of the LCR cache.

25 SQL Apply cannot apply something that has not been received at the standby. Refer to Chapter 2.
26 There can be only one reader process and one builder process.

160 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 4: Logical Standby 161

Increasing the Number of Preparers This needs to be done only rarely, and only if the
following conditions are met:

 All ■ PREPARER processes are busy doing work.

 The peak size of the LCR cache is significantly smaller than the maximum allocated for ■
the (via the MAx_SGA setting).

 The number of transactions available in the LCR cache is less than the number of ■
APPLIER processes available.

 Some APPLIER processes are idle. ■

So let’s see how we will ensure that all these conditions are met. Remember that all queries
need to be issued multiple times to ensure that the data is consistent and reliable.

 1. Make sure all PREPARERS are busy doing work.27

SQL> SELECT COUNT(1) AS IDLE_PREPARERS FROM V$LOGSTDBY_PROCESS
WHERE TYPE = 'PREPARER' AND STATUS_CODE = 1616628;
IDLE_PREPARER

0

 2. Make sure that the peak size is well below the amount allocated:

SQL> SELECT USED_MEMORY_SIzE FROM V$LOGMNR_SESSION
 WHERE SESSION_ID = (SELECT VALUE FROM V$LOGSTDBY_STATS
 WHERE NAME = 'LOGMINER SESSION ID');

USED_MEMORY_SIzE

32522244

 3. Verify that the PREPARER does not have enough ready work for the APPLIER processes:

SQL> SELECT (AVAILABLE_TxN – PINNED_TxN) AS PIPELINE_DEPTH FROM
V$LOGMNR_SESSION
 WHERE SESSION_ID = (SELECT VALUE FROM V$LOGSTDBY_STATS
 WHERE NAME = 'LOGMINER SESSION ID');
PIPELINE_DEPTH

8
SQL> SELECT COUNT(*) AS APPLIER_COUNT
FROM V$LOGSTDBY_PROCESS WHERE TYPE = 'APPLIER';
APPLIER_COUNT

20

27 Note it is difficult to find a PREPARER that is not in an idle state, because in most cases they are way ahead of the
APPLIER processes. So you will need to run this query in a tight loop to get a valid result.
28 ORA-16166: SQL Apply process is idle.

Chapter 4: Logical Standby 161

At this point, all three conditions for increasing the number of PREPARERS have been met.
Now how do you increase the number of preparers? Before you do that, we need to look at how
SQL Apply allocates processes in its disposal. SQL Apply exposes three parameters to control the
number of processes: MAx_SERVERS, PREPARE_SERVERS, and APPLY_SERVERS. The following
condition holds:

MAx_SERVERS29 = PREPARE_SERVERS + APPLY_SERVERS + 3

Usually you simply specify MAx_SERVERS and let SQL Apply divide the available processes
among the apply component and the mining component. By default, SQL Apply uses a process
allocation algorithm that allocates one PREPARE_SERVER for every 20 server processes allocated
to SQL Apply as specified by MAx_SERVERS. It also limits the number of PREPARE_SERVERS to 5.

Thus, if you set MAx_SERVERS to any value between 1 and 20, SQL Apply allocates one server
process to act as a PREPARER, and allocates the rest of the processes as APPLIERS while satisfying
the relationship previously described. Similarly, if you set MAx_SERVERS to a value between 21 and
40, SQL Apply allocates two server processes to act as PREPARERS and the rest as APPLIERS. SQL
Apply allows you to override this process allocation formula by setting APPLY_SERVERS and
PREPARE_SERVERS directly, provided that the relationship among the three parameters stays true.

So, in our case, we would like to increase the PREPARER processes to the value 3, while
keeping the APPLIER processes at the same number of 30. To do this, we will first need to increase
the number of MAx_SERVERS from 35 to 36, and then specifically set PREPARE_SERVERS to 3.30

SQL> ExECUTE DBMS_LOGSTDBY.APPLY_SET('MAx_SERVERS', 36);
SQL> ExECUTE DBMS_LOGSTDBY.APPLY_SET('PREPARE_SERVERS', 3);

Note that in 11g, you can change most parameters that control SQL Apply without having to
stop SQL Apply. The change will take effect sometime in the future, as SQL Apply will detect our
request and spawn the extra processes and bring them into the fold under the appropriate
component.

Increasing the Size of the LCR Cache You will need to increase the size of the LCR cache in
two cases.

In case 1, the following conditions happen:

 Overall throughput is lower than expected. ■

 Not enough work is available in the LCR cache (number of available transactions is ■
below number of APPLIERs).

 Peak value for ■ v$logmnr_session.used_memory_size is almost equal to the amount
allocated to the LCR cache.

In case 2, either of the following two conditions might occur:

 You see mining processes idle most of the time (generally speaking, the mining engine ■
should be active one-sixth of the time).

29 The constant 3 comes from the fact that we will always have one READER, one BUILDER, and one ANALYZER
process. The COORDINATOR (or the LSP0) process is not counted within the scope of MAx_SERVERS.
30 Without an explicit setting, SQL Apply will allocate the extra process to the apply engine.

162 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 4: Logical Standby 163

 You see the mining engine paging out memory at an unacceptable rate (a normalized ■
rate of more than 5 percent is unacceptable).

We have already shown you how to determine the first three conditions. We want to reiterate
that to see the variation in size, you will need to run the query against v$logmnr_session every
few seconds.

We have also shown how to compute IDLE preparers. You can determine whether the
BUILDER process is idle in a similar fashion. This query needs to be run every few seconds as
well.

Now we’ll show you how to compute the normalized pageout activity. To do this, you will
have to obtain at least two snapshots of pageout activity over an interval of 5 to 10 minutes.

STEP 1. ISSUE THE FIRST QUERY.
SQL> SELECT NAME, VALUE FROM V$LOGSTDBY_STATS
WHERE NAME LIKE '%PAGE%' OR NAME LIKE '%UPTIME%' OR NAME LIKE '%IDLE%';

NAME VALUE
---------------------------- -------------
COORDINATOR UPTIME (SECONDS) 1200856
BYTES PAGED OUT 30000
SECONDS SPENT IN PAGEOUT 78
SYSTEM IDLE TIME IN SECS 3210

STEP 2. ISSUE THE QUERY AGAIN SAY IN 10 MINUTES.
SQL> SELECT NAME, VALUE FROM V$LOGSDTBY_STATS
WHERE NAME LIKE '%PAGE%' OR NAME LIKE '%UPTIME%' OR NAME LIKE '%IDLE%';

NAME VALUE
-------------------------- ---------------
COORDINATOR UPTIME(SECONDS) 1201456
BYTES PAGED OUT 1020000
SECONDS SPENT IN PAGEOUT 205
SYSTEM IDLE TIME IN SECS 3210
STEP 3. COMPUTE THE NORMALIzED PAGEOUT ACTIVITY.
FOR ExAMPLE:
CHANGE IN COORDINATOR UPTIME (U)= (1201456 – 1200856) = 600 SECS
AMOUNT OF ADDITIONAL IDLE TIME (I)= (3210 – 3210) = 0
CHANGE IN TIME SPENT IN PAGEOUT (P) = (205 – 78) = 127 SECS
PAGEOUT TIME IN COMPARISON TO UPTIME = P/(U-I) = 127/600 ~ 20%

You should write a PL/SQL procedure that takes an interval and provides the normalized
pageout number. Ideally, time spent in pageout should be less than 5 percent of the uptime. Now
it is usually acceptable for normalized pageout to be higher than the expected threshold
infrequently, but if you continue to take snapshots and compute this value, and you find that the
normalized pageout keeps violating the acceptable threshold, you will need to increase the LCR
cache size. Once you have determined that you will need to change the MAx_SGA, the statement
is very simple:

SQL> ExECUTE DBMS_LOGSTDBY.APPLY_SET(NAME => 'MAx_SGA', VALUE => 1024);

Chapter 4: Logical Standby 163

Tuning the Apply Engine
At this point, you have determined that the apply component is the bottleneck.

Increasing the Number of APPLIER Processes The following conditions must be met:

 The pipeline between the mining and apply component, in other words the LCR cache, ■
has enough ready work available.

 There is no idle APPLIER process or there are unassigned large transactions. ■

We have already showed you how to determine whether there are no idle APPLIER processes.
Now let’s look at how you determine whether unassigned large transactions exist.

STEP 1 (LOOK AT THE DEPTH OF THE PIPELINE BETWEEN THE MINING ENGINE AND THE
APPLY ENGINE)
SQL> SELECT (AVAILABLE_TxN – PINNED_TxN) AS PIPELINE_DEPTH FROM V$LOGMNR_SESSION
 WHERE SESSION_ID = (SELECT VALUE FROM V$LOGSTDBY_STATS
 WHERE NAME = 'LOGMINER SESSION ID');
PIPELINE_DEPTH

256
SQL> SELECT COUNT(*) AS APPLIER_COUNT
FROM V$LOGSTDBY_PROCESS WHERE TYPE = 'APPLIER';
APPLIER_COUNT

20

STEP 2(A): LOOK FOR IDLE APPLIERS
SQL> SELECT COUNT(1) AS IDLE_APPLIER FROM V$LOGSTDBY_PROCESS
WHERE TYPE = 'APPLIER' AND STATUS_CODE = 16166;
IDLE_APPLIER

3

Note that SQL Apply uses a kSafe algorithm for transaction assignment: it holds k appliers
aside for applying complete committed transactions. By default, SQL Apply sets k31 to be
approximately 1/6 of the number of applier processes. Thus, you may have an issue, even though
you find appliers that are idle in your system.

STEP 2(B): LOOK FOR UNASSIGNED LARGE TRANSACTIONS
SQL> SELECT VALUE FROM V$LOGSTDBY_STATS
WHERE NAME = 'LARGE TxNS WAITING TO BE ASSIGNED';
VALUE

12

31 Note k must at least be 1 or greater, otherwise you may assign all appliers to uncommitted transactions and get
into a deadlock.

164 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 4: Logical Standby 165

Determining Ill-behaved Workloads As mentioned, SQL Apply schedules DDL statements
serially. You can determine the number of DDL transactions in your workload by querying the
v$logstdby_stats view:

SQL> SELECT NAME, VALUE FROM V$LOGSTDBY_STATS WHERE NAME = 'DDL TxNS DELIVERED';
NAME VALUE
-------------- ---------------------------
DDL TxNS DELIVERED 510

Note that this provides the total number of DDL transactions that have been delivered to the
apply engine since the last restart. You will need to issue this query over a large interval and
subtract the two values to see how many DDL statements were delivered to the apply engine.
Note that not all DDL statements delivered to the apply engine will be applied—that is, DDL
statements that are associated with skipped internal schemas are not applied by SQL Apply.

Troubleshooting SQL Apply
Tuning SQL Apply was discussed in a separate section—it is always important to ensure that you
are getting the most out of your logical standby. There are, however, other areas in which
problems can occur. Since we include a separate troubleshooting chapter in this book, we will
concentrate on only a few issues here regarding SQL Apply.

Understanding Restarts in SQL Apply
Since all good DBAs are in the habit of monitoring their alert logs, if you are managing a logical
standby database, you will need to monitor the DBA_LOGSTDBY_EVENTS view with equal intensity.

Understanding Restarts Due to ORA-4031
You may see the following in the alert log:

ORA-4031: UNABLE TO ALLOCATE 2904 BYTES OF SHARED MEMORY ("SHARED
POOL","UNKNOWN OBjECT","LOGMINER LCR C","KRVxRGR")
INCIDENT DETAILS IN:
/U01/APP/ORACLE/DIAG/RDBMS/APPLY/APPLY1/INCIDENT/INCDIR_6246890/APPLY1_MS00_13
611_I6246890.TRC
KRVxERPT: ERRORS DETECTED IN PROCESS 47, ROLE READER.
KRVxMRS: LEAVING BY ExCEPTION: 4031
ERRORS IN FILE
/U01/APP/ORACLE/DIAG/RDBMS/APPLY/APPLY1/TRACE/APPLY1_MS00_13611.TRC:
…
ORA-16234: RESTARTING TO RESET LOGICAL STANDBY
LOGSTDBY STATUS: ORA-16111: LOG MINING AND APPLY SETTING UP
LOGSTDBY STATUS: APPLY LWM 5368712584, HWM 5368712584, SCN 5368712584
LOGMINER: PARAMETERS SUMMARY FOR SESSION# = 1
LOGMINER: NUMBER OF PROCESSES = 3, TRANSACTION CHUNK SIzE = 201
LOGMINER: MEMORY SIzE = 200M, CHECKPOINT INTERVAL = 1000M

What is going on? Why did SQL Apply go down with ORA-4031? And why did it not encounter
the error once it restarted? The answer has to do with how the mining engine manages memory.

Chapter 4: Logical Standby 165

Remember the LCR cache? It keeps LCRs that are associated with modifications made to the
database, and different LCRs require different amounts of memory. This is obvious: an insert
statement inserting values to a table with 10 columns will most likely require less space than one that
inserts values into a table with 300 columns of the same type. To optimize performance, the mining
engine recycles memory within its own list and does not free it to the heap. Most of the time, this
works well. However, when the working set changes drastically (say, the LCR cache was filled with
LCRs for tables with 10 columns and then you encounter a series of direct path loads for tables with
200 columns each), the mining engine may not find enough memory in its list, due to memory
fragmentation, although the total amount of memory available in its free list is enough to satisfy the
memory requirement. In this case, SQL Apply will first release all the memory from its internal lists to
the top-level heap and see if the memory requirement can be met. In very rare circumstances, where
the memory fragmentation pattern is such that a refreshing of the internal lists will not do the trick,
SQL Apply will perform a controlled restart. This is extremely rare. If you see this in your alert log,
you should not be alarmed.

Understanding Restarts to Break Deadlocks
As mentioned, SQL Apply performs optimistic scheduling and then keeps a lookout for unsafe
anomalies and handles these as they arise. This is prevalent throughout the design, and it’s one of
the primary reasons why SQL Apply can keep up with a high redo rate while honoring transaction
boundaries established at the primary database.

Let’s look at an unsafe anomaly: the possibility of deadlock while applying large transactions
concurrently. We will illustrate the issue in the context of two small transactions, if they were
scheduled the same way SQL Apply schedules large transactions. As discussed earlier, SQL Apply
schedules concurrent large transactions without computing row dependencies between them,
since the very fact that the transactions are running concurrently implies that they must be
independent, until one of them commits. Since SQL Apply will go through a commit barrier on
such a commit, the scheduling is safe. There is, however, one subtle issue: Oracle RDBMS allows
a transaction to release row locks when it executes a rollback to a savepoint, which may cause a
false dependency to be introduced and hence cause a deadlock in the context of SQL Apply.

Table 4-4 shows a valid schedule, since by the time transaction Y touches R1 of T1, X had
rolled it back, and as a result the row lock on R1 has been released.

Now let’s see a possible SQL Apply schedule, if row dependencies were computed for these
two transactions (Table 4-5).

Time Transaction X Transaction Y

10 Savepoint A

20 Modify R1 of T1 Modify R2 to T1

30 Rollback to A

40 Modify R3 of T1 Modify R1 of T1

50 Commit

60 Commit

TABLE 4-4. Sample Valid Transaction History (H2) at the Primary Database

166 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 4: Logical Standby 167

Note that since Y committed before X, the row dependency on R1 resolved in Y’s favor and
SQL Apply scheduled Y before it allowed X to modify row R1.

32

Now we’ll look at a possible schedule33 at the logical standby that will result in a deadlock,
when row dependencies are not computed (such as in the case of large transactions). See Table 4-6.

32 Although at the primary database, X modified R1 before Y did.
33 Note that SQL Apply may even get the same scheduling that was used at the primary database. In this case, no
deadlock will occur.

Time/SCN Applier#1 (X) Applier#2 (Y)

110 Modify R2 of T1

120 Modify R1 of T1

130 Commit

140 Savepoint A

150 Modify R1 of T1

160 Rollback to A

170 Modify R3 of T1

180 Commit

TABLE 4-5. Transaction Schedule (Associated with H2) at the Logical Standby if preserve_
commit_order Is Set to TRUE and with Computation of Row Dependencies

Time/SCN Applier#1 (X) Applier#2 (Y)

110 Savepoint A Modify R2 of T1

120 Modify R1 of T1

130 Modify R1 of T1 (Applier#2 is blocked
now, and RDBMS puts the process in
the TX-ENQ of Applier#1. It will be
unblocked only when X commits.)

140 Rollback to A

150 Modify R3 of T1

160 X cannot make progress now (if
preserve_commit_order is
set). Its commit is after that of Y. So
although it sees the commit record, it
cannot commit.

TABLE 4-6. Transaction Schedule (Associated with H2) Leading to Deadlock at the Logical Standby
if preserve_commit_order Is Set to TRUE and Without the Computation of Row Dependencies

Chapter 4: Logical Standby 167

The COORDINATOR process performs a deadlock detection based on a timeout value. Once it
detects the deadlock, it will ask Applier#1 to rollback. In many cases (if this is the first chunk that
Applier#1 is applying), this is enough, since Applier#2 will make progress and we will get back to
the schedule shown in Table 4-4. However, if we run into a deadlock midway through a large
transaction, SQL Apply will need to perform a controlled restart: but before doing a restart, it will
remember that it had run into a deadlock and that on restart it needs to schedule X before Y to get
a safe schedule.

Because you now know how this works, you won’t be alarmed when you see the following
warnings in the alert log:

LSP0: ROLLING BACK APPLY SERVER 2
LSP0: APPLY SERVER 2 ROLLED BACK
LSP0: CAN'T RECOVER FROM ROLLBACK OF MULTI-CHUNK TxN, ABORTING..
LOGSTDBY APPLY PROCESS AS05 SERVER ID=5 PID=41 OS ID=17169 STOPPED
LOGSTDBY APPLY PROCESS AS04 SERVER ID=4 PID=40 OS ID=17167 STOPPED
LOGSTDBY APPLY PROCESS AS03 SERVER ID=3 PID=39 OS ID=17164 STOPPED
…
LOGMINER: SESSION#=1, BUILDER MS01 PID=28 OS ID=17141 SID=86 STOPPED
…
LOGSTDBY STATUS: ORA-16222: AUTOMATIC LOGICAL STANDBY RETRY OF LAST ACTION
LOGSTDBY STATUS: ORA-16111: LOG MINING AND APPLY SETTING UP
…

Troubleshooting Stopped SQL Apply
Two important issues can cause SQL Apply to stop. More cases and their solutions appear in
Chapter 13.

Handling ORA-26786 and ORA-26787 with “Skip Failed Transaction”
At times you will find that SQL Apply has stopped with one of the following errors:

 ORA-26786 ■ This is raised when SQL Apply finds the row to be modified using the
primary or unique key information contained within the LCR, but the before-image of the
row does not match the image contained within the LCR.

 ORA-26787 ■ This is raised when SQL Apply cannot find the row to be modified using
the primary or unique key information contained within the LCR.

SQL Apply provides two ways to skip a failed transaction:

 Use the ■ SKIP_FAILED_TRANSACTION clause when starting the SQL Apply processes

 Use the ■ dbms_logstdby.skip_transaction procedure.

Our advice is threefold:

 When you skip a failed transaction (in other words, a transaction that caused SQL Apply ■
to stop), you will need to take compensating actions at the logical standby.

 You can use the ■ SKIP_FAILED_TRANSACTION clause if you know that the transaction
is a DDL transaction, and you can either ignore the DDL safely at the logical standby or
reissue it yourself.

168 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 4: Logical Standby 169

 Be very wary of using ■ SKIP_TRANSACTION or SKIP_FAILED_TRANSACTION when
dealing with DML transactions. You will simply be moving the problem to appear
sometime in the future.

Before you skip a transaction, SQL Apply writes the following in the alert log (and also in
DBA_LOGSTDBY_EVENTS) before it stops:

LOGSTDBY STMT: UPDATE "SALES"."CUSTOMER"
SET
"FIRST_NAME" = 'jOHN'
WHERE
"CUSTOMER_ID" = 21340 AND
"FIRST_NAME" = 'jAHN' AND
ROWID = 'AAAAAAAAEAAAAAPAAA'
LOGSTDBY STATUS: ORA-26786: A ROW WITH KEY 21340 ExISTS BUT HAS CONFLICTING
COLUMNS FIRST_NAME IN TABLE SALES.CUSTOMER
LOGSTDBY PID 1006, ORACLE@STACO03 (P004)
LOGSTDBY xID 0x0006.00E.00000417, THREAD 1, RBA 0x02DD.00002221.10

This does not give you any information about where the transaction started. You can,
however, use the FLASHBACK_TRANSACTION_QUERY34 view at the primary database to find out
the SCN at which the transaction started.

SQL> SELECT START_SCN, COMMIT_SCN FROM FLASHBACK_TRANSACTION_QUERY
WHERE xID = HExTORAW(000600E00000417);
START_SCN COMMIT_SCN
---------- ----------
56152032 56159340

Now that you have the start_scn and commit_scn, you can run the following query at the
primary database to mine the archived logs using Oracle’s LogMiner utility:

SQL> ExECUTE DBMS_LOGMNR.START_LOGMNR (STARTSCN => 56152032, -
 ENDSCN => 56159340, -
 OPTIONS => DBMS_LOGMNR.DICT_FROM_ONLINE_CATALOG35 + -
DBMS_LOGMNR.CONTINUOUS_MINE);
SQL> SELECT DISTINCT SEG_OWNER, TABLE_NAME FROM V$LOGMNR_CONTENTS
 WHERE xID = HExTORAW(000600E00000417);

This will return all the distinct tables modified by the transaction. If you want to know what
the actual changes were, you can then issue the following query:

SQL> SELECT SQL_REDO FROM V$LOGMNR_CONTENTS
WHERE xID = HExTORAW(000600E00000417);

34 Note that the column XID is of type RAW instead of the three-tuple printed in the alert log. You can simply
append the three components and apply the HExTORAW function on that to get the XID needed for the FLASHBACK_
TRANSACTION_QUERY view.
35 The query tells Oracle LogMiner to find the archived log files between the SCN range (56152032 and 56159340)
from the control file (the directive continuous_mine), and use the online data dictionary of the database (the
directive dict_from_online_catalog) to interpret the redo records found.

Chapter 4: Logical Standby 169

Make sure that you have spooled the output to a text file. Once you are done using LogMiner,
simply end the LogMiner session by issuing the following:

SQL> ExECUTE DBMS_LOGMNR.END_LOGMNR();

Handling ORA-04042 “Procedure, Function,
Package, or Package Body Does Not Exist”
This error is most likely due to SQL Apply encountering a GRANT/REVOKE on a procedure or a
function that exists in one of the internally skipped schemas. You can handle this by registering
an error handler with SQL Apply to skip errors encountered during the apply of such statements.
The following is an example of how to skip these bothersome transactions:

STEP 1: DEFINE THE ERROR HANDLER
CREATE OR REPLACE PROCEDURE SYS.HANDLE_ERROR_DDL (
OLD_STMT IN VARCHAR2,
STMT_TYPE IN VARCHAR2,
SCHEMA IN VARCHAR2,
NAME IN VARCHAR2,
xIDUSN IN VARCHAR2,
xIDSLT IN VARCHAR2,
xIDSQN IN VARCHAR2,
ERROR IN VARCHAR2,
NEW_STMT OUT VARCHAR2
) AS
INTERNAL_SCHEMA NUMBER := 0;
BEGIN
-- DEFAULT TO WHAT WE ALREADY HAVE
NEW_STMT := OLD_STMT;
-- IGNORE ANY GRANT ERRORS ON INTERNALLY SKIPPED SCHEMAS
IF ((INSTR(UPPER(OLD_STMT),'GRANT')) > 0) OR
((INSTR(UPPER(OLD_STMT),'REVOKE')) > 0)
THEN
 IF SCHEMA IS NULL THEN
 INTERNAL_SCHEMA := 1;
 ELSE
 SELECT COUNT(1) INTO INTERNAL_SCHEMA FROM DBA_LOGSTDBY_SKIP
 WHERE OWNER = SCHEMA AND STATEMENT_OPT = 'INTERNAL SCHEMA';
 END IF;
END IF;
IF INTERNAL_SCHEMA <> THEN
 NEW_STMT := NULL;
 -- RECORD THE FACT THAT WE jUST SKIPPED AN ERROR (CODE NOT SHOWN HERE)
 END IF;
END IF;
END HANDLE_ERROR_DDL;
/

2. REGISTER THE SKIP_ERROR PROCEDURE WITH SQL APPLY
SQL> ExECUTE DBMS_LOGSTDBY.SKIP_ERROR (-
STATEMENT => 'NON_SCHEMA_DDL', -

170 Oracle Data Guard 11g Handbook

SCHEMA_NAME => NULL, -
OBjECT_NAME => NULL, -
PROC_NAME => 'SYS.HANDLE_ERROR_DDL');

Conclusion
Once again, the chapter has been long, but we hope it has been instructive. The majority of the
problems that people encounter in the context of a Data Guard implementation can be attributed to
misunderstandings. The fact that you are reading this book before diving into deployment is a sign
that you are in the prudent minority. Here’s one more piece of advice regarding a logical standby
deployment: The performance of a logical standby depends heavily on your workload at the primary.

Your first order of business is to create a logical standby off your current primary database
and let it run for a while. This way, you will get a chance to try it out on live data, and you can
also validate some of the issues we discussed in this chapter.

Chapter
5

Implementing Oracle
Data Guard Broker

171

172 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 5: Implementing Oracle Data Guard Broker 173

n simple terms, the Data Guard Broker is the management framework for Data
Guard. Even if you are a die-hard SQL*Plus user and are used to managing your
Data Guard configurations by hand, it is still worth it for you to have a look
at the Data Guard Broker. Whether you arrived at this chapter directly from
Chapter 2, looking for the Broker to finish the creation job for you, or you are just

curious about what the Broker can do for you, the information you will glean from this chapter
will help you travel the Data Guard management road. And if you are an Oracle Enterprise
Manager Grid Control user, you are using the Broker by default, and it will be good to understand
what goes on underneath when you create and manage Data Guard standby configurations. We
will discuss the interaction between Grid Control and the Broker in detail in this chapter.

One thing to remember is that the Broker is a part of Data Guard, and if you are using standby
databases but not using the Broker you are still using Data Guard. You are just not using the Broker
to manage your configuration, and you are using SQL*Plus instead.

This chapter is not intended to replace the Broker manual. It is intended to ensure that you
understand how the Broker works, how to set it up to avoid surprises, and what goes on when you
create, manage, and monitor Broker configurations.

Overview of the Data Guard Broker
The Broker is not a feature that is installed separately, nor is it a entity separate from Data Guard.
It is part of the normal Oracle Database Enterprise Edition installation and an integral part of Data
Guard. Its function is to present a single integrated view of a Data Guard configuration that allows
you to connect through any database in a configuration and propagate changes to the configuration
or any of the databases in that configuration, primary or standby. Changes that can be made to the
Data Guard–related parameters are configuration, transport methods, apply setup and role change
services, as well as the overall protection mode. In addition, through this single connection, you
can monitor the health of the entire configuration or any of the databases that are part of this
configuration.

The Broker is also responsible for implementing and managing the automatic failover capability
of Data Guard, called Fast-Start Failover. This will be discussed at length in Chapter 8.

Basically, the Broker is made up of three parts: a set of background processes on each database,
a set of configuration files, and a command line interface (CLI) called DGMGRL. It is important that
you understand the workings of each of these parts before you delve into the details of creating and
managing your Data Guard configurations.

Myth Buster: The Broker Is Not a Mature
and Reliable Interface for Data Guard
Nothing could be further from the truth. The Broker has been evolving since Oracle9i and is
not only a reliable interface to Data Guard, but is the very foundation upon which many of
the Data Guard features are built, including Fast-Start Failover.

I

Chapter 5: Implementing Oracle Data Guard Broker 173

TIp
Once you start using the Broker you must always use the Broker to
make any changes to your Data Guard configuration. This means
that you must use Grid Control or the Broker CLI DGMGRL to change
any Data Guard settings. If you use SQL*Plus to make configuration
changes, the Broker will put things back the way it sees the world
or this will lead to inconsistencies between the Broker configuration
parameters and the database.

The Broker process Model
As with Data Guard’s transport and apply functions, the Broker uses a set of background processes
on each database in a Data Guard configuration to monitor and manage the setup. The basic
processes are shown in Figure 5-1.

All the Broker processes are started by the Broker when it is enabled and the database is started.
You, as the DBA, have no control over what processes are started or how many; that is completely
up to the Broker. It will start each of these processes on all the databases in your configuration, the
first being the Data Guard Monitor (DMON), explained next. The processes and files in Figure 5-1
are defined as follows:

 Data Guard Monitor (DMON) ■ This Broker-controller process is the main Broker
process and is responsible for coordinating all Broker actions as well as maintaining
the Broker configuration files. This process is enabled or disabled with the DG_BROKER_
START parameter.

 Broker Resource Manager (RSM) ■ The RSM is responsible for handling any SQL commands
used by the Broker that need to be executed on one of the databases in the configuration.
These SQL commands are made as a result of a change to the configuration made through
DGMGRL or are the configuration commands executed by the Broker during database
startup.

FIGURE 5-1. Data Guard Broker main processes

Standby Database

Primary Database

Configuration Files

Configuration Files

DRCn

DRCnRSM

RSM

NSVn

NSVn

DMON

DMON

174 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 5: Implementing Oracle Data Guard Broker 175

 Data Guard Net Server (NSV ■ n) From 1 to n of these network server processes can
exist. They are responsible for making contact with the remote database and sending
across any work items to the remote database. Connections to the remote database are
made using the same connect identifier that you specified for the database when you
created the configuration.

 DRC ■ n These network receiver processes establish the connection from the source
database NSVn process. An NSVn to DRCn connection is similar to the LogWriter
Network Service (LNS) to Remote File Server (RFS) connection for Redo Transport.
As with Redo Transport, when the Broker needs to send something (data or SQL, for
example) between databases, it uses this NSV to DRC connection. These connections are
started as needed.

 Configuration files ■ The Broker stores all of the configuration details in these two binary
command files. Through the data in these files, the Broker knows what databases make
up the configuration, their current intended states, how to connect to each one, and what
parameters to set up when each database starts up.

NOTE
Configuration files are flat files stored either on the operating system
or inside Automatic Storage Management (ASM). The Broker manages
these files, and they are not to be manipulated by you.

The Broker process Flow
In a Broker configuration it is the Data Guard Monitor (DMON) process on the primary database that
is the owner of the configuration. Even though you may attach to any database in a configuration
using the DGMGRL CLI, all standby databases must get their marching orders from the primary
DMON, and all commands to modify the configuration, regardless of which database you are
connected to, are done through the primary.

In Figure 5-1, the communication between the primary DMON process and the databases
is shown by solid lines. When the DMON needs to communicate with the standby databases,
it uses one of the NSV processes to send work to a standby. This is intended to protect the
DMON from a network hang if the link goes down in the middle of this send and receive
process. An example of this kind of work would be a periodic health check, where the status
and state of each standby database is retrieved and stored in the configuration files. Whenever
the DMON needs to execute some SQL, it will enlist the aid of the RSM process on the
primary database.

The RSM process will execute the SQL directly if it is intended for the primary database;
otherwise, if the SQL is targeted for one of the standby databases, the RSM process asks an NSV
process to send the SQL to the target standby. This also protects the RSM process from a network
hang, the same way the DMON process avoids a hang.

Each NSV process will have a partner DRC process on the target database, which will perform
the actual work on behalf of the source database NSV process and return the results or status.

Upon startup of the primary database, the DMON process will attempt to connect to each
standby database (using the NSV–DRC connection pair) to establish communication and send
the necessary configuration information so that the standby can be configured and start the
apply services. If a standby database is not available, you will see the following Transparent

Chapter 5: Implementing Oracle Data Guard Broker 175

Networking Substrate (TNS) error in the primary database alert log right after an NSV process
starts up:

NSV1 started with pid=21, OS id=8962

Fatal NI connect error 12514, connecting to:
 (DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=Matrix_DR.domain.com)(PORT=1521))
 (CONNECT_DATA=(SERVICE_NAME=Matrix_DR0_DGB.domain.com)
 (CID=(PROGRAM=oracle)(HOST=Matrix_DR)(USER=oracle))))
...
TNS-12564: TNS:connection refused
 ns secondary err code: 0
 nt main err code: 0
 nt secondary err code: 0
 nt OS err code: 0

Because the primary database cannot connect, no information can be sent to the standby. The
primary database will continue to startup and the Broker will execute all the setup commands
using the local RSM process to execute the SQL statements. You will see other TNS-12564 errors
after this in the alert log when the Redo Transport LNS process tries to connect as well as any
Fetch Archive Log (FAL) (gap) resolution attempts.

When the primary DMON is successful in connecting to the standby database, it will instruct
the local RSM to send the setup commands to the standby database. These commands would
define the necessary Data Guard parameters and start the apply services if required. The RSM will
send these commands using the NSV–DRC connection pair.

The communication between a standby database and the primary database is shown in
Figure 5-1 by the dashed lines. Whenever a standby database starts up, the DMON process will
initiate a connection to the primary database to find out what it should be doing. Remember that
the primary database controls the configuration. If the primary database is not reachable (the
network or primary database is down), this connection will fail, and you will see a TNS error in
the standby database’s alert log, as follows:

Fatal NI connect error 12514, connecting to:
 (DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=Matrix.domain)(PORT=1521))
 (CONNECT_DATA=(SERVER=DEDICATED)
 (SERVICE_NAME=Matrix.domain)(CID=(PROGRAM=oracle)
 (HOST=Matrix)(USER=oracle))))
 . . .
TNS-12564: TNS:connection refused
 ns secondary err code: 0
 nt main err code: 0
 nt secondary err code: 0
 nt OS err code: 0

You can tell from the TNS information that this is a connection to the primary database called
Matrix and not some other kind of network error. The fix here is either to start up the primary or
fix the network error condition. This kind of error will cause a delay in the startup of the standby
database as the Broker tries to determine what it should be doing. Generally, this error is caused
by a delay in making the network connection and the time the Broker waits before trying again.
You can tune this by setting the CommunicationTimeout property, which we will explain later

176 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 5: Implementing Oracle Data Guard Broker 177

in this chapter. Once the Broker has tried to connect to the primary a couple of times, the startup
of the standby database will continue after which the Broker will continue to attempt to connect
to the primary. When communication is restored, the standby database will get its marching
orders and start receiving and applying the redo from the primary database.

In addition to these Broker processes, another set of Broker processes come into play when
the primary, the standby, or both are Real Application Clusters (RAC), as shown in Figure 5-2.

These internode servers (INSVs) maintain a connection between the nodes in the cluster to
ensure that the Broker on each node knows the state of the cluster. The primary database will
always start up an INSV process even if the database is not a RAC.

As other RAC instances start, the Broker will start the INSVs, and they will make queries
between all the instances to determine the current state of each node in a Broker-controlled
database. In this manner, the Broker is able to maintain information about each instance in the
RAC. To make sure that this does not have an adverse impact to performance, this querying is
optimized to avoid any unnecessary RAC traffic.

In addition to these Broker processes we have been discussing, you may see one more process
on the primary database in a Broker-controlled configuration: the Fast-Start Failover process (FSFP)
which is used only when the primary is under the control of Data Guard’s automatic failover
feature, Fast-Start Failover. The FSFP process will establish a connection to the Fast-Start Failover
target database by connecting to a DRC process on that database, much like the NSV to DRC
process connection. Fast-Start Failover is discussed at length in Chapter 8.

The Broker Configuration Files
As shown in Figure 5-1, the Broker maintains configuration files at each database in the
configuration to keep track of the Data Guard–wide settings and the intended states for each
database in the configuration. Two copies of the configuration files are always stored on each
database for redundancy, and their location is controlled by the following two parameters:

 DG_BROKER_CONFIG_FILE1 ■

 DG_BROKER_CONFIG_FILE2 ■

FIGURE 5-2. Data Guard Broker RAC processes

INSV INSV

Standby Database

INSV INSV

Primary Database

Data Guard

Chapter 5: Implementing Oracle Data Guard Broker 177

By default, these are set to the $ORACLE_HOME/dbs directory with a filename of dr1<DB_
UNIQUE_NAME>.dat and dr2<DB_UNIQUE_NAME>.dat, but you should never leave them as
the defaults unless you are just playing around. If the database is a RAC, you must store these files
on a shared location that is accessible to all RAC instances, because only one copy of these files
can exist for the entire RAC and both files must be visible to all instances in the RAC.

TIp
Make sure you change the default location of the Broker configuration
files before you start using the Broker. Their placement is controlled
by the database parameters DG_BROKER_CONFIG_FILE1 and DG_
BROKER_CONFIG_FILE2.

This configuration information is referred to as the properties of the configuration and is
divided into Configuration-Wide and Individual Database properties. In addition, the Broker uses
the configuration files to keep track of the intended state information for each database. The
configuration files of all databases are kept in sync by the Broker, but the DMON process of
the primary database is the owner of the master copy of the files. Changes made to any database
configuration property, regardless of which database you have connected to, are channeled back to
the primary database DMON process, which then updates the primary database configuration files.

The configuration file update flow is shown in Figure 5-1 by dotted lines. The primary DMON
process updates the local configuration file when the Database Administrator (DBA) makes
changes to the properties of the configuration. This information is then sent to all standby
databases using the normal NSV–DRC process pair. Once the remote configuration file is
updated, the DRC process of the standby notifies the DMON process to refresh its in-memory
copy of the configuration file.

If the DBA is connected to the standby and makes changes to the configuration properties, the
changes are communicated back to the primary DMON using an NSV–DRC pair. The primary
DMON updates the configuration file and the process is repeated to communicate the changes to
all standby databases in the configuration.

The fact that the primary DMON is the master of the configuration determines when
something will happen on a standby database. For example, if you start up a standby and it
cannot connect to the primary database, no Data Guard functionality (starting up the apply
process, checking for gaps, and so on) will be performed until the standby database can connect
to the primary database (via the same NSV–DRC pair) and determine what it is supposed to do.

TIp
You can watch when the Broker sets up a standby database by shutting
down the primary and standby databases, performing a tail –f
of the standby alert log (if you are on UNIX or Linux), and then
starting the standby database. You will see the standby attempt to
make contact with the primary, fail a couple of times, and then wait.
Once you start up the primary, you will see all of the Broker setup
commands being executed on the standby database.

You may ask, “What happens when my primary is gone and I need to failover?” This is why
the Broker keeps redundant copies of the configuration files at each database in the configuration,

178 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 5: Implementing Oracle Data Guard Broker 179

so when you do failover a standby database, it can determine the original settings for the entire
configuration as it becomes the “master” of the configuration files by becoming the primary
database. Role transitions will be discussed in Chapter 8.

The Broker CLI
The last part of the puzzle is how to interact with the Broker. You have two choices: Enterprise
Manager Grid Control or the Broker CLI DGMGRL. These are actually interchangeable, with
the few setup steps mentioned in the next section. You will see that certain configuration
options in a Broker setup are available only through DGMGRL and not at all with Grid
Control.

If you choose to use Grid Control to manage your Data Guard configurations, you will either
need to create a Broker configuration on top of your current standby setup or use the Grid Control
Data Guard Wizard to create your standby databases, as Grid Control uses the Broker to manage
all Data Guard configurations. Grid Control does have the ability to view certain items of an
existing Data Guard configuration without having the Broker configured. You can determine
whether a primary database participates in a Data Guard configuration (without the Broker), and
you can monitor some of the performance information about the standby setup. But you cannot
use Grid Control to manage Data Guard actively or perform any of the functions of Data Guard
without the Broker configured. You can use Grid Control 10.2.0.5 to create non-Broker standby
databases, but the same restrictions apply. In short, to gain full functionality of Data Guard
through Grid Control, you must use the Broker.

The Broker CLI DGMGRL is included in the Oracle Database Enterprise Edition and Client kits
and is the only part of Data Guard that can be run on any platform. This does not mean that the
Broker itself or any other part of Data Guard is running on a different platform, just the client you
use to manage your configuration. Data Guard does allow some mixed platform configurations,
but these are few and they have special requirements in certain cases.1 For example, you can have
your primary and standby databases all running on Linux and use a Windows systems to run
DGMGRL to manage Data Guard. All that is needed are the appropriate Oracle Net Services
definitions.

To access DGMGRL, type dgmgrl at the command prompt and the CLI will start up and return
a DGMGRL> prompt:

[Matrix] dgmgrl
DGMGRL for Linux: Version 11.1.0.6.0 – Production
Copyright (c) 2000, 2005, Oracle. All rights reserved.
Welcome to DGMGRL, type "help" for information.
DGMGRL>

This does not connect you to any database—not even our current SID Matrix. To connect to your
Data Guard configuration, you either add a slash (/) or the username and password on the
command line or you use the CONNECT command after you have started DGMGRL.

1 At the time of this writing, Oracle MetaLink Note 413484.1 provides information about Data Guard mixed
platform support.

Chapter 5: Implementing Oracle Data Guard Broker 179

Getting Started with the Broker
Now that you have a picture of the various parts of the Broker and know how they interact, you
might think that you can jump right into DGMGRL and start configuring your Data Guard setup.
You could, but you would run into problems down the line. It is important that you understand
the prerequisites of a Broker configuration and how the Broker performs its magic so you get the
most out of the Broker. These prerequisites fall into the following four categories:

 Configuring the Broker parameters ■

 The Broker and the listener ■

 RAC and the Broker ■

 Connecting to the Broker ■

If you are an Enterprise Manager Grid Control user, you may think that you do not have to
worry about these prerequisites—but the truth is, you still need to know about and follow these
rules. While Grid Control does handle most of this for you, there may come a time when you
cannot get to your Grid Control setup and you need to fall back to the CLI. We will discuss what
you need to do in each of these categories, after which you will be ready to implement your
Broker configuration.

Configuring the Broker parameters
First off, if you are not using an spfile on your databases, you must configure it now on all
databases in your Data Guard configuration. Since this requires a restart of your production
database, you may have to schedule this change before you can start configuring the Broker. The
spfile is required since the Broker dynamically sets various Data Guard–related parameters, as
discussed in Chapter 2.

As mentioned, the two database parameters that specify where the Broker configuration files
are going to be placed when you enable the Broker are DG_BROKER_CONFIG_FILE1 and DG_
BROKER_CONFIG_FILE2. Since these parameters do have a default directory ($ORACLE_HOME/
dbs/) and filename, you can quite easily forget to change them and the Broker will still appear to
work. We say “appear to work” because in a RAC environment, the dbs directory is not always
visible cluster-wide, and each instance in the RAC would be updating a different file, causing
untold havoc with your Data Guard setup. But RAC considerations aside, it is bad practice to
leave these parameters in the Oracle Home and both files in the same place—especially on the
primary database, because the Broker is primary-centric (that is, it gets all its orders from the
primary). So you must change these parameters before you enable the Broker.

You must set these parameters on the primary (production) database as well as on any standby
databases that you have already created using one of the non–Grid Control methods shown in
Chapter 2. If you used Grid Control to create the standby database, these parameters would have
been set for you, but they may not be stored where you would like, so it is important that you
understand them and make the appropriate changes.

The naming conventions used here are for the primary database Matrix. These names would
be changed depending on the database where they are being defined—Matrix_DR0 for the first
standby, for example.

180 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 5: Implementing Oracle Data Guard Broker 181

If you are not using ASM or raw devices, you can place these files anywhere you like. But put
them on different disk spindles so a single disk failure does not destroy your entire Broker
configuration!

SQL> ALTER SYSTEM SET DG_ BROKER_CONFIG_FILE1 = '</directory/file>';
SQL> ALTER SYSTEM SET DG_ BROKER_CONFIG_FILE2 = '</directory/file>';

The indicators directory/file would be some directory path and filename—as in /U03/
Broker/dr1Matrix.dat and /U04/Broker/dr2Matrix.dat, respectively.

If you are configuring for a RAC and you are using a Cluster File System (CFS), these two
specifications must point to a directory in the CFS, and each instance in the RAC has the exact
same definitions for these parameters, as in *.DG_ BROKER_CONFIG_FILE1 = …. Remember
that only one set of configuration files may exist across the entire RAC.

Now, if you are still using raw devices (RAC or not), you need to define a link to a filename
that you can use in place of the /directory/file since you cannot specify the raw device
directly. To do this, create two raw devices of 1MB each and then assign the two filenames to
them via the link. Here’s an example:

ln -s /dev/raw/raw1 dr1Matrix.dat
ln -s /dev/raw/raw2 dr2Matrix.dat

Note that in Windows you would use the Oracle-supplied Object Manager, just as you would for
data files and control files that would be placed on raw devices.

Of course, today’s best practice is to use ASM (although, as we mentioned in Chapter 2, it is
not mandatory), and since we used ASM in the original creation of our standby database in
Chapter 2, we’ll use ASM to store these Broker configuration files. In this case, the values for
the /directory/file specification for our Broker configuration files would look like this:

/+DATA/Matrix/Broker/dr1Matrix.dat
/+FLASH/Matrix/Broker/dr2Matrix.dat

In this manner, the two configuration files are spread across the two ASM disk groups, providing
that much-needed protection from a single point of failure. You will notice that the filename is the
same one we’ve used so far in this section and not (as you would expect) one of those funny Oracle
Managed Files (OMF) names assigned to all the other files in your database. This is because you, as
the DBA, have to be able to specify a name for the file before the file is actually created so the
Broker can create it. It is kind of like the chicken and the egg question—Which one comes first?

An important thing to remember is that the directories you specify in the parameter (in our case
/Matrix/Broker/) must already exist at the location you specify before you try to create a Broker
configuration. Since we are using ASM, they must exist in the ASM disk groups DATA and FLASH. If
you are following policy and you are placing the files in the directory for the database, then Matrix
would already exist, of course. But nothing would stop you from placing the configuration files
anywhere in ASM that you choose, provided the directories exist. Using ASMCMD, you would
navigate to the database directory under DATA and FLASH and create a directory called BROKER:

[+ASM] asmcmd
ASMCMD> cd DATA
ASMCMD> cd MATRIX
ASMCMD> mkdir BROKER
ASMCMD> cd ../..
ASMCMD> cd FLASH

Chapter 5: Implementing Oracle Data Guard Broker 181

ASMCMD> cd MATRIX
ASMCMD> mkdir BROKER
ASMCMD> exit

TIp
Remember to pre-create the directories that you are going to use
for the configuration files; otherwise the Broker will not be able to
function and you won’t really know why unless you read the Broker
logs and understand what they are saying.

When you create your configuration later on in this chapter, you will see that the Broker
actually keeps the real configuration data file in another directory when you use ASM. As you can
see from the preceding commands, we created a subdirectory in the database directories called
BROKER, and when we create the configuration, the Broker will put a file in that directory with
the name we specified in the parameter. But if you look closer, you will see that the name is
actually a link to another file in another directory called DATAGUARDCONFIG:

[+ASM] asmcmd
ASMCMD> cd DATA/MATRIX/BROKER
ASMCMD> ls
dr1matrix.dat
ASMCMD> ls –l
Type Redund Striped Time Sys Name
 N dr1matrix.dat =>
+DATA/MATRIX/DATAGUARDCONFIG/Matrix.298.671576301
ASMCMD> cd ../DATAGUARDCONFIG
ASMCMD> ls –l
Type Redund Striped Time Sys Name
DATAGUARDCONFIG UNPROT COARSE NOV 23 20:00:00 Y Matrix.298.671576301
ASMCMD>

The second configuration file in the FLASH disk group will also be linked to the same
directory in the FLASH directory tree.

If you set these parameters but forget to create the directories on the primary database, your
CREATE CONFIGURATION command will return a file not found error from DGMGRL:

Error: ORA-16571: Data Guard configuration file creation failure

But if you got it right on the primary database but set the parameters on the standby database and
then forgot to create the directories there, nothing will happen when you enable the Broker in the
next step by setting the Broker START parameter to TRUE. Even creating the Broker configuration
(coming up soon) will work fine. But it will never exit the “Enabling Configuration” phase
because it cannot create the configuration files. And unless you look in the Broker alert log of the
standby (which resides in the normal database alert log directory and is called drc<db_unique_
name>.log—or drcMatrix_DR0.log in our case) and understand what it is saying, you will not
know why this happened. The following example is an edited piece of the Broker log in which the
BROKER ASM directory did not exist under the standby database top directory:

DMON: >> Starting Data Guard Broker bootstrap <<

DMON: Broker Configuration File Locations:

dg_broker_config_file1 = "+DATA/matrix_dr0/broker/dr1matrix_dr0.dat"

182 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 5: Implementing Oracle Data Guard Broker 183

dg_broker_config_file2 = "+FLASH/matrix_dr0/broker/dr2matrix_dr0.dat"

DMON: Attach state object

DMON: Entered rfm_get_chief_lock() for CTL_BOOTSTRAP, reason 2

DMON: chief lock convert for bootstrap

DMON: cannot open configuration file "+DATA/matrix_dr0/broker/dr1matrix_dr0.dat"

ORA-17503: ksfdopn:2 Failed to open file +DATA/matrix_dr0/broker/dr1matrix_dr0.dat

ORA-15173: entry 'dr1matrix_dr0.dat' does not exist in directory 'broker'

DMON: Error opening "+DATA/matrix_dr0/broker/dr1matrix_dr0.dat", error = ORA-16572

DMON: Establishing "+FLASH/matrix_dr0/broker/dr2matrix_dr0.dat" as the more

current file

DMON: cannot open configuration file "+FLASH/matrix_dr0/broker/dr2matrix_dr0.dat"

ORA-17503: ksfdopn:2 Failed to open file

+FLASH/matrix_dr0/broker/dr2matrix_dr0.dat

ORA-15173: entry 'dr2matrix_dr0.dat' does not exist in directory 'broker'

DMON: Error opening "+FLASH/matrix_dr0/broker/dr2matrix_dr0.dat", error = ORA-16572

DMON: Boot configuration,loading from

"+FLASH/matrix_dr0/broker/dr2matrix_dr0.dat"

DMON: cannot open configuration file "+FLASH/matrix_dr0/broker/dr2matrix_dr0.dat"

ORA-17503: ksfdopn:2 Failed to open file

+FLASH/matrix_dr0/broker/dr2matrix_dr0.dat

ORA-15173: entry 'dr2matrix_dr0.dat' does not exist in directory 'broker'

DMON: Configuration does not exist, server ready.

As you can see, it is not obvious that the problem is the missing directory BROKER under the
database MATRIX_DR0 directory on both the DATA and FLASH disk groups. This sequence of
errors will be repeated forever until you disable the configuration, create the missing directory,
and then enable the configuration again.

Once you have performed all the necessary directory work and set the parameters in all of
your databases, you are ready to start up the Broker. This is done by connecting to each database
with SQL*Plus and setting the Broker START parameter to TRUE.

SQL> ALTER SYSTEM SET DG_BROKER_START=TRUE SCOPE=BOTH;

This does not create any kind of Broker configuration for you, because that is done by
executing commands in DGMGRL, which we will discuss in a bit. Nor does it create the
configuration files yet. What it does do is start all of those processes we discussed earlier in this
chapter.

Do not enable the Broker START parameter before you have made all the necessary
modifications to your configuration parameters; otherwise, you will not be allowed to change
those parameters.

SQL> SHOW PARAMETER DG_BROKER_START
NAME TYPE VALUE
dg_broker_start boolean TRUE
SQL> ALTER SYSTEM SET
 2 DG_BROKER_CONFIG_FILE1='+DATA/Matrix/Broker/dr1Matrix.dat';
ALTER SYSTEM SET DG_BROKER_CONFIG_FILE1='+DATA/Matrix/Broker/dr1Matrix.dat'
*

Chapter 5: Implementing Oracle Data Guard Broker 183

ERROR at line 1:
ORA-02097: parameter cannot be modified because specified value is invalid
ORA-16573: attempt to change or access configuration file for an enabled broker
configuration

To resolve this error, you need to set the START parameter to FALSE and then re-execute
the configuration parameter changes. Once complete, set the START parameter back
to TRUE.

Once you have created your Broker configuration with DGMGRL, do not change the
configuration file parameters since the Broker will have created them already and will not be
able to find them in the new location. If you need to move the files, you must stop the Broker
using the DG_BROKER_START parameter, change the configuration parameters, copy the files
from the old location to the new location, and then re-enable the Broker. If you do not do this,
you would see the ORA-17503 errors in the DRC log.

You can also remove the Broker configuration completely, delete the old configuration files,
change the parameters, re-enable the Broker, and then re-create the configuration—but that is a
lot more work. And if you are using ASM, you can imagine how hard it would be to copy that
linked file. It is better to get this correct now rather than later.

The Broker and Oracle Net Services
As with any Oracle interface, the Broker uses Oracle Net Services to make connections to the
databases, set up both Redo Transport and archive log gap resolution, and perform role transitions.
But the manner in which the Broker uses Oracle Net Services has changed from previous releases
and Oracle Database 11g. In this section we will discuss what changed (and what has not) and how
you should take advantage of these changes.

Transparent Networking Substrate and Connect Strings
Since its creation in Oracle 9i Release 1, the Broker has taken the user-provided TNSNAME and
converted it to a connect string that it used for Data Guard Redo Transport and gap resolution
connections. This was done so that the Broker could detach itself from the TNSNAME files on the
systems and prevent anyone from making a change to those files that would break the Data Guard
configuration, an admirable goal. The problem was that this approach also prevented the user
from taking advantage of many Oracle Net Services features such as network tuning and specific
network paths. It also caused problems when the databases were RAC systems with many
instances, something we will discuss in the next section.

In addition, starting with Oracle Database 10g Release 2, the Broker discarded the user’s
service and started using a new service called XPT (for Transport). The XPT service was constructed
from the DB_UNIQUE_NAME of the database and appending the string _XPT to the end of the
DB_UNIQUE_NAME, as in Matrix_XPT. All databases running in 10.2 or later have this XPT
service registered with the listener. Apparently this new service created quite a stir with some users
who didn’t use the Broker and wanted the service removed from their systems. This could be
accomplished by setting the hidden parameter "__DG_BROKER_SERVICE_NAMES" to a blank
string and restarting the database:

SQL> ALTER SYSTEM SET "__DG_BROKER_SERVICE_NAMES"='' SCOPE=SPFILE;

184 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 5: Implementing Oracle Data Guard Broker 185

NOTE
Two underscores appear at the front of __DG_BROKER_SERVICE_
NAMES, and you must enclose the parameter name in double
quotation marks. You have to change the SPFILE only. You cannot
change this parameter in memory. To stop the service, you must restart
the database.

This new service did not bother us nearly as much as the way the Broker converted our
TNSNAMEs to an expanded connect string. For example, if you provide the Broker with Matrix_DR0
as the Transparent Networking Substrate (TNS) connection, when you create your configuration, as in

MATRIX_DR0 =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = matrix_dr0.domain)(PORT = 1521))
)
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = Matrix_DR0.domain)
)
)

your TNSNAME would be translated and stored as the property InitialConnectIdentifier in
the Broker configuration file, as the following connect string:

(DESCRIPTION=(ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCP)(HOST=matrix_dr0.domain)
(PORT=1521)))(CONNECT_DATA=(SERVICE_NAME=Matrix_DR0_XPT.domain)
(INSTANCE_NAME=Matrix_DR0)(SERVER=dedicated)))

This connection string would be used as the argument to the SERVICE attribute of a LOG_
ARCHIVE_DEST_n parameter for Redo Transport to the target database. When the primary
database starts up (or you create and enable the Broker configuration in the first place), you
would see something like the following in the alert log:

ALTER SYSTEM SET log_archive_dest_2= service="(DESCRIPTION=
(ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCP)(HOST=matrix_dr0.domain)(PORT=1521)))
(CONNECT_DATA= SERVICE_NAME=Matrix_DR0_XPT.domain)(INSTANCE_NAME=Matrix_DR0)
(SERVER=dedicated)))" LGWR ASYNC db_unique_name=Matrix_DR0 valid_for=(online_
logfiles,primary_role) reopen=30' SCOPE=BOTH;

In this manner, the TNSNAME file would be ignored forever more, and so would any
particular settings that you had configured that the Broker did not handle, such as the send and
receive buffer sizes.

The great news is that as of Oracle Database 11g, this no longer happens. The
InitialConnectIdentifier went away and a new property was introduced called the
DGConnectIdentifier. This property is loaded when you provide your TNSNAME to specify
how the Broker should connect to a specific database. Now, instead of converting that TNSNAME
to a connect string, the TNSNAME is stored in the configuration file as is, and all connections to
that database are made using your TNSNAME. This means that any special configuration settings
that you have made in your TNSNAME entry are used by the Broker and are no longer discarded.

Chapter 5: Implementing Oracle Data Guard Broker 185

Of course, all of this is documented in the manual, but as reference material only. Nowhere
does it mention just how fantastic an improvement this really is to the Broker. It solves several
problems that the old method inadvertently caused, such as requiring a complete re-creation of
your configuration if you moved a standby database, making it impossible to force the redo onto a
specific network, tune the network, or add any other specific network parameters, to name a few.

For example, when you did all your network tuning, as described in Chapter 2, you most
likely increased the session data unit (SDU) and the Transmission Control Protocol (TCP) send and
receive buffer sizes to suit your network. If you were using 10g and you wanted to use the Broker
you would have to use the sqlnet.ora method, which would apply to every Oracle Net Services
connection to and from those systems. Now with the DGConnectIdentifier, you can place
those tuning parameters where they should be, in the TNSNAME and listener files.

MATRIX_DR0 =
 (DESCRIPTION =
 (SDU=32767)
 (SEND_BUF_SIZE=2092500)
 (RECV_BUF_SIZE=2092500)
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = matrix_dr0.domain)(PORT = 1521))
)
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = Matrix_DR0.domain)
)
)

For the new Oracle Database 11g user, this new property is an obvious operation, but what
about the current Broker user in Oracle 10g? What happens when the database is upgraded from
10g to 11g? The original configuration will continue to work, but the connect string that the Broker
put into the InitialConnectIdentifier will be migrated to the new configuration as the
DGConnectIdentifier property. This means that you will still be using the old method where the
Broker uses the connect string instead of your TNSNAME. Which brings us back to the subject of
that Broker XPT service. This also means that you will still be using the old service as long as you
choose not to change the DGConnectIdentifier. So do not disable the XPT service, as described
earlier, until you fix the connect identifier.

TIp
When you already have a Broker configuration, always change the
DGConnectIdentifier property for all of your databases to a real
TNSNAME after you upgrade from 10g to 11g!

The Broker and the Listener
Obviously, as with any Oracle Net Services connection, the Broker uses the TNSNAME to resolve
the path to the database and then initiates a connection to the listener at the target system using
the service name you put into your TNSNAME entry. And since the two main places that these
connections are initiated, Redo Transport and connecting to DGMGRL, require that the target
database be at least mounted, then as long as you have configured the target database to start the
necessary service, all will work well. Or so you might think. But if you tried to do a switchover or

186 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 5: Implementing Oracle Data Guard Broker 187

use Fast-Start Failover, all would not work correctly. During these operations, one of the databases
shuts down and needs to be restarted. Since the database is down, the service specified by your
TNSNAME is not registered so an Oracle Net Services connection cannot be made. When the
remote database is down and you try to connect with SQL*Plus or DGMGRL, you would get the
dreaded “ORA-12514: TNS:listener does not currently know of service requested in connect
descriptor” error message. Of course, there is a way around this, and it is noted as a prerequisite in
Chapter 2 of the Data Guard Broker manual and has been there since Oracle Database 10g Release
1. But for some unknown reason, many users miss it, and then, when they try a switchover, it fails.

The configuration prerequisite for the listener is to create a specially named static listener
entry for each database in your Broker configuration. This entry makes it possible for the Broker
to connect to an idle instance using a remote SYSDBA connection and perform the necessary
startup. This static entry has to be made up of the database unique name (as you specified in the
DB_UNIQUE_NAME parameter) with the string _DGMGRL appended to it followed by the domain of
the database. For example, our primary database, Matrix, would have the following entry in the
SID list of the listener.ora file on the primary system:

SID_LIST_LISTENER =
 (SID_LIST =
 (SID_DESC =
 (GLOBAL_DBNAME = Matrix_DGMGRL.domain)
 (ORACLE_HOME = /scratch/OracleHomes/OraHome111)
 (SID_NAME = Matrix)
)
)

You do not need a TNSNAME entry pointing to this static entry since the Broker knows how to
construct a connect string from the information you have already provided. The host the database
is on and what port the listener is using comes from the connection information you provided
when you created the configuration in the first place. It also knows the database unique name
and domain from the database properties. In this manner, the Broker is able to construct a valid
connect string that will allow a connection to the instance even if it is down.

TIp
Do not forget to define the <db_unique_name>_DGMGRL.domain
static entry in the listener.ora file of each database including the
primary database, even if you use Grid Control.

This is the one thing that you need to do even if you use Grid Control, just in case you cannot
get access to Grid Control when you need to manage your Data Guard configuration. As we have
already mentioned, in a Broker-controlled configuration, if you need to use a CLI, you must use
the Data Guard Broker DGMGRL CLI. Sometimes you will need to use DGMGRL to change
attributes that are not exposed in Grid Control.

When you use Grid Control to create a new standby database, this static listener entry is
added to the standby listener.ora file. But if you have created your standby database manually and
imported it into Grid Control, this static entry will not be made to the standby listener. And it is
never added to the primary database listener unless you enable Fast-Start Failover. You must
ensure that this entry is defined on all databases in your configuration, even if you use Grid
Control exclusively.

Chapter 5: Implementing Oracle Data Guard Broker 187

Configuring Oracle Net for the Broker
Now that you understand how the Broker uses the various parts of Oracle Net Services, let’s recap
what we need to do before we create a Broker configuration.

First, as we described in Chapter 2, we need to define TNSNAMEs entries on each system in
our configuration that Data Guard will use for Redo Transport and gap resolution, as specified in
the LOG_ARCHIVE_DEST_n parameter. So our primary system will have a TNSNAME entry called
Matrix_DR0 that points to our standby database, and our standby system will have a TNSNAME
entry called Matrix that points to our primary database. We need to do this even if we created
a standby without any of the parameters configured, as in the short RMAN example in Chapter 2.
The Broker must have these entries so it can complete the configuration.

Second, in addition to the listener on each system and any tuning we have done, we need to
create the special static entry for each database in the configuration that follows the <db_unique_
name>_DGMGRL.domain format.

Now our network is ready for the Broker to complete the setup when we use DGMGRL to
create a configuration.

RAC and the Broker
The Broker has been RAC aware since Oracle Database 10g Release 1 and will handle all the
setup tasks for you, just as it does when the databases involved are single instance. As you will
see when you actually create your Broker configuration, the commands are very simple, and by
default there is no difference between creating a RAC or non-RAC configuration.

The fact that a Broker configuration is transparent when a cluster is involved goes back to our
discussion of the configuration files. Remember that the configuration files must be RAC visible,
and only one copy of the configuration files may exist for an entire RAC. In this way, configuration
properties are maintained consistently across a cluster, and all instances have the same view of
the Broker settings. Unlike the database parameter file, which can use specific settings for some
parameters per instance (although that’s not necessarily a best practice), the Broker configuration
settings cannot vary between instances. That is why it is so important that you get this right the
first time! You need to set up the configuration file parameters correctly and set the Broker START
parameter to TRUE for each instance in the RAC.

When you create your initial configuration, the Broker writes all the necessary information to
the configuration files. If the database is a RAC, the INSV process where you are connected will
inform all the other currently running instances of the configuration parameters, and Data Guard
setup will be executed as necessary on each node. If an instance is down when you create the
configuration, when it comes up again the Broker will start up, read the configuration file, and
perform the necessary setup steps. This process applies to the primary and all standby databases
in the configuration since the Broker is aware of all instances in a RAC and their current states at
all times.

You can optionally configure where the apply processing will occur on a standby database. If
the standby is a single-instance database, then the apply will be placed on that system. But if the
standby database is a RAC, one of the instances must be chosen as the apply instance. This is
because Data Guard Apply services cannot be run on more than one instance at a time,
regardless of the type of standby, be it physical or logical. By default, the Broker will randomly
choose an available instance in a RAC standby and place the apply processing there.

If you want to specify where the apply will run on a particular standby database, you can
modify the PreferredApplyInstance property to point to one of the standby instances.

188 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 5: Implementing Oracle Data Guard Broker 189

We will discuss how to change properties a little later in the chapter in the Changing the Broker
Configuration Properties section, but it is important for now that you understand why you might
want to move the apply instance and what will actually happen when you do. Merely changing
the PreferredApplyInstance property will not move the apply if it is already running on
another standby instance. The change will occur when the current apply instance is restarted. But
it you change the PreferredApplyInstance property as part of a state change command, the
Broker will stop the apply on the current instance and restart it on the desired instance.

Why would you want to make this kind of change? The Broker will handle placement of the
apply services automatically and will move them to another surviving instance in the event that the
current apply instance fails for some reason. Historically, when clusters were configured, a lot of
them used raw devices, and as such the archive logs on the standby database were not visible
across the cluster. So users felt it necessary to place the apply on the instance where the redo was
arriving so that the archive logs were all available to the apply services. But since the Broker
always put the apply services automatically on the same system where the Redo Transport was
sending the redo, changing the location of the apply was usually unnecessary. Another reason for
making the change might involve a standby RAC in which the systems are not comprised of the
same number of CPUs and/or memory and you want to place the apply services on the largest
node. Or you might need to take down the current apply instance for maintenance, and you want
to move the apply to another instance so that you know your recovery time objective (RTO)
remains steady before you take the outage. Whatever the reason for making this change, just
remember that when the Broker does fail the apply over to a surviving instance (when the apply
instance crashes), it will not put the apply back on your chosen instance when that system comes
back up. It will move the apply back to your preferred instance only when you make the property
change again.

The second and more important RAC difference is in the way Redo Transport is configured.
And this has changed from previous releases and Oracle Database 11g as well. Remember that
the Broker enforces database property equality across any RAC in its configuration. This means
that when it comes to the Redo Transport Services, the Broker will set the parameters (LOG_
ARCHIVE_DEST_n) the same way for each primary RAC instance. You do not have any control
over this.

But in Oracle Database 10g (Release 1 or 2), you did not have to worry about how to set
up the connect strings to the standby. In fact, you couldn’t change them if you wanted to. The
Broker stored all the information about each standby instance and constructed the connect
string to point all redo traffic from the primary to the first instance in the standby. If that standby
instance went down, the Broker would automatically reconfigure the parameters across the
primary RAC to point to another standby instance. This use of long connect strings sometimes
caused parameter length problems when the size of the cluster grew beyond a certain number
of nodes.

As discussed earlier, the Broker no longer constructs the connect string out of your
InitialConnectIdentifier. It remembers and uses the TNSNAME you provided (unless
you are running an upgraded and unchanged configuration), and you are now responsible for
ensuring that the Broker can connect to all the instances in the standby RAC. Once you move to
the new, fantastic, and tunable method of specifying the DGConnectIdentifier, you have to
make sure that your TNSNAME for the standby has all the RAC systems configured. And you must
make use of the Transparent Application Failover (TAF) connect time failover capability so that the
Redo Transport Services move seamlessly from a failed standby node to a surviving standby node.

Chapter 5: Implementing Oracle Data Guard Broker 189

For example, consider that our standby Matrix_DR0 is a two-node RAC database. The TNSNAME
that we use to create the database in our Broker configuration must look like this:

MATRIX_DR0 =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = Matrix1_DR0.domain)(PORT = 1521))
 (ADDRESS = (PROTOCOL = TCP)(HOST = Matrix2_DR0.domain)(PORT = 1521))
)
 (CONNECT_DATA =
 (SERVICE_NAME = Matrix_DR0.domain)
)
)

In this way, the Redo Transport Services will use the TNSNAME Matrix_DR0, and if host
Matrix1_DR0 is not available, connect time failover will automatically take the transport to the
second entry. Of course you could also use the Virtual IP (VIP) for the standby cluster.

One last thing about your TNSNAMEs in a RAC: If you do not have a single cluster-wide
tnsnames.ora file, you must make sure that the TNSNAME entry for the standby is the same on
all nodes in the primary cluster. Your standby databases must also have a similar entry across the
standby cluster pointing back to the primary database RAC hosts for switchover.

The last RAC-specific item is actually something you no longer have to worry about in Oracle
Database 11g. In 10g you needed to modify the RAC Cluster Ready Services (CRS) to make sure
that the various standby databases were always started up in the MOUNT state, and then the Broker
would take care of opening the database if necessary:

srvctl modify database -d <Matrix> -o <$oracle_home> -s mount
srvctl modify database -d <Matrix_DR0> -o <$oracle_home> -s mount

TIp
When you set the CRS database options in Oracle Database 10g, you
do not need to specify the role (-r) option for your standby databases.
It was never implemented to do anything and is ignored by the Broker.

If the database is a primary, the Broker would always bring it to the OPEN state when the
instance was started. This would happen even if you used STARTUP MOUNT. (If you simply wanted
to mount the primary database, you needed to disable the Broker first.) If the database were a
standby, the Broker would bring the instance to the state that you last specified, which was stored
in the configuration file. (Database state will be discussed in the next section.)

With Oracle Database 11g, setting the START mode option in CRS is no longer necessary or
encouraged as far as the Broker in concerned. The Broker will now always honor the startup
choice of the DBA, regardless of the database type. If the database is the primary and the DBA
uses STARTUP MOUNT, the database will remain in the MOUNT state, whereas in 10g the database
would be opened anyway.

TIp
The Broker no longer opens the primary database when you use
STARTUP MOUNT. In 11g it leaves the database at the MOUNT state. You
must change your scripts and the CRS startup mode options in 11g if
you set them to MOUNT in 10g.

190 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 5: Implementing Oracle Data Guard Broker 191

At switchover and failover, the Broker will leave the databases in the correct mode for their
new role. When a standby becomes the primary, it will be opened for use and the primary that
becomes a standby will be put into the correct state for that standby (MOUNT for a physical and
OPEN for a logical). This means that if you have the CRS startup mode options set to MOUNT in 11g,
any subsequent restarts of the new primary database will leave it in the MOUNT state and it will not
be open for business! So you will want to remove the MOUNT start mode.

Connecting to the Broker
Finally, you are now ready to connect to the Broker and start managing Data Guard. However, you
still need to understand a couple of things about connecting to the Broker. As with any interface to
a database, you have to connect DGMGRL (your client) to a database (your server). And as with
other interfaces in the Oracle world, there are multiple ways to do this, such as putting the login
information on the command line or using the DGMRGL CONNECT command. For example, you
can connect to the current local database (as defined by the ORACLE_SID) on the DGMGRL
command line using host authentication:

[Matrix] dgmgrl /
DGMGRL for Linux: Version 11.1.0.6.0 – Production
Copyright (c) 2000, 2005, Oracle. All rights reserved.
Welcome to DGMGRL, type "help" for information.
Connected.
DGMGRL>

Or you can use the CONNECT command:

[Matrix] dgmgrl
DGMGRL for Linux: Version 11.1.0.6.0 – Production
Copyright (c) 2000, 2005, Oracle. All rights reserved.
Welcome to DGMGRL, type "help" for information.
DGMGRL> CONNECT /
Connected.
DGMGRL>

You are now connected to the database, but this does not mean that a Broker configuration is
associated with the database at this point. For that matter, being connected does not even mean
that you have enabled the Broker. If you did not follow the steps to enable the Broker correctly (as
described earlier) and you tried a SHOW CONFIGURATION command, you would get the following
error message:

DGMGRL> SHOW CONFIGURATION;
Error:
ORA-16525: the Data Guard broker is not yet available
ORA-06512: at "SYS.DBMS_DRS", line 157
ORA-06512: at line 1
DGMGRL>

But if you performed the correct steps and enabled the Broker correctly, you would get the
following result from your SHOW CONFIGURATION command:

DGMGRL> SHOW CONFIGURATION;
Error: ORA-16532: Data Guard broker configuration does not exist

Chapter 5: Implementing Oracle Data Guard Broker 191

Configuration details cannot be determined by DGMGRL
DGMGRL>

While still an error, this is the “correct error,” since you haven’t actually created a configuration
yet. But let’s go back to connecting to the Broker for the moment.

You might ask, “Why does this matter? Isn’t how to connect to a database pretty clear overall?”
Well, yes and no. The problem with this “/ only” method is that the Broker does not have a username
and password that it can use when you begin to manage the configuration. While this will not break
anything permanently or endanger your Data Guard setup, it does means that certain procedures will
not be able to complete correctly and your configuration will remain in a weird state, which you will
have to resolve manually.

For example, in a switchover operation, the Broker starts the process on the primary and then,
when the standby is ready, completes the switchover on the standby. In parallel, the Broker will
shut down the old primary so that it can restart it as a standby and get Redo Transport and apply
running again. But without a username and password, the Broker processes (that NSV to DRC
connection we talked about in the first part of this chapter) will not be able to log in to the old
primary since you cannot log in as SYSDBA to a remote database that is currently shut down
without a username and password. So you are left with a functioning new primary but without
any standby until you go to the old production system and manually STARTUP MOUNT the old
primary using SQL*Plus. When the old primary comes up (as a standby now), the Broker will
connect and finish up the configuration.

Worse, if you happen to be running in Maximum Protection mode (which requires at least one
SYNC standby), your new primary will not come up and your system will remain down longer than
you expect. (We’ll revisit this issue in Chapter 8 when we discuss the mechanics of role transition.)
How do you avoid this problem? Always specify a username/password that has SYSDBA privileges
when you connect to the Broker

[Matrix] dgmgrl sys/oracle
DGMGRL for Linux: Version 11.1.0.6.0 – Production
Copyright (c) 2000, 2005, Oracle. All rights reserved.
Welcome to DGMGRL, type "help" for information.
Connected.
DGMGRL>

Or

[Matrix] dgmgrl
DGMGRL for Linux: Version 11.1.0.6.0 – Production
Copyright (c) 2000, 2005, Oracle. All rights reserved.
Welcome to DGMGRL, type "help" for information.
DGMGRL> CONNECT sys/oracle
Connected.
DGMGRL>

As with the “/ method,” these two connections will attach to the current database as defined
by the ORACLE_SID. Normally, the database to which you connect can be the primary or any of
the standby databases. But in this case you have not set up the configuration yet so you need to
make sure you connect to the primary database when you create your configuration.

192 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 5: Implementing Oracle Data Guard Broker 193

TIp
If you plan on using the Broker, the best practice when creating your
standby database is to use as few Data Guard parameters as possible
and let the Broker configure everything for you.

You can also connect to a remote database with DGMGRL by using the normal @TNSNAMES
format.

[Matrix] dgmgrl sys/oracle@Matrix
DGMGRL for Linux: Version 11.1.0.6.0 – Production
Copyright (c) 2000, 2005, Oracle. All rights reserved.
Welcome to DGMGRL, type "help" for information.
Connected.
DGMGRL>

Or

[Matrix] dgmgrl
DGMGRL for Linux: Version 11.1.0.6.0 – Production
Copyright (c) 2000, 2005, Oracle. All rights reserved.
Welcome to DGMGRL, type "help" for information.
DGMGRL> CONNECT sys/oracle@Matrix
Connected.
DGMGRL>

This means that you can manage any Data Guard configuration from any system in your
network without actually being on one of the database systems. You just need to fulfill a few
requirements:

 Your Oracle home must be set to an Enterprise Edition or client Oracle home. ■

 The Oracle home of your local system must be using the same version used by the ■
database homes of the configuration.

 You must have TNSNAME entries on the local system that point to the various databases ■
in your Broker configuration.

 You must have the privileges to connect over the ports defined in the TNSNAME file—that ■
is, if the database systems are behind a firewall, then you must have the port opened so
you can connect.

You are now ready to begin your Data Guard Broker configuration. To recap, you have done
the following:

 Set up your Broker configuration file parameters ■

 Created any necessary directories ■

 Enabled the Broker by setting the ■ START parameter to TRUE on your primary and all standby
databases

 Made the appropriate TNSNAME entries on all of the systems involved in the ■
configuration

 Set up the static listener entries on all of the systems ■

Chapter 5: Implementing Oracle Data Guard Broker 193

 Sorted out the CRS settings ■

 Used a username and password to connect to DGMGRL ■

 Connected to the primary database ■

After the configuration is set up and enabled, you can connect through any of the databases
in the configuration and manage the entire configuration from there. Let’s get started!

Managing Data Guard with the Broker
As discussed earlier, DGMGRL is the CLI to the Broker and the DGMGRL commands can be
divided into four main areas:

 Connection and help ■ CONNECT, HELP, and EXIT

 Creation and editing ■ CREATE, ADD, ENABLE, EDIT, and CONVERT

 Monitoring ■ SHOW

 Role transition ■ SWITCHOVER, FAILOVER, and REINSTATE

In this section, we will discuss how to use the commands in the first two areas, which will
include the creation, enabling, and editing of a Broker configuration. The monitoring-specific
commands for the most part are discussed in the next section and the transition commands will
be saved for Chapter 8.

Before we get started, you need to know that if you are a Broker user from the Oracle9i days,
you have to forget everything you know about the DGMGRL commands and Enterprise Manager.
The Enterprise Manager Data Guard interface changed completely because of the rewrite of Grid
Control. The DGMGRL commands changed too—almost 100 percent—because the concepts
the Broker employed in Oracle9i changed with the arrival of Oracle Database 10g. A Broker
RESOURCE became a DATABASE, an ALTER command became EDIT, and the concept of a SITE
disappeared completely. With that understood, let’s create a Broker configuration.

Creating and Enabling a Broker Configuration
DGMGRL cannot create a standby database for you. It cannot copy the database files to the standby
server and do all the things necessary to create the standby database. Grid Control has that capability,
and if you used it to create your standby database, you do not need to perform this creation exercise,
because it has already been done for you. You should read through the process so that you
understand what was done for you.

But if you used any other method to create your standby, including “The Power User Method”
discussed in Chapter 2, the state in which you left the standby database when you finished your
creation will affect how the Broker configures everything. While the commands you are going to
use are exactly the same no matter how you created the standby, the Broker will make different
decisions when setting the various properties that relate directly to database parameters.

The first step is to create the base configuration by connecting to the primary database and
then using the CREATE CONFIGURATION command. Make sure that you connect to the primary
database; otherwise, you will see the following ORA-16642 error:

[Matrix_DR0] dgmgrl
DGMGRL for Linux: Version 11.1.0.6.0 – Production
Copyright (c) 2000, 2005, Oracle. All rights reserved.

194 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 5: Implementing Oracle Data Guard Broker 195

Welcome to DGMGRL, type "help" for information.
DGMGRL> CONNECT sys/oracle
Connected.
DGMGRL> CREATE CONFIGURATION MATRIX AS
> PRIMARY DATABASE IS MATRIX
> CONNECT IDENTIFIER IS matrix;
Error: ORA-16642: DB_UNIQUE_NAME mismatch
Failed.
DGMGRL>

Looking into the DRC log (remember that it is in the same place as the database alert log),
you will see the following message (edited to fit here):

0 2 0 DMON: Cannot add the primary database with db_unique_name matrix
0 2 0 My db_unique_name is Matrix_DR0.
0 2 671586149 DMON: ADD_DATABASE: (error=ORA-16642)

As you can see from the DRC log, the Broker requires that the DB_UNIQUE_NAME of the database
to which we are attached matches the primary database name we specified.

One thing that did happen from this mistaken attempt is that the configuration file was created
on our standby database, complete with the link to the DATAGUARDCONFIG file, although it is
currently empty. So let’s try again. We will move to the primary system and set our ORACLE_SID to
the primary SID, Matrix:

[Matrix] dgmgrl
DGMGRL for Linux: Version 11.1.0.6.0 - Production
Copyright (c) 2000, 2005, Oracle. All rights reserved.
Welcome to DGMGRL, type "help" for information.
DGMGRL> CONNECT sys/oracle
Connected.
DGMGRL> CREATE CONFIGURATION MATRIX AS
> PRIMARY DATABASE IS MATRIX
> CONNECT IDENTIFIER IS matrix;
Configuration "matrix" created with primary database "matrix"
DGMGRL>

At this point, we have a configuration created and stored in the primary database
configuration files. But nothing is happening yet as we do not have a standby database nor is the
configuration enabled. A simple SHOW CONFIGURATION will show us the current state of our
configuration:

DGMGRL> show configuration
Configuration
 Name: matrix
 Enabled: NO
 Protection Mode: MaxPerformance
 Databases:
 matrix - Primary database
Fast-Start Failover: DISABLED
Current status for "matrix":
DISABLED

Chapter 5: Implementing Oracle Data Guard Broker 195

The next step is to add our standby database that we created in Chapter 2 using one of the
Power User methods. This is done with the ADD DATABASE command. The arguments are similar to
those of the CREATE CONFIGURATION command and require a database name for the standby (DB_
UNIQUE_NAME of the standby), a connect identifier (the TNSNAME for the standby), and,
optionally, an indication of whether the standby is a physical or a logical standby database. This is
where the way you created the standby starts to make a difference. The Broker can use the database
name alone to set up the properties for the standby database, but only if you already configured
a transport parameter (LOG_ARCHIVE_DEST_n) in the proper manner. If not, you will see the
following error:

DGMGRL> ADD DATABASE MATRIX_DR0;

Error: ORA-16796: one or more properties could not be imported from the database

Failed.

So what is the proper way to set up the transport parameter? You must have your Redo
Transport parameters defined using the DB_UNIQUE_NAME method, meaning that each Redo
Transport parameter must contain the DB_UNIQUE_NAME=<name> attribute. The Broker will
search all of your LOG_ARCHIVE_DEST_n parameters looking for a database unique name that
matches the database name you entered for the command. Merely using the same name in the
service attribute, SERVICE=name…, is not enough. The Broker will not be able to find the proper
connection information and will fail to add the database. In our case, we have not defined any of
the Data Guard parameters in our current setup. So we must use the full set of arguments to the
ADD DATABASE command to allow the Broker to connect to the standby:

DGMGRL> ADD DATABASE MATRIX_DR0
> AS CONNECT IDENTIFIER IS MATRIX_DR0
> MAINTAINED AS PHYSICAL;
Database "matrix_dr0" added

DGMGRL> SHOW CONFIGURATION;
Configuration
 Name: matrix
 Enabled: NO
 Protection Mode: MaxPerformance
 Databases:
 matrix - Primary database
 matrix_dr0 - Physical standby database
Fast-Start Failover: DISABLED
Current status for "matrix":
DISABLED
DGMGRL>

We now have a Broker configuration ready to go. All that is left to start things up is to ENABLE
the configuration. But before we do that, let’s look at what actually happened behind these simple
and fast commands.

The Broker will set the properties of the configuration to default values based on what it finds
when you create the configuration. If you have created a standby database but not set any of the
Data Guard parameters, the Broker will set every property in the configuration to the default value.
(We will discuss these default values in a moment.) But if you have set some of the Data Guard

196 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 5: Implementing Oracle Data Guard Broker 197

parameters when you created your standby (in other words, you already have a running Data Guard
setup), the Broker will “harvest,” or gather up, as many of the values as it can and set those
properties for which it found no value to the default. To add to the confusion, some of the default
values change depending on what protection mode the Broker finds, and some defaults have even
changed between 10g and 11g. In addition, some of the parameters in your database are considered
by the Broker to be “‘Broker controlled,” such as LOG_ARCHIVE_MAX_PROCESSES, and the Broker
will harvest those parameters accordingly. Confused? Don’t be, because it’s not as bad as it sounds;
you just need to be aware of what is happening behind the scenes.

Let’s take the simplest example first: No Data Guard parameters have been manually set when
we created our standby database (which is the situation for our examples anyway). After we
created the configuration, the Broker set all of the Redo Transport properties to their default values,
some coming from the database and some set by the Broker rules. For other properties, the Broker
either found an explicit value or it looked up the default value for the parameter. And others were
set to the Broker’s own default settings, such as ApplyParallel. You can see the various properties
by issuing the SHOW DATABASE VERBOSE command:

DGMGRL> show database verbose matrix;
Database
 Name: matrix
 Role: PRIMARY
 Enabled: NO
 Intended State: OFFLINE
 Instance(s):
 Matrix
 Properties:
 DGConnectIdentifier = 'matrix'
 LogXptMode = 'ASYNC'
 DelayMins = '0'
 Binding = 'OPTIONAL'
 MaxFailure = '0'
 MaxConnections = '1'
 ReopenSecs = '300'
 NetTimeout = '30'
 RedoCompression = 'DISABLE'
 LogShipping = 'ON'
 PreferredApplyInstance = ''
 ApplyInstanceTimeout = '0'
 ApplyParallel = 'AUTO'
 StandbyFileManagement = 'MANUAL'
 ArchiveLagTarget = '0'
 LogArchiveMaxProcesses = '4'
 LogArchiveMinSucceedDest = '1'
 DbFileNameConvert = ''
 LogFileNameConvert = ''
 HostName = 'matrix.domain'
 SidName = 'Matrix'
 StandbyArchiveLocation = 'USE_DB_RECOVERY_FILE_DEST'
 AlternateLocation = ''
 LogArchiveTrace = '0'
 LogArchiveFormat = '%t_%s_%r.dbf'

Chapter 5: Implementing Oracle Data Guard Broker 197

Current status for "matrix":
DISABLED
DGMGRL>

This example has been edited to show only those properties that you would be able to change at
this moment. The monitoring and Fast-Start Failover properties have been removed. If you look at
the standby database Matrix_DR0, you will see the same defaults but for the standby database.

If, on the other hand, you had set up Data Guard to ship and apply redo, then the Broker
would pick up the values for the parameters and attributes that you set and use the defaults for
those for which no explicit value exists. For example, assume we set up Redo Transport as
follows:

LOG_ARCHIVE_DEST_2='SERVICE=MATRIX_DR0 SYNC NET_TIMEOUT=15 REOPEN=30
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE) DB_UNIQUE_NAME=MATRIX_DR0'

In this case, the Broker would gather up all of these attributes and set the associated properties to
our values and default anything we did not explicitly set.

One parameter to watch out for is the local archiving on the primary and standby databases.
The Broker will modify your local archiving parameters if necessary to add the VALID_FOR
attribute in preparation for the archival of your standby redo log files. For example, if you have
the following local archiving destination defined,

LOG_ARCHIVE_DEST_1='LOCATION=/path/'

the Broker will change it to the following when you enable the configuration:

LOG_ARCHIVE_DEST_1='LOCATION=/path VALID_FOR=(ALL_ROLES,ALL_LOGFILES)'

It will make this change on all the databases in the configuration. If you followed best practices
and are using a flash recovery area, you should have your local archiving defined using the
special attribute for the flash recovery area as follows:

LOG_ARCHIVE_DEST_1='LOCATION=USE_DB_RECOVERY_FILE_DEST'

And the Broker will change it to the following when you enable the configuration:

LOG_ARCHIVE_DEST_1='LOCATION= USE_DB_RECOVERY_FILE_DEST
VALID_FOR=(ALL_ROLES,ALL_LOGFILES)'

However, if you explicitly defined a local archiving destination using the VALID_FOR
attribute as follows,

LOG_ARCHIVE_DEST_1='LOCATION= USE_DB_RECOVERY_FILE_DEST
VALID_FOR=(PRIMARY_ROLE,ONLINE_LOGFILE)'

then the Broker cannot change it and will add another destination parameter explicitly defined for
the standby redo log files, as follows:

LOG_ARCHIVE_DEST_3='LOCATION=$ORACLE_HOME/dbs/arch
VALID_FOR=(STANDBY_ROLE,STANDBY_LOGFILE)'

The $ORACLE_HOME in the example represents the actual directory string. This won’t mean
much on the primary at this time since the standby redo log files are not being used. But it will

198 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 5: Implementing Oracle Data Guard Broker 199

cause the standby database to start putting archive logs into the directory specified by this new
parameter the moment redo starts to come in from the primary. Everything will continue to work,
including the apply service and your RMAN backups, but you will see files in places you did not
expect. If you have your local archiving defined in this manner, you should change it to specify
VALID_FOR=(ALL_ROLES,ALL_LOGFILES) before you enable the configuration.

TIp
Always use a flash recovery area and define your local archiving
parameters to be LOG_ARCHIVE_DEST_1='LOCATION=USE_DB_
RECOVERY_FILE_DEST'.

Other changes have been made, especially to the default values of some of these properties,
between the various versions. Because the default in the database Redo Transport view
V$ARCHIVE_DEST did not hold the correct default for the NET_TIMEOUT attribute, the Broker set
the NET_TIMEOUT to NONET_TIMEOUT in 9i and early 10.1. The view was corrected and was set
correctly by the Broker starting in version 10.2 with the default value being 180 seconds. Starting
with 11g the attribute was made available to the DGMGRL user as a property and was set to a
default of 30 seconds.

The default Redo Transport mode also changed between 10g and 11g. If you did not specify
ARCH, ASYNC, or SYNC in 10.2, the Broker would default the Redo Transport to ARCH. But in 11g
it defaults the transport mode to ASYNC, and the Redo Transport mode ARCH cannot actually be
set through the Broker anymore. As mentioned in Chapter 1, ARCH has been deprecated as a
transport mode.

Another even more important default action is the way the Broker will configure Redo Transport
if the protection mode of the configuration has already been set to a degree higher than the default
of Maximum Performance. If the configuration is set to one of the higher modes, Availability or
Protection, you should have already set at least one standby database to use the SYNC transport
mode. In 10g the Broker would harvest the attributes for the SYNC standby and set its properties
correctly. But it would not set the primary database transport property (LogXptMode) to SYNC, even
though you had a parameter in the standby that specified that the redo should be sent to the new
standby (the old primary after a switchover, for example) using synchronous (SYNC) transport. So
unless you set the primary transport mode property to SYNC manually, when you switched over to
the standby you would find yourself running in a unsynchronized manner (or even down if you
were in Maximum Protection) because the Redo Transport being used to send redo to the old
primary (now a standby) would be running in ASYNC or even ARCH mode. This has been corrected
in 11g, and the primary will be automatically set to SYNC whenever the Broker harvests or sets
a protection mode higher than Maximum Performance.

But with this correction comes another wrinkle in the default value discussion. What happens
when we add a second standby database? For this discussion, we will assume that we have a
Broker configuration already running in Maximum Availability with the primary and first standby
about 100 km (about 62 miles) apart and using the SYNC Redo Transport mode. You want to add a
second standby that is 1600 km (1000 miles) away for geographic separation. If you have created
the remote standby and configured the Redo Transport parameters to be ASYNC, then all will be
well and the standby will continue to run in ASYNC mode when you enable it. But if you created
the remote standby using the short method, expecting the Broker to take care of things for you,
then this second standby will default to SYNC transport due to the elevated protection mode

Chapter 5: Implementing Oracle Data Guard Broker 199

of the configuration. Since all new databases added to the configuration have to be manually
enabled, you will not have a problem and can change the property for this standby to be ASYNC
before you enable it. But if you blindly enable the new database in this example, your production
would suffer a major hit as it is all of a sudden waiting for redo to be shipped over the WAN.
Since Redo Transport is dynamic, you can quickly correct this by setting the property down to
ASYNC for the second standby and then switching logs on the primary database. But it will cause
some excitement for a while!

TIp
Always check the database properties for a newly added database
before issuing the ENABLE DATABASE command to ensure that
everything is set the way you want it to be.

This is why we said that it is important to understand what is going on behind the scenes
before you enable a database or a new configuration. If you need to change properties, you must
do so before you enable the database or configuration. We will discuss editing properties in the
next section.

Since the defaults are acceptable for our current setup, we can enable the configuration and
let the Broker start everything up:

DGMGRL> ENABLE CONFIGURATION;
Enabled.

This single command will perform several operations on the primary and all standby
databases. It will issue ALTER SYSTEM commands on the primary to set the Data Guard
parameters that are required for a database that is running as the primary, and start Redo
Transport to the standby databases. The Broker will also issue ALTER SYSTEM commands on the
standby databases to set up the parameters required for a database that is running in the standby
mode and will start up the apply services. As it takes a bit of time for all of this to occur, you will
most likely see an ORA-16610 if you issue a SHOW CONFIGURATION command too quickly after
the enable command returns:

DGMGRL> SHOW CONFIGURATION;
Configuration
 Name: matrix
 Enabled: YES
 Protection Mode: MaxPerformance
 Databases:
 matrix - Primary database
 matrix_dr0 - Physical standby database
Fast-Start Failover: DISABLED
Current status for "matrix":
Warning: ORA-16610: command "ENABLE DATABASE matrix_dr0" in progress

You can watch the Broker perform its magic by issuing a tail -f of the database alert log files.
After waiting for a few minutes, a second SHOW CONFIGURATION command will return success:

DGMGRL> SHOW CONFIGURATION;
Configuration
 Name: matrix
 Enabled: YES

200 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 5: Implementing Oracle Data Guard Broker 201

 Protection Mode: MaxPerformance
 Databases:
 matrix - Primary database
 matrix_dr0 - Physical standby database
Fast-Start Failover: DISABLED
Current status for "matrix":
SUCCESS
DGMGRL>

A simple way to check the current status of Redo Transport and the apply services is to use
SQL*Plus. Connect to the standby database with SQL*Plus and examine the V$MANAGED_
STANDBY view:

SQL> SELECT CLIENT_PROCESS, PROCESS, THREAD#, SEQUENCE#, STATUS
 2 FROM V$MANAGED_STANDBY;
CLIENT_P PROCESS THREAD# SEQUENCE# STATUS
-------- --------- ---------- ---------- ------------
ARCH ARCH 1 31 CLOSING
ARCH ARCH 0 0 CONNECTED
ARCH ARCH 1 32 CLOSING
ARCH ARCH 0 0 CONNECTED
N/A MRP0 1 33 APPLYING_LOG
LGWR RFS 1 33 IDLE
UNKNOWN RFS 0 0 IDLE
UNKNOWN RFS 0 0 IDLE
UNKNOWN RFS 0 0 IDLE
9 rows selected.
SQL>

From this output, you can verify that the redo is being shipped using either SYNC or ASYNC (you
cannot tell which one from this view) because there is a LGWR to RFS connection. Remember
that the LGWR is not really connected—it is an LNS process that is connected on behalf of the
LGWR.

You can also verify that real-time apply is being employed since the MRP is in the APPLYING_LOG
state and is processing the sequence that the LGWR–RFS pair is currently sending. Remember that
verifying the apply services in this view works only on a physical standby database. If this were
a logical standby database, you would use the logical standby views.

At this point, to add more standby databases, you would repeat the setup tasks and execute
another ADD DATABASE command.

As you have seen in this section, while you need to understand a lot and configure a lot up
front, actually creating a Broker configuration and getting your database protected is very simple,
involving basically two commands. Your next task is managing your Data Guard configuration,
and we will start by editing the properties, both at the database and configuration levels.

Changing the Broker Configuration properties
In the preceding section we introduced the Broker properties for the databases in your
configuration, a primary and one standby database at the moment. You can modify three levels
of properties—configuration, database, and instance—using the EDIT command. You can also
change the STATE of a database in your configuration using the same command. Each of the three

Chapter 5: Implementing Oracle Data Guard Broker 201

levels of properties has its own variation of the EDIT command that will tell the Broker where to
look for the property you want to change:

 EDIT CONFIGURATION SET PROPERTY < ■ name>=<value>

 EDIT DATABASE < ■ db_name> SET PROPERTY <name>=<value>

 EDIT INSTANCE < ■ in_name> SET PROPERTY <name>=<value>
If the instance name is not unique across the entire Broker configuration, you will need
to add ON DATABASE <db_name> before SET PROPERTY.

The Broker views its properties from a database role perspective and will act upon a property
change only if it considers that the role of the database you are changing meets the role requirements
of the property. The Broker properties can be further divided into five main categories:

 Broker-specific properties ■ These affect the way the Broker operates and how Fast-Start
Failover is configured.

 Database parameters ■ These are the database parameters that the Broker owns and are
considered Data Guard parameters.

 Attributes of the LOG_ARCHIVE_DEST_ ■ n parameter These are your settings for Redo
Transport for each database.

 SQL syntax ■ This property modifies a particular Data Guard SQL command. Currently
one property is explicitly defined to modify a SQL command.

 Logical standby procedure arguments ■ These properties are arguments to the logical
standby DBMS packages that allow you to modify the way SQL Apply operates.

Some of these properties won’t even be visible to you with the SHOW command if the role of the
database you are examining does not meet the role of the property. The logical standby properties
are a good example in which the Broker will not display the properties if the database is not
a logical standby.

Configuration-level properties
At the configuration level, all the properties are Broker-specific with all but one related to Fast-Start
Failover, which will be discussed in Chapter 8. Each of these properties is global to the entire
configuration no matter where the Broker functions are taking place and are not role-specific—that
is, they apply no matter which database is the PRIMARY.

Following are the configuration-level properties:

 BystandersFollowRoleChange ■

 FastStartFailoverAutoReinstate ■

 FastStartFailoverLagLimit ■

 FastStartFailoverPmyShutdown ■

 FastStartFailoverThreshold ■

 CommunicationTimeout ■

202 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 5: Implementing Oracle Data Guard Broker 203

The first five properties are related to Fast-Start Failover, but the sixth is particularly important at
this point. CommunicationTimeout is the amount of time that the Broker will wait for a response
from a network connection between two databases in the configuration before giving up.

In older versions, this property was not configurable and could sometimes result in
communication hangs between Broker databases. The Broker architecture was changed to prevent
an important Broker process from getting stuck in a network hang by timing out after a number of
seconds. The CommunicationTimeout property was added to ensure that there was a default
for this eventual occurrence and to allow the DBA to tune the wait. The default is 3 minutes
(180 seconds) and can be tuned from 0 seconds up. Setting this property to 0 (zero) will remove
any timeout and always cause the Broker communication to wait for an answer. We recommend
that you never set this property to zero as you would cause the Broker to wait forever. If you begin
to see lots of ORA-16713 errors in the Broker DRC log, you might need to increase this property
using the EDIT CONFIGURATION command in DGMGRL after connecting to any one of the
databases:

DGMGRL> EDIT CONFIGURATION SET PROPERTY CommunicationTimeout=200;
Property "communicationtimeout" updated
DGMGRL>

However, for situations in which the Broker takes longer than 180 seconds to get an answer
from a remote database, you should examine the network rather than modify this timeout.

Database-level properties
Database-level properties comprise all five types of Broker properties and are defined individually
for each database in the configuration. This means that each database entry in your configuration
has a set of these properties that defines the way the database is to be configured. The way that
a particular property is used in your configuration, though, depends on the role characteristics of
the property. Some of the properties are defined only for a standby database, others only for a
primary, and in some cases for both roles. Although a property may not apply to the current role
of a database, most properties can be edited regardless of the database’s current role.

Broker-specific properties Four Broker-specific properties are used:

 FastStartFailoverTarget ■

 ObserverConnectIdentifier ■

 ApplyInstanceTimeout ■

 PreferredApplyInstance ■

The first two are for Fast-Start Failover and will be explained in detail in Chapter 8. The last two
are specific to the standby role and are used only when the target database becomes a standby.
These two properties are unique because they both have Instance in the name, but both are
database-level properties. Both define the way the Broker should handle certain parts of the apply
regardless of the instance where the apply might be running.

The ApplyInstanceTimeout property defines how long the Broker should wait before
moving the apply process to another instance in a standby RAC database if it loses contact with the
current apply instance. By default, this is set to 0 (zero), which tells the Broker to failover the apply

Chapter 5: Implementing Oracle Data Guard Broker 203

processing immediately. If you experience frequent network brownouts, it might be worthwhile to
increase this property:

DGMGRL> EDIT DATABASE Matrix_DR0 SET PROPERTY ApplyInstanceTimeout=20;
Property "applyinstancetimeout" updated
DGMGRL>

The PreferredApplyInstance property allows you to tell the Broker where you would like
the apply to run when you have a multiple-node RAC standby. By default, this property is empty,
which tells the Broker it can put the apply processing on any standby instance it chooses. In some
cases, it may be necessary to put the apply services on a predefined node. For example, if you
have a four-node RAC standby but you want to use three of the four nodes for testing or even for
another production database, you might want to try and keep the apply processing on one
particular node. You would do so by setting this property to the SID (which is also the instance
level property SidName) of that instance:

DGMGRL> EDIT DATABASE SET PROPERTY PreferredApplyInstance='Matrix_DR01';
Property "preferredapplyinstance" updated
DGMGRL>

You need to remember two things about this property:

 If the apply is already running on some system in the standby RAC, modifying this ■
property will not move the apply services.

 The apply will be moved when the Broker decides it needs to failover the apply services ■
to another instance (of its choosing) when it can no longer contact the current apply node.
The Broker will not automatically move the apply services back to your preferred instance
when it is reachable again.

Unless you have not yet enabled the target database (and hence the apply services are not yet
running), it makes no sense to modify this property. In both cases mentioned, you can use the
STATE change part of the EDIT command to move the apply services to a specific instance. We
will dive into the states in a bit, but an example of this command follows:

DGMGRL> EDIT DATABASE 'Matrix_DR0' SET STATE='APPLY-ON' WITH
APPLY INSTANCE='Matrix_DR01';
Succeeded.
DGMGRL> SHOW DATABASE 'Matrix_DR0' 'PreferredApplyInstance';
PreferredApplyInstance = 'Matrix_DR01'

This would set the PreferredApplyInstance property for you and move the apply services to
the desired instance.

TIp
Unless you have a specific reason for setting the
PreferredApplyInstance property, leave it blank
and let the Broker choose the apply instance.

204 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 5: Implementing Oracle Data Guard Broker 205

Database parameter properties Several Broker properties equate directly to a database parameter
on each of the databases in your configuration. The properties and the parameters they equate to
are listed here:

 ArchiveLagTarget ■ ARCHIVE_LAG_TARGET

 DbFileNameConvert ■ DB_FILE_NAME_CONVERT

 LogArchiveMaxProcesses ■ LOG_ARCHIVE_MAX_PROCESSES

 LogArchiveMinSucceedDest ■ LOG_ARCHIVE_MIN_SUCCEED_DEST

 LogFileNameConvert ■ LOG_FILE_NAME_CONVERT

 LogShipping ■ (Standby role only) LOG_ARCHIVE_DEST_STATE_n

 StandbyFileManagement ■ (Standby role only) STANDBY_FILE_MANAGEMENT

When you modify one of these properties, the corresponding parameter of that database gets
set to the appropriate value when necessary. But what does when necessary mean? Suppose you
were not using the Broker; then any change you make to these parameters using the SQL*Plus
ALTER SYSTEM SET command would get set immediately if the parameter is dynamic. The
Broker, on the other hand, would make the parameter change only if the current role of the target
database meets the Broker’s requirements, and if the parameter were not dynamic it would
automatically add the SCOPE=SPFILE, as you would have to do with SQL*Plus. So, for example,
changing the LogArchiveFormat property to specify a different name for the database archive
log files would be executed on the database regardless of the role, but with the SCOPE=SPFILE
qualifier:

DGMGRL> EDIT DATABASE MATRIX SET PROPERTY LogArchive Format='%t%s%r_new.dbf'

But in the alert log of Matrix, you would see the following:

ALTER SYSTEM SET log_archive_format='%t%s%r_new.dbf'
SCOPE=SPFILE SID='Matrix';

And until you restarted the target database (Matrix, in this case), you would see the following
error when you perform a SHOW DATABASE VERBOSE MATRIX, since the current in-memory
value no longer matches the SPFILE value:

Current status for "matrix":
Warning: ORA-16792: configurable property value is inconsistent with database
setting

On the other hand, a property such as StandbyFileManagement is considered by the
Broker to be a standby-only property. It will change the value of the property in the configuration
files but the ALTER SYSTEM SET STANDBY_FILE_MANAGEMENT=AUTO|MANUAL command will
be issued only when the database is started in the standby role. In SQL*Plus, the parameter would
be set immediately but not used until the database became a physical standby.

The same does not apply to the property LogShipping, which enables or defers Redo
Transport to that standby database. This is one of those reverse properties—reverse in the sense
that you set it on a database but the resulting SQL command to change the database parameter is
executed on whatever database is the primary at the time. Assume, for example, that Matrix is our

Chapter 5: Implementing Oracle Data Guard Broker 205

primary database and Matrix_DR0 is our standby database. Changing the LogShipping property
of Matrix will not cause any SQL to be issued at this time. Changing the LogShipping property
on our standby Matrix_DR0 will set the property for Matrix_DR0 in the configuration files, but the
SQL will be executed on the Matrix database. Here’s an example:

DGMGRL> SHOW DATABASE MATRIX LogShipping;
 LogShipping = 'ON'
DGMGRL> EDIT DATABASE MATRIX SET PROPERTY LogShipping='OFF';
Property "logshipping" updated
DGMGRL> SHOW DATABASE MATRIX LogShipping;
 LogShipping = 'OFF'
DGMGRL> SHOW DATABASE MATRIX_DR0 LogShipping;
 LogShipping = 'ON'
DGMGRL> EDIT DATABASE MATRIX_DR0 SET PROPERTY LogShipping='OFF';
Property "logshipping" updated
DGMGRL>
DGMGRL> SHOW DATABASE MATRIX_DR0 LogShipping;
 LogShipping = 'OFF'

This would set up Matrix not to receive redo when it becomes a standby database and will
stop the transport of redo to Matrix_DR0 immediately. You can verify this by examining the alert
log of Matrix. The only entry you will see is the following:

ALTER SYSTEM SET log_archive_dest_state_2='RESET' SCOPE=BOTH;

The destination parameter number 2 is currently being used by Data Guard to transport redo to
our standby and is now deferred until we change the LogShipping property back to ON.

TIp
Never use SQL*Plus to modify any of the parameters for which the
Broker has a corresponding property when you have enabled the
Broker. If you do make these changes, you will see error messages and
the Broker will put those parameters back to its view of the world at
the next restart of the database. Always use DGMGRL and the EDIT
command to make these changes.

LOG_ARCHIVE_DEST_n Attribute properties All of the LOG_ARCHIVE_DEST_n attribute
properties are individual attributes that modify the way Data Guard ships the redo to each
standby, with each property being one of the attributes that is set in a LOG_ARCHIVE_DEST_n
database parameter. Not all of the Redo Transport attributes are available through the Broker and
you cannot set any attributes that are not visible directly with SQL*Plus, because the Broker will
reset the parameter to its view of the world. What you see is what you get. These properties and
the attributes they relate to are shown here:

 Binding ■ MANDATORY or OPTIONAL

 LogXptMode ■ ASYNC or SYNC

 MaxConnections ■ MAX_CONNECTIONS

 MaxFailure ■ MAX_FAILURE

206 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 5: Implementing Oracle Data Guard Broker 207

 NetTimeout ■ NET_TIMEOUT

 RedoCompression ■ COMPRESSION

 ReopenSecs ■ REOPEN

 DelayMins ■ DELAY=n

These properties are handled differently from the other properties, because although you set
them on a particular database, they are never actually set on that database regardless of the role.
This is similar to the reverse property mentioned in the preceding section and is the one part of
the Broker logic that has always seemed to confound users.

As with the other database properties, each database in your configuration has a set of these
properties. But what they define is the manner in which the LOG_ARCHIVE_DEST_n parameter
will be created on the primary database to ship redo to this database. Let’s examine this further
using our Matrix primary database and our Matrix_DR0 standby database.

If you were setting up the standby configuration manually, you would (if you followed the best
practices in Chapter 2), add a LOG_ARCHIVE_DEST_n parameter to Matrix that would include the
attribute SERVICE=Matrix_DR0 and any other settings you wanted, which would send the redo
to Matrix_DR0. You would also include the VALID_FOR attribute to enable this destination only
when Matrix is the primary database. Then you would make similar changes to Matrix_DR0, but
with SERVICE=Matrix and the same VALID_FOR, and so on. This parameter would not be
used until Matrix_DR0 becomes the primary database. So if you look at this logically, Matrix is
currently shipping redo to Matrix_DR0, and Matrix_DR0 will begin to ship redo to Matrix when a
role switch occurs.

The Broker attribute properties, on the other hand, are set on the database that is going to receive
redo when it is in the standby role. So to make sure that redo is sent from Matrix to Matrix_DR0, you
would set the properties on Matrix_DR0 accordingly. And to make sure that the same Redo Transport
goes into effect when Matrix_DR0 becomes the primary, you would set these properties on Matrix.

So, for example, if we were to change the transport mode (LogXptMode) so that we ship redo
in the SYNC mode to Matrix_DR0, we would update the property on Matrix_DR0 but the result of
the change would be an ALTER SYSTEM command on Matrix:

DGMGRL> SHOW DATABASE MATRIX_DR0 LogXptMode;
 LogXptMode = 'ASYNC'
DGMGRL> EDIT DATABASE MATRIX_DR0 SET PROPERTY LogXptMode='SYNC';
Property "logxptmode" updated
DGMGRL> SHOW DATABASE MATRIX_DR0 LogXptMode;
 LogXptMode = 'SYNC'
DGMGRL>

You would then see the following ALTER SYSTEM command being executed on Matrix from the
alert log (note that the Broker sets the AFFIRM property automatically when you move to SYNC):

ALTER SYSTEM SET log_archive_dest_2='service="matrix_dr0"',' LGWR SYNC
AFFIRM delay=0 OPTIONAL compression=DISABLE max_failure=0 max_connections=1
reopen=300 db_unique_name="matrix_dr0" net_timeout=30
valid_for=(online_logfile,primary_role)' SCOPE=BOTH;

ALTER SYSTEM SET log_archive_dest_state_2='ENABLE' SCOPE=BOTH;

Chapter 5: Implementing Oracle Data Guard Broker 207

We are now shipping redo from Matrix to Matrix_DR0 synchronously. But if we stopped here,
we would have configuration problems when we do a switchover.

Remember that you set these attributes on a database to define how you want Data Guard to
ship redo to that database when it becomes a standby. So, in our case, we have not modified
Matrix, and since the LogXptMode property for Matrix is still set to ASYNC, the Broker would set
Matrix to receive redo asynchronously when it became a standby database. We need to change
the LogXptMode property for Matrix as well:

DGMGRL> SHOW DATABASE MATRIX LogXptMode;
 LogXptMode = 'ASYNC'
DGMGRL> EDIT DATABASE MATRIX SET PROPERTY LogXptMode='SYNC';
Property "logxptmode" updated
DGMGRL> SHOW DATABASE MATRIX LogXptMode;
 LogXptMode = 'SYNC'
DGMGRL>

In this case, nothing would actually happen on Matrix since this is done just to set up Matrix to
receive redo synchronously when it relinquishes its role as primary and becomes a standby database.

Be aware of the fact that every time you modify one of these properties on a database that
currently is a standby, a log switch will occur on the primary database. If you must modify many of
these properties, it might be better to disable the database, make the changes, and then re-enable
the database afterward. This means that you will not be protected by the standby during this period.

One final note on these attribute properties. Setting the DelayMins property does not delay
when Data Guard ships the redo. It instructs the target standby database apply services to delay
the apply of the incoming redo for that period of time. This was explained in Chapter 2. But this
attribute does affect the way the Broker will configure the apply services of the target standby
database. If you leave the DelayMins property at its default of 0, or you set it manually to 0, the
Broker will configure the apply services on the target standby database to use real-time apply. If
you set the DelayMins property to any value other than 0, the Broker will always start the apply
services without real-time apply and the apply will work only from the archive log files and then
only after the delay has passed. This is different from the manual method of configuring your Data
Guard setup. Starting up the apply services with SQL*Plus using the real-time apply syntax on a
standby database will automatically cause any delay specified for that standby database to be
ignored. This is not possible with the Broker.

TIp
If you specify a delay using the DelayMins property, then that
standby cannot perform real-time apply. In a SQL*Plus–managed Data
Guard configuration, starting the apply services using real-time apply
will override the delay.

SQL Syntax properties Only one property currently falls into this category, although changes
to the database and attribute properties do cause SQL to be executed somewhere. This property is

 ApplyParallel ■ PARALLEL=n

By a SQL property, we mean that this property does not modify a parameter on a database,
nor does it affect the way the Broker executes. What it does is change the way the Broker starts up

208 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 5: Implementing Oracle Data Guard Broker 209

the apply services for a physical standby. It affects the way media recovery on the physical
standby database uses parallel processes. With this property, you can accomplish one of two
things: allow media recovery to use parallel processes (set to AUTO), or disallow it from using any
parallel processes (set to NO). You cannot specify a number of parallel processes that you would
like media recovery to use. The default is AUTO, and we recommend that you leave the property
set at its default.

Logical Standby properties The last set of database-level properties are solely for logical
standby databases. These properties correspond directly to arguments to the SQL Apply
procedures introduced and discussed in Chapter 4:

 LsbyASkipCfgPr ■ Set the SKIP TABLES

 LsbyASkipErrorCfgPr ■ Set SKIP ERROR rules

 LsbyASkipTxnCfgPr ■ Perform a SKIP TRANSACTION

 LsbyDSkipCfgPr ■ Unset SKIP TABLES

 LsbyDSkipErrorCfgPr ■ Unset SKIP ERROR rules

 LsbyDSkipTxnCfgPr ■ Unset a SKIP TRANSACTION

 LsbyMaxEventsRecorded ■ Set MAX_EVENTS_RECORDED

 LsbyPreserveCommitOrder ■ Modify the PRESERVE_COMMIT_ORDER

 LsbyRecordAppliedDdl ■ Set RECORD_APPLIED_DDL

 LsbyRecordSkipDdl ■ Set RECORD_SKIPPED_DDL

 LsbyRecordSkipErrors ■ Set RECORD_SKIPPED_ERRORS

These properties are available only on a logical standby and do not show up in the SHOW
DATABASE VERBOSE command, and if you try to modify them on a physical standby you will get
an error.

DGMGRL> EDIT DATABASE Matrix_DR0 SET PROPERTY
LsbyPreserveCommitOrder='FALSE';
Error: ORA-16788: unable to set one or more database
configuration property values
Failed.
DGMGRL>

However, if you change the property on a primary database, the modification will succeed
because the primary could become a logical standby database if a switchover to a logical standby
database occurs:

DGMGRL> EDIT DATABASE Matrix SET PROPERTY LsbyPreserveCommitOrder='FALSE';
Property "lsbypreservecommitorder" updated
DGMGRL>
DGMGRL> SHOW DATABASE Matrix LsbyPreserveCommitOrder;
 LsbyPreserveCommitOrder = 'FALSE'
DGMGRL>

Chapter 5: Implementing Oracle Data Guard Broker 209

As with the database and attribute properties, you must ensure that any changes you make to
these logical standby properties are also made to the primary database properties if you ever plan
on performing a switchover from the primary to a logical standby database. Otherwise, your new
logical standby database will not be following the rules you set up for your logical standby in the
first place.

Instance-level properties
These (the last of the properties) are referred to as instance-level properties because they can be
set to different values across a RAC database if desired. These are the only properties that can be
different between RAC instances in a Broker configuration. Three of the five subtypes of property
are included in the instance level properties.

Here are the Broker-specific properties:

 ■ HostName

 ■ SidName

Here are the database parameters:

 LogArchiveTrace ■ LOG_ARCHIVE_TRACE

 LogArchiveFormat ■ LOG_ARCHIVE_FORMAT

 StandbyArchiveLocation ■ LOG_ARCHIVE_DEST_n

 AlternateLocation ■ An alternative LOG_ARCHIVE_DEST_n location

Here are the logical standby procedure arguments:

 LsbyMaxSga ■ MAX_SGA

 LsbyMaxServers ■ MAX_SERVERS

These properties are only to be changed using the EDIT INSTANCE command, and if the
database is a RAC, any attempt to use the EDIT DATABASE command on these properties will fail.
However, if the target database is not a RAC database, they will work with the EDIT DATABASE
command. Because this could change in the future, we recommend that you always use the EDIT
INSTANCE command when modifying any of the instance-level properties. This makes sense
anyway, as you never know when one of your databases might just become a RAC!

So why are these few properties labeled instance properties? Didn’t we already say that
database-related properties are set globally to a database regardless of the number of instances?
As with any rule, there are exceptions, and these properties prove that. These properties can be
set individually for each instance when they need to be modified, which should not be very often.

The two Broker-specific properties would be used only if you had an already running
configuration with a RAC database and needed to move or rename one of the instances in the RAC.
You would set these two values on the instance you needed to move to a new system. But doing
so requires that you first disable the entire database as far as the Broker is concerned—and it might
be easier to use the REMOVE INSTANCE command and let the Broker automatically rediscover the
instance when it starts up on the new host in the same RAC configuration.

The database parameters and logical standby properties are pretty self-explanatory. You might
need to redirect archive logs to a slightly different directory or change the name of the archive logs on
a particular instance, both of which would be very unusual with ASM. In fact, these two properties

210 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 5: Implementing Oracle Data Guard Broker 211

have been around since Oracle Database 10g Release 1, when RAC capabilities were introduced
with the Broker when users generally had non-ASM RAC databases. You should never have to change
these properties. In fact, the property StandbyArchiveLocation will default to your flash recovery
area if you are using one, and this is a best practice. But if the property does not default, it might be
necessary to use different disk paths for the archive logs on a standby if you archive to a non–cluster
wide directory.

On the logical standby side, it is likely that you’d want to modify the amount of memory and
apply processes for SQL Apply by instance if your RAC logical standby has unequal size systems.
Since the apply services could failover to any node in the standby RAC, you would want the
apply to run and to consume resources according to the size of the system. And tracing, being
used to diagnose Data Guard issues, is always something you would want to set per instance, as it
is either one instance that is causing problems or all instances are having the same problem, and
diagnosing the issue on one system will be enough.

This leaves us with the last database parameter property—AlternateLocation. If we
already have StandbyArchiveLocation as a default database-wide location for the incoming
primary redo, why is an instance-level property used to redirect that redo somewhere else? The
name of the property, Alternate, should give away its purpose. This is not to be confused with
the Oracle9i Broker property Alternate, which related only to the attribute of the same name in
the LOG_ARCHIVE_DEST_n parameter. (The Alternate property was deprecated starting with
Oracle Database 10g Release 1.) The AlternateLocation property’s purpose is to provide
a second location for Data Guard to place the incoming redo if the location specified by
StandbyArchiveLocation becomes unavailable for some reason.

By default, the AlternateLocation property is blank, which means that if redo is arriving at
this instance into the standby redo log files and the archive directory becomes unavailable, the
standby redo log files will all fill up (since they cannot be archived to disk) and redo will no
longer be shipped to this standby.

So the answer was to archive the redo to a different location on the standby. Most likely, this
was a local disk directory on the standby. If you were using ASM with the flash recovery area and
it failed, you most likely had other problems, but you would still be able to receive redo if this
property was set beforehand. Bear in mind, though, that if your standby was a RAC and you chose
a directory local to one instance in the RAC for local archiving, the apply services would not be
able to read the archive logs if they were on another system in the RAC. In previous releases, this
was not an issue since the Broker would always configure the Redo Transport Services to send
redo to the same instance in a RAC standby that had the apply services running. In this manner,
the apply services could always see the archive logs if they happened to move to the alternate
location. Since the Broker in 11g allows you to specify a TNSNAME for the Redo Transport
DGConnectionIdentifier that has all the standby instances in it and allows you to specify
where you want the apply services to run, it is completely possible that the redo could be sent to
a different instance than the apply services. So if you plan on setting this property, it would be
best to set it to a location on the standby database that is visible across all instances of the RAC.

One final note: If this property is invoked due to a failure of the StandbyArchiveLocation,
the Broker will also configure a new Redo Transport parameter for the standby that explicitly
defines this alternate location; don’t be surprised if you see LOG_ARCHIVE_DEST_n parameters
different from what you had before the change.

This brings us to the end of the section on editing the Broker properties. Remember that no
matter what your plans for changes in the Broker configuration, any property that corresponds to
a database parameter must follow the rules of that parameter.

Chapter 5: Implementing Oracle Data Guard Broker 211

Changing the State of a Database
The state of a database is another area of the Broker that has changed considerably since Oracle9i
Release 2. The command and the qualifier used to change a state is completely different in 9i, and
although the command used to change a state has been the same since 10g Release 1 through 11g,
the qualifier used to specify the state change evolved yet again in 11g. Specific state commands
were used for a physical standby database and a logical standby database in 9i, such as
PHYSICAL-APPLY-READY and LOGICAL-APPLY-READY, which have been changed to APPLY-ON.
So if you are using the Broker in one of the older versions, you should read the Broker manual for
that release to make sure you are using the correct syntax. The underlying function has pretty
much remained the same. When you want to turn the apply services off, you just use the correct
state command.

The state model of a database in the Broker can be regarded as a database-level property
since the state is set using the EDIT DATABASE command like a property update. The difference
from the general data properties is that specific states are used for a primary database and other
states are used for a standby database.

The primary database states consist of turning on or off the Redo Transport Services for all
standby databases in your configuration. This state can be modified only using the name of the
database that is currently acting in the primary role, which in our case is still Matrix, so an
attempt to change this state on our standby Matrix_DR0 would fail:

DGMGRL> EDIT DATABASE MATRIX_DR0 SET STATE=TRANSPORT-OFF;
Error: ORA-16516: current state is invalid for the attempted operation
Failed.
DGMGRL> EDIT DATABASE MATRIX SET STATE=TRANSPORT-OFF;
Succeeded.
DGMGRL>

What you see in the alert log of Matrix as a result of the successful change would be a RESET
of every active standby database:

ALTER SYSTEM SET log_archive_dest_state_2='RESET' SCOPE=BOTH;

Turning the transport back on is the same command using TRANSPORT-ON. Remember that
this shuts down Redo Transport to all standby databases. You would use this command only if you
needed to isolate the primary database for some reason and enter into a completely unprotected
state. If you are looking just to stop Redo Transport to one standby database, you would edit the
LogShipping property of that database, as discussed earlier. This would perform the reset only
on the Redo Transport for that standby database and leave the other standby databases quite
happily receiving the redo.

Two states for a standby database are used to turn the apply services on or off. The default for
a physical or a logical standby database is on when the database or configuration is first enabled.
The apply state is modified just as the transport state but can be executed only on a standby
database.

DGMGRL> EDIT DATABASE MATRIX SET STATE=APPLY-OFF;
Error: ORA-16516: current state is invalid for the attempted operation
Failed.
DGMGRL> EDIT DATABASE MATRIX_DR0 SET STATE=APPLY-OFF;
Succeeded.
DGMGRL>

212 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 5: Implementing Oracle Data Guard Broker 213

This time you would see nothing change in the primary database alert log, but the following
(or something like it) would appear in the target standby’s alert log:

ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL
Mon Dec 01 23:32:28 2008
MRP0: Background Media Recovery cancelled with status 16037
 ORA-16037: user requested cancel of managed recovery operation
Managed Standby Recovery not using Real Time Apply
Shutting down recovery slaves due to error 16037
Recovery interrupted!

Again, like the transport state, you would use APPLY-ON to restart the apply services.
One state disappeared between 9i/10g and 11g, and that was the physical standby READ-ONLY

state. The Broker changed the way it interacted with the user’s method of starting up a database and
now respects a STARTUP MOUNT or a STARTUP, leaving the database in the end state, MOUNTED,
OPEN READ ONLY, or OPEN READ WRITE. (Starting with Oracle Database 10g Release 2,
performing a STARTUP on a physical standby will automatically open the standby in read-only.)

With the new ability to read a physical standby while the apply is running, the need for a
READ-ONLY state was no longer considered necessary. This is called real-time query, and it
became a part of the Active Data Guard option with the release of Oracle Database 11g. Since the
Broker no longer has a read-only state, it is necessary to use DGMGRL and SQL*Plus to put a
database into real-time query mode using the Active Data Guard option:

DGMGRL> EDIT DATABASE MATRIX_DR0 SET STATE=APPLY-OFF;
Succeeded.
SQL> ALTER DATABASE OPEN READ ONLY;
Database opened;
DGMGRL> EDIT DATABASE MATRIX_DR0 SET STATE=APPLY-ON;
Succeeded.
DGMGRL>

We are confident that a future release of the Data Guard Broker will make this process much
more streamlined and bulletproof.

Changing the protection Mode
A protection mode property is similar to a configuration-level property in that you execute it using
the EDIT CONFIGURATION command and it applies to the entire configuration.

As you saw in Chapter 1 when the protection modes were discussed, each mode applies
certain rules to the Data Guard configuration: performance, availability, or protection. The Broker
provides the same mechanism to enable a certain level of protection, but it also helps protect you
from yourself. For example, to change the protection mode of a Data Guard configuration using
SQL*Plus (when it is not controlled by the Broker), you would connect to the primary database
and execute the appropriate SQL command:

ALTER DATABASE SET STANDBY TO MAXIMIZE PERFORMANCE;
ALTER DATABASE SET STANDBY TO MAXIMIZE AVAILABILITY;
ALTER DATABASE SET STANDBY TO MAXIMIZE PROTECTION;

Since the second and third modes require certain standby settings, if you had not taken the
required steps to configure your standby database correctly, you might find yourself in an unprotected
or shutdown state.

Chapter 5: Implementing Oracle Data Guard Broker 213

Since Oracle Database 10g Release 2, it is possible to set the Maximum Availability mode
without any SYNC standby databases, and your configuration would run in an unsynchronized
state. Failing over to a standby would result in data loss since Maximum Availability requires at
least one SYNC standby database to allow a zero-data-loss failover.

Since Maximum Protection mode can be set only in the MOUNT state, your primary database
would not be allowed to open without any SYNC standby destinations. The Broker will not
allow a protection mode to be set unless all the prerequisites of the protection mode have
been met:

DGMGRL> SHOW CONFIGURATION;
Configuration
 Name: matrix
 Enabled: YES
 Protection Mode: MaxPerformance
 Databases:
 matrix - Primary database
 matrix_dr0 - Physical standby database
Fast-Start Failover: DISABLED
Current status for "matrix":
SUCCESS
DGMGRL> SHOW DATABASE matrix_dr0 LogXptMode;
 LogXptMode = 'ASYNC'
DGMGRL> EDIT CONFIGURATION SET PROTECTION MODE AS MaxAvailability;
Error: ORA-16627: operation disallowed since no standby databases would remain
to support the protection mode

Failed.
DGMGRL> EDIT DATABASE matrix_dr0 SET PROPERTY LogXptMode='SYNC';
Property "logxptmode" updated
DGMGRL> EDIT CONFIGURATION SET PROTECTION MODE AS MaxAvailability;
Succeeded.
DGMGRL> SHOW CONFIGURATION;
Configuration
 Name: matrix
 Enabled: YES
 Protection Mode: MaxAvailability
 Databases:
 matrix - Primary database
 matrix_dr0 - Physical standby database
Fast-Start Failover: DISABLED
Current status for "matrix":
SUCCESS
DGMGRL>

As you can see, the first attempt to change the protection mode to Maximum Availability met
with the ORA-16627 error. The simple fix was to set the LogXptMode property for Matrix_DR0 to
SYNC and re-execute the command. Your Data Guard configuration is now running in
Maximum Availability, or zero-data-loss, mode. Do not forget to update the LogXptMode
property for Matrix as well in preparation for a switchover.

214 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 5: Implementing Oracle Data Guard Broker 215

Monitoring Data Guard Using the Broker
We have already introduced the SHOW command in DGMGRL as the way to look at the status of
your configuration or a database and to display the various properties of the databases in your
configuration. But so far we have discussed only the properties that you can change. Several other
properties are “monitor only” and provide much more information than the standard error message
returned by the SHOW CONFIGURATION or DATABASE command.

To demonstrate, we will do something behind the scenes to one of our databases and then use
the SHOW command to display the current status of the Broker configuration.

DGMGRL> SHOW CONFIGURATION;
Configuration
 Name: matrix
 Enabled: YES
 Protection Mode: MaxAvailability
 Databases:
 matrix - Primary database
 matrix_dr0 - Physical standby database
Fast-Start Failover: DISABLED
Current status for "matrix":
Warning: ORA-16608: one or more databases have warnings
DGMGRL>

Unfortunately, the error message does not tell you which database has the problem. So we have
to use the SHOW DATABASE command to get more information:

DGMGRL> SHOW DATABASE Matrix_DR0;
Database
 Name: matrix_dr0
 Role: PHYSICAL STANDBY
 Enabled: YES
 Intended State: APPLY-ON
 Instance(s):
 Matrix_DR0
Current status for "matrix_dr0":
SUCCESS
DGMGRL>

It’s not the standby database. So let’s look at the primary database:

DGMGRL> SHOW DATABASE Matrix;
Database
 Name: matrix
 Role: PRIMARY
 Enabled: YES
 Intended State: TRANSPORT-ON
 Instance(s):
 Matrix
Current status for "matrix":
Warning: ORA-16792: configurable property value is inconsistent with database
setting

DGMGRL>

Chapter 5: Implementing Oracle Data Guard Broker 215

This still does not tell us what property or parameter is out of sync between the Broker and the
actual database setting, or where it is incorrect. But we can obtain another level of information
from the Broker via one of the read-only properties. These properties are displayed when we use
the SHOW DATABASE VERBOSE command and can be divided into three main areas: database and
transport, logical standby, and general reports. Remember that, as with the updateable database
properties, the read-only logical standby properties will appear only if the database is actually a
logical standby or is the primary database.

Following are the read-only properties for database and transport:

 InconsistentLogXptProps ■ Inconsistent Redo Transport properties

 InconsistentProperties ■ Inconsistent database properties

 LogXptStatus ■ Redo Transport status

And here are the logical standby properties:

 LsbyFailedTxnInfo ■ Logical standby failed transaction information

 LsbyParameters ■ Logical standby parameters

 LsbySkipTable ■ Logical standby skip table

 LsbySkipTxnTable ■ SQL Apply skip transaction table

And here are the general reports properties:

 RecvQEntries ■ Receive queue entries

 SendQEntries ■ Send queue entries

 StatusReport ■ List of errors or warnings

 LatestLog ■ Tail of the DRC log file

 TopWaitEvents ■ Five top wait events

You can see the same error message in the StatusReport property:

DGMGRL> SHOW DATABASE Matrix StatusReport;
STATUS REPORT
 INSTANCE_NAME SEVERITY ERROR_TEXT
 Matrix WARNING ORA-16714: the value of property
 LogArchiveMaxProcesses is inconsistent
 with the database setting

Using the error message we got from our primary database ‘Matrix’ we can look at the
InconsistentProperties property to obtain more information on the errant parameter:

DGMGRL> SHOW DATABASE Matrix InconsistentProperties ;
INCONSISTENT PROPERTIES
 INSTANCE_NAME PROPERTY_NAME MEMORY_VALUE SPFILE_VALUE BROKER_VALUE
 Matrix LogArchiveMaxProcesses 4 6 4
DGMGRL>

216 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 5: Implementing Oracle Data Guard Broker 217

This shows that someone has used SQL*Plus to change a parameter that the Broker considers one
of its own. This person also tried to be sneaky and put the change only in the SPFILE thinking
that at the next restart of the primary database, six ARCH processes would be started and no one
would be the wiser. Well, the culprit would be in for a surprise, since the Broker would return the
parameter to four processes, because that is its view of the world. The proper way would have
been to use the DGMGRL EDIT DATABASE command and change the property from the Broker.
We can resolve this inconsistency in three ways: we can use the Broker to reset this parameter,
we can change the Broker property to match the SPFILE, or we can return to SQL*Plus and fix the
parameter in the SPFILE.

DGMGRL> EDIT DATABASE Matrix SET PROPERTY LogArchiveMaxProcesses=6;
Property "logarchivemaxprocesses" updated
DGMGRL> SHOW DATABASE Matrix StatusReport;
STATUS REPORT
 INSTANCE_NAME SEVERITY ERROR_TEXT

Since we have resolved the property with the parameter setting, the status report shows no
problems. The rest of the read-only properties work pretty much the same:

DGMGRL> SHOW DATABASE Matrix LogXptStatus;
LOG TRANSPORT STATUS
PRIMARY_INSTANCE_NAME STANDBY_DATABASE_NAME STATUS
 Matrix matrix_dr0

The one read-only property that will always return lots of information is the LatestLog property.
Examining this property will display the tail end of the Broker DRC log from the system where the
target database resides. This will allow you to look at the latest messages that are being added to
the log file.

The TopWaitEvents property will also display the top five events from the V$SYSTEM_EVENT
view of the target database.

Removing the Broker
In this chapter, we have attempted to show you how the Broker works, and by doing so, we hope
that you can see how the Broker has matured and is a powerful yet simple interface to Data Guard.
At this point, the question “How do I remove it?” always seems to come up.

Removing Data Guard completely from your production database and throwing away your
standby databases is fairly straightforward. You delete the standby databases and remove any Data
Guard parameters from the primary database. To be 100-percent safe, you could create a PFILE from
your SPFILE, edit it to remove all Data Guard parameters, and restart after re-creating the SPFILE
from your edited PFILE. But removing the Broker and leaving your Data Guard configuration intact
and managed again by SQL*Plus is something completely different.

As we have shown, the Broker maintains configuration files on each system where there is a
database in your Data Guard configuration. The Broker also configures your databases based on
their current role, be it primary or standby. This means that if you want to remove the Broker you
will have to do some reconfiguring of Data Guard to return to your original setup.

If you want to remove the Broker control temporarily, you can just disable the configuration or
a database and enable it again at a later time, and things will run fine underneath as long as you
do not need to failover to a standby. You can also remove a database and then add it again in the
event that you moved it to a new system, and continue using the Broker to manage Data Guard.

Chapter 5: Implementing Oracle Data Guard Broker 217

But if you want to remove the configuration completely, you need to use the REMOVE
CONFIGURATION command and reset some of the parameters in your databases. You will have to
redo the parameters, because the Broker will not set up the primary role parameters on your standby
databases (Redo Transport and so on) or the standby role parameters on your primary database
(apply services, standby parameters, and so on). This means a switchover or a failover to a standby
will work fine, but no parameters will be set up to ship redo from the new primary database back to
the old primary, which is now a standby database (or will be if you did a failover and then reinstated
the database as a standby), and the apply will not be started for you on the new standby database.
And if you have multiple standby databases, the problems just get more complicated.

To remove the Broker from managing your Data Guard configuration and end up with a fully
functioning Data Guard setup, you need to follow these steps.

In DGMGRL, do this:

 1. Connect to the primary database.

 2. Execute this command:

REMOVE CONFIGURATION PRESERVE DESTINATIONS;

Using SQL*Plus, do this:

 1. Connect to the primary database as SYSDBA and do the following:

First, set the DG_BROKER_START parameter to FALSE:

ALTER SYSTEM SET DG_BROKER_START=FALSE ;

Then define all of the standby role parameters as described in Chapter 2.

 2. Connect to the standby database as SYSDBA and do the following:

First, set the DG_BROKER_START parameter to FALSE:

ALTER SYSTEM SET DG_BROKER_START=FALSE ;

Then define all of the primary role parameters as shown in Chapter 2.

 3. Repeat step 2 for all standby databases in your configuration.

 4. On all database systems, delete the two Broker configuration files from disk.

This will leave you with a fully functioning Data Guard setup ready for switchover and
failover. Remember that since Grid Control requires the Broker you will no longer be able to
manage your Data Guard configuration using Grid Control.

We hope that you will never have to use these steps and that you will find the Broker as useful
a tool as we have in our management of Data Guard.

Conclusion
It’s been a long journey but we hope it has been an informative one. By now you have learned not
only how to configure and tune your Data Guard environment, you have learned the various ways
you can interact with your configuration. Using the Broker as your interface to Data Guard will
simplify your job and it is also the foundation for managing Data Guard with Grid Control. As you
will discover later on in this book, certain Data Guard functionality is only available through the
Data Guard Broker, and the knowledge you have gained in this chapter will serve you well in the
future.

Chapter
6

Oracle Enterprise Manager
Grid Control Integration

219

220 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 6: Oracle Enterprise Manager Grid Control Integration 221

racle Enterprise Manager (OEM) Grid Control plays an integral part in an Oracle
ecosystem. Advocates of management tools promote OEM Grid Control as a
centralized monitoring and maintenance console for the enterprise. With additional
plug-ins, OEM Grid Control is intended to become the enterprise console and may
even replace the network operations console, such as HP OpenView and IBM Tivoli.

You may be surprised to hear that OEM Grid Control can be leveraged to exploit the majority
of Data Guard features. Whether you are interested in being alerted for a specific performance
metrics or for changing the protection mode, OEM Grid Control can be a powerful ally for the
DBA. OEM Grid Control provides an easy to use and friendly user interface for new and seasoned
DBAs for performing many of the tasks associated with maintaining a Data Guard environment.
With OEM Grid Control, the DBA can perform even what is perceived to be complex tasks, such
as switchovers, failovers to a remote site, or reinstating a failed primary database.

This chapter focuses on OEM Grid Control functionality relative to Data Guard. We will take
advantage of all the major innovative features offered by OEM Grid Control to manage your Data
Guard environment. In Chapter 2, you learned how to set up a physical standby database using
OEM Grid Control. This chapter will continue where that chapter left off and maneuver around
various screens within OEM Grid Control to help you effectively manage a disaster recovery
and/or reporting database.

We start by looking at verifying your existing configuration and then dive into reviewing
performance metrics, modifying metrics, and viewing database alert log details. The rest of
chapter will focus on the following:

 Enabling flashback logging ■

 Reviewing performance ■

 Changing protection modes ■

 Editing the standby database properties ■

 Performing a switchover ■

 Performing a manual failover ■

 Enabling Fast-Start Failover ■

 Creating a logical standby ■

 Managing an active standby ■

 Managing a snapshot standby ■

Accessing the Data Guard Features
The Data Guard home page is a portal entry point for managing and viewing the Data Guard
protection mode, enabling and/or disabling Fast Connection Failover, viewing the summary of
apply/transport lag, editing standby database properties, viewing Data Guard status, and viewing
current redo log activity. You can also observe the primary and standby databases received and
applied log sequence numbers. More important, the home page provides the estimated failover
time to serve as a quick dashboard indicating your compliance to your corporate recovery point
objective/recovery time objective (RPO/RTO).

O

Chapter 6: Oracle Enterprise Manager Grid Control Integration 221

NOTe
Do not be confused by the terms Database Control and OEM Grid
Control. Database Control is database-specific and runs locally on the
database server. Each database houses a scaled-down version of the
SYSMAN repository. Database Control is also version-specific to the
database, since it resides locally on the database server whereas OEM
Grid Control encompasses all the supported database versions. With
Database Control, you must log in to each of the database server’s EM
login portals. Database Control cannot be used with a physical standby.

Here’s how to access all the Data Guard features:

 1. Click the Targets tab on the Grid Control entry page.

 2. From the Targets page, click Databases to open the Databases page.

 3. From the Databases page, you will see a comprehensive list of all the discovered databases.
Select your primary database from this list to be routed to the database home page.

 4. Click the Availability tab, and then click the Setup and Manage link in the Data Guard
section to access all the Data Guard services. If you have already configured the Data
Guard Broker for this primary database you will be directed to the Data Guard Overview
page. We will make reference to this page throughout this chapter as the Data Guard
home page. You may want to bookmark this page from your browser of choice for quick
access in the future. If there is no Data Guard Broker Configuration you will be asked if
you want to configure the Broker.

NOTe
This chapter does not spend time on installation and configuration
of the OEM Grid Control. Installing OEM Grid Control is beyond the
scope of this book.

Configuring Data Guard Broker with OeM Grid Control
If you are not taking advantage of the GUI of OEM Grid Control with your current Data Guard
configuration, you have neither unleashed the effectiveness nor realized how easy Data Guard
configuration can be. With each release of OEM Grid Control, Oracle packs in more and more
Data Guard support and functionality. As you saw in Chapter 2, you can create your standby
database using the OEM Data Guard Wizard. But you can start managing your existing Data
Guard environment simply by enabling the Data Guard Broker. Here’s how to take advantage of
OEM Grid Control in your fully functional Data Guard environment:

 1. Navigate to the Add Standby Database screen, shown in the following illustration, by
clicking the Add Standby Database link that OEM Grid Control displays when there is no
Broker configuration.

222 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 6: Oracle Enterprise Manager Grid Control Integration 223

 2. On the Add Standby Database screen, select the Manage An Existing Standby Database
With Data Guard Broker radio button. Note that prior to enabling the Data Guard Broker
with OEM Grid Control, the primary database must be started using the SPFILE.

 3. Click the Next button to open the Add Standby Database: Select Existing Standby
Database screen, where you can choose an existing standby database. You can select the
standby database that currently provides disaster recovery or reporting services for your
primary database, as shown here.

 4. Select your standby database and click the Next button.

 5. If login credentials have not yet been established, you are prompted to provide SYSDBA
login credentials to connect to the physical standby database. Once you have provided
SYSDBA login credentials, you can optionally modify the archive location at the standby
host, as shown here.

 6. If you are not using the flash recovery area, you can optionally modify the local archiving
parameter. But if the primary database uses the flash recovery area, the standby archive
location will contain USE_DB_RECOVERY_FILE_DEST and will be grayed out to use the
same settings.

Chapter 6: Oracle Enterprise Manager Grid Control Integration 223

 7. At the bottom of the page you will now be able to modify how the Broker connects to the
primary and standby databases by changing the Enterprise Manager Connect Identifier
fields for both databases back to the TNSNAMEs you originally used, as shown here.

 8. Click the Next button and review the proposed changes:

 9. If you are satisfied with the configuration, click the Finish button, and OEM Grid Control
will start enabling the Data Guard Broker, as shown in the following illustration. At this
point, you will not be able to cancel this operation after it starts.

You will be redirected to the Data Guard home page once the physical standby is configured
for Broker control.

224 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 6: Oracle Enterprise Manager Grid Control Integration 225

Verifying Configuration and Adding Standby Redo Logs
We’re assuming that you have already created your standby database as you read Chapter 2 or
have an existing standby environment that was just imported into Grid Control in the preceding
section. If you haven’t created an environment, create a standby database now, as instructed in
Chapter 2, and configure the Data Guard environment to be managed by OEM Grid Control.
When you have a standby database managed by Grid Control, you can perform a health check of
your Data Guard environment.

To perform a health check of your Data Guard environment, click the Verify Configuration
link in the Additional Information section of the Data Guard home page. You can click the Verify
Configuration link at any time for both the primary and standby databases. Clicking this link will
initiate the verification steps displayed in Figure 6-1. Notice that the verification operation
validates database settings such as the protection mode, redo log configuration, standby redo log
files, redo log switches, and Data Guard status, and it performs a basic health check.

You can cancel the verification process at any time, but you should let the process complete
and review the Results page to assess your current environment. Figure 6-2 shows the top portion

FIGuRe 6-1. Processing Data Guard verification

FIGuRe 6-2. Data Guard has completed verification.

Chapter 6: Oracle Enterprise Manager Grid Control Integration 225

of the Results output, indicating that the verification process completed successfully and that
standby redo logs are recommended at the primary database.

Following is the detailed output of the verification results:

Initializing
Connected to instance Matrix
Starting alert log monitor...
Updating Data Guard link on database homepage...
Data Protection Settings:
 Protection mode : Maximum Performance
 Redo Transport Mode settings:
 Matrix: ASYNC
 Matrix_DR0: ASYNC
 Checking standby redo log files.....Done
 (Standby redo log files needed : 4)
Checking Data Guard status
 Matrix : ORA-16789: standby redo logs not configured
 Matrix_DR0 : Normal
Checking Inconsistent Properties
Checking agent status
 Matrix ... OK
 Matrix_DR0 ... OK
Switching log file 14.Done
 Checking applied log on Matrix_DR0...OK
Processing completed.

Standby redo logs are essential for receiving incoming redo instead of archive logs. In
addition to checking for availability of standby redo logs, the verification process also checks
agent status. At the bottom portion of the results page, shown in Figure 6-3, you are informed that
the standby redo logs are missing and need to be created at the standby database server. If you are
executing the verification process on the physical standby database and have already created
standby redo logs on the standby database, the verification process will switch redo logs on the
primary database and confirm that the log was applied on the physical standby.

FIGuRe 6-3. Standby redo log file recommendations

226 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 6: Oracle Enterprise Manager Grid Control Integration 227

Clicking the OK button will create the standby redo logs as Oracle Managed Files and return
you to the Data Guard home page. You will also be prompted to create standby redo logs in other
screens within OEM Grid Control, such as while enabling Fast-Start Failover or changing
protection modes.

Viewing Metrics
OEM Grid Control uses the term metrics to refer to the assessment of the health of your system.
Metrics are units of measurement with associated thresholds. When a threshold for a metric is
reached, an alert is generated. Targets in OEM Grid Control come with a predefined set of
metrics, and alerts are generated when a threshold is reached. A threshold is cleared when a
monitored service changes such as database up/down conditions and when a specific condition
occurs, such as an ORA-message in the alert log file.

From the Related Links section of the Data Guard home page, you can click the All Metrics
link to view all the OEM Grid Control metrics (including Data Guard metrics). From the All
Metrics screen, you can expand the metrics summary specific to Data Guard, such as Fast-Start
Failover, Fast-Start Failover Observer, performance, and status. The metrics that you will see
depend on the current role of the database through which you have connected. For example,
Figure 6-4 displays a small subset of the Metrics screen for our physical standby, Matrix_DR0.

Here we see the Data Guard metrics for the apply and transport lags, the apply rate, and
failover estimate. However, if we connect to our primary database, Matrix, and look at All
Metrics, we’ll see a slightly different set of Data Guard metrics, as shown in Figure 6-5.

Notice that the Failover Occurred and Observer Status threshold values are the same as those
shown for the standby database, but here you also see the Data Guard Status and the primary
database Redo Generation Rate metrics.

You can click any of the metrics that have thresholds set. For instance, click the Data Guard
Status metrics, and you can observe that both the primary and physical standby databases are
online and operational, as shown in Figure 6-6.

FIGuRe 6-4. Data Guard standby database metrics

Chapter 6: Oracle Enterprise Manager Grid Control Integration 227

Modifying Metrics
If you haven’t done so already, you need to set up the notification methods to receive e-mails or
pages from OEM Grid Control for alerts and metric threshold notifications. To access the
Notification Methods page, click the Setup link located at the upper-right corner of the page
above the tabs. You will see a page with two panes. In the left pane, click the Notification
Methods link to open the Notification Methods page, where you can specify the SMTP server,
username, password, and sender’s e-mail address. You can also stipulate that repeat alert
notifications be sent for the same metric or availability alert.

Metrics can be modified by clicking the Metrics and Policy Settings link in the middle column
of the Related Links section on the Database home page. However, you have to use the link from
the Database home page where the database’s current role matches that of the metric. For
example, one particular metric of interest in a Data Guard environment is the apply lag metric,
which is measured in seconds; you will be able to set this metric only from the Standby Database
home page. In the Metrics and Policy Settings page of our standby Matrix_DR0, the apply lag
metric is not visible by default since the apply lag is not configured by default. To change the
apply lag, simply select the All Metrics option from the View drop-down list. The screen will
refresh, and all the modifiable metrics will be displayed, as shown in Figure 6-7.

Set the appropriate values in the Warning Threshold and Critical Threshold columns.
Optionally, you can also change the collection schedule. You can continue to make changes to
other metrics and then click OK to commit the changes. You will see a confirmation page
indicating the successful update.

FIGuRe 6-5. Data Guard primary database metrics

FIGuRe 6-6. All Metrics: Data Guard Status

228 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 6: Oracle Enterprise Manager Grid Control Integration 229

Other critical metrics that you may want to modify relative to your Data Guard configuration
include the following:

 Redo generation rate (KB/second) on the primary database ■

 Estimated failover time (seconds) on the standby database ■

 Redo apply rate (KB/second) on the standby database ■

 Transport lag (seconds) on the standby database ■

 Archive area used (%) on both the primary and standby databases ■

 Archive hung alert log error on both the primary and standby databases ■

 Archive hung alert log error status on both the primary and standby databases ■

Viewing the Alert Log File
You can view the database alert log file for both the primary and standby databases through Grid
Control. You can gain access to the database alert log file in several ways, but the most sensible
route is clicking the Edit link in the Properties field to open the Edit Primary Database Properties
page. Or you can click the Status link in either the primary or the standby database. Within the
Edit Primary/Standby Database Properties page in the Diagnostics section, you can click the link
associated with your database, as shown in Figure 6-8.

FIGuRe 6-7. Metrics and Policy Settings for all metrics

FIGuRe 6-8. Edit the primary database properties

Chapter 6: Oracle Enterprise Manager Grid Control Integration 229

In this example, we will examine the alert log entries for the Matrix database. The alert log
search screen will extract the last 100K characters of the database alert log file. You can define a
custom search by entering begin and end dates and time criteria at the top of the page in the
Search Criteria area, as shown in Figure 6-9.

You are strongly encouraged to hit the Refresh button since the alert log file is constantly
updated. Reviewing the database alert log provides your initial entry point to diagnosing Data
Guard–related problems. By viewing the alert log file entries using a web browser, you no longer
need physical OS access to the database servers to examine the alert log files. Figure 6-10 shows
the bottom of the page, where you can peruse redo log alert entries.

FIGuRe 6-9. Alert log search range

FIGuRe 6-10. Review alert log entries

230 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 6: Oracle Enterprise Manager Grid Control Integration 231

enabling Flashback Database
The Flashback Database feature introduced in Oracle Database 10g Release 1 provided expedient
recovery from logical database corruptions and user errors. With Flashback Database logging, you
can flashback a database to the point in time prior to the user error or when the logical corruption
occurred. More importantly, the Flashback Database logging capabilities eliminate the need to
perform a restore and point-in-time recovery. Oracle flashback logging will enable you to bypass
datafile restores.

Another great benefit of Flashback Database logging is that you do not have to delay
application of redo data on the standby database server. This allows for the standby database to
be closely synchronized with the primary database.

Most important, enabling Flashback Database logging may eliminate the need to rebuild the
primary database after a failover. After a failover to the standby database server, the primary
database can be flashed back to a point-in-time prior to the failover event (unless media recovery
is required) and converted to a standby database to be synchronized with the new primary
database server.

If you did not set up the flash recovery area with Database Configuration Assistant (DBCA)
while creating your primary database, you can set it up now with OEM Grid Control. Flashback
Database logging is required to support Fast-Start Failover, covered in its own section a bit later in
the chapter. To setup the flash recovery area, you must navigate to the Recover Setting page on the
Availability tab of the Database home page. The Flash Recovery settings are located in the bottom
half of the screen and will look similar to that shown in Figure 6-11.

Click the Apply button after you have finished your settings. If you want to make changes only
to the SPFILE, click the check box at the bottom of Figure 6-11 that specifies that the changes
should be applied only to the SPFILE. On the right side of the Recover Setting page is a pie chart
depicting the current usage statistics for the flash recovery area, as shown in Figure 6-12.

FIGuRe 6-11. Enable flash recovery

Chapter 6: Oracle Enterprise Manager Grid Control Integration 231

If this chart shows that your flash recovery area is already reaching capacity, you need to
allocate more space before enabling Flashback Database, as the flashback logs will increase
considerably depending on your retention period. To enable Flashback Database on your primary,
you must restart the database, as depicted in Figure 6-13.

Click the Yes button to bounce the database. You will be asked for SYSDBA credentials to
shut down and restart the database. If the standby database does not have a flash recovery area
enabled, you can repeat these steps on the standby database; however, if the standby database is
only mounted and not open read-only, a restart will not be necessary.

Reviewing Performance
Reviewing Data Guard performance starts at the Data Guard home page in the Standby Progress
Summary chart. The Standby Progress Summary chart reveals the transport and apply lag in
seconds, minutes, or even hours depending on the amount of delay. The transport lag is measured
as the delta from the primary database last update and the standby last received redo, while apply
lag is measured as a delta between the primary last update and last applied redo on the standby
site. A transport lag impacts your ability to satisfy your RPO. If you have to failover your database
at this moment, redo data that did not arrive at the standby database server will be lost. Figure 6-14
shows a transport lag of approximately 0 and an apply lag of more than 3 minutes. This transport
lag means that all redo generated by the primary database is available at the standby database so
in a Maximum Availability configuration you would be able to satisfy an RPO of zero data loss.

FIGuRe 6-12. Flash recovery area usage

FIGuRe 6-13. Confirmation to restart database

232 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 6: Oracle Enterprise Manager Grid Control Integration 233

The apply lag indicates how far behind your standby database server is compared to the
primary when it comes to applying redo data. The apply lag is the indicator of your RTO—how
long it takes for you to failover to your standby database server. It also tells you whether your
apply process can keep up with the redo generation rate from the primary database server. If the
delta between the redo generation rate and apply rate became significant, you may be better off
performing an incremental backup from the primary and restoring the incremental backup on the
standby database server. In our case, the RTO would be impacted by the time it takes to apply
those last 3.2 minutes of redo.

Additional performance statistics can be captured in the Performance Overview link in the
Performance section of the Data Guard home page. The Performance Overview page displays
performance-related information in graphical line chart format. The graphical charts in each of
the quadrants represent current redo generation rate, transport lag, apply lag, and apply rate. You
can simulate a workload by clicking the Start button under Test Application, which is a built-in
application that will generate a workload on the primary database. You can use this page to
switch log files at the primary database.

You can set the collection interval, which causes the charts to be refreshed, by choosing an
option from the View Data drop-down list. Figure 6-15 displays the top of a pretty elaborate
Performance Overview page that reports redo generation rate, lag times, and apply rate.

FIGuRe 6-14. Standby Progress Summary chart

FIGuRe 6-15. Primary Performance Overview page

Chapter 6: Oracle Enterprise Manager Grid Control Integration 233

The redo generation rate chart reveals the redo generation rate measured in kilobytes per
second (KB/sec) on the primary. Figure 6-16 displays the performance information from the
bottom of the page. These metrics are for the standby databases.

The transport lag time denotes the potential amount of data loss. In Figure 6-16, you can see
that our logical standby, Matrix_DR1, does not have a transport lag but our physical standby
database, Matrix_DR0, did have a transport lag that has been resolved. The apply rate obviously
provides information about data applied on the standby database environment. Clicking each of
the charts will route you to another page that reports historical information for the past 24 hours.
Again, you can choose an option from the View Data drop-down list to view the data for the past
24 hours, 7 days, 31 days, or a customized date interval.

The redo generation rate is available only through OEM Grid Control. The transport lag and
apply lag values are also available from the V$DATAGUARD_STATS view on a standby database.

You can also derive performance information by reviewing the log file details from the Data
Guard home page. In the Performance section at the bottom of the Data Guard home page, click
the Log File Details link to view the following:

 Status of redo that was generated on the primary database but not received on the ■
standby database server

 Redo that was received but not applied on the standby database server ■

In our example, Figure 6-17 shows that two archive logs were received on the standby
database server but not applied. It also shows six archive logs that have not yet been received by
our logical standby due to some error. The error in this case is that the logical standby was only
mounted, not open and applying redo.

The log files details page also provides information about redo log transport and apply
information for diagnostic purposes. Under normal circumstances, you should not see entries on
this page. An example of a good situation is shown in Figure 6-18.

FIGuRe 6-16. Standby Performance Overview page

234 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 6: Oracle Enterprise Manager Grid Control Integration 235

As you can see, the physical standby, Matrix_DR0, has received everything and is up to date
applying the redo. The logical standby, Matrix_DR1, has received all primary redo and is currently
catching up in sequence 34, whereas the primary is currently sending redo from sequence 35
(shown at the top of the page). This page may become particularly helpful if for some reason the
redo transport services go offline and you need to view which archive logs have not made it to the
standby database server.

Changing Protection Modes
With just a few clicks in OEM Grid Control, you can easily change the protection mode of the
Data Guard configuration. By default, the initial configuration is set up in Maximum Performance
mode. You can easily toggle among Maximum Protection, Maximum Availability, and Maximum
Performance modes. For detailed information about each of the protection modes, refer to
Chapters 1 and 2.

FIGuRe 6-17. Bad log file details

FIGuRe 6-18. Good log file details

Chapter 6: Oracle Enterprise Manager Grid Control Integration 235

From the Data Guard home page, click the URL next to the Protection Mode in the Overview
section of the page. The protection mode of the Data Guard configuration will be displayed. Click
the Protection Mode link to open the Change Protection Mode: Select Mode page, as shown in
Figure 6-19.

You can select from the available protection modes. In this example, let’s raise the protection
mode from Maximum Performance to Maximum Availability. Click the Maximum Availability
option and click Continue. If you are prompted for SYSDBA credentials, enter the username and
password with SYSDBA privileges and click Login. As shown in Figure 6-20, choose which
database will have its protection mode changed. Since we are changing from Maximum
Performance to Maximum Availability, we are notified that the redo transport will be changed to
SYNC as part of the process. You must be careful when choosing protection modes. If your
transport mode is changed to SYNC, transactions must wait for redo generated from the primary
database to be written on the standby redo logs before you will be allowed to continue. If you are
comfortable with the proposed changes, you can simply click Continue to proceed.

If you did not have the standby redo log files defined on all the required databases, you would
also be required to choose where they would be created. Since these were already defined, choose
the SYNC standby database and click Continue. In the Edit Protection Mode Processing page, confirm
the selection. Click Yes and observe the progress screen shown in Figure 6-21. Before clicking the
final Yes, make sure you want to do this, because once the process starts, it cannot be cancelled.

Once changes are processed, you will be redirected to the Data Guard home page where the
new protection mode will be reflected.

FIGuRe 6-19. Change Protection Mode: Select Mode page

FIGuRe 6-20. Change Protection Mode: choose the transport mode

236 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 6: Oracle Enterprise Manager Grid Control Integration 237

editing Standby Database Properties
From time to time, you will need to turn on or off Redo Apply on a standby database. You can
turn on or off the apply services by navigating to the Edit Standby Database Properties screen. To
disable archived redo data from being applied, click the Apply Off radio button and click Apply.
The screen will refresh and you will receive a success banner at the top of the page. Similarly,
you can re-enable Redo Apply services by clicking the Apply On radio button and clicking Apply.
If you want to activate Real-Time Query,1 you can also check the Enable Real-time Query box and
click Apply. Remember that unless you are running Oracle Database 11g, redo data will not be
applied while the database is open in read-only mode. Figure 6-22 shows the General tab’s
Standby Database properties that can be modified.

In this example, the Data Guard environment was modified to be open for read-only purposes
to service ad hoc read-only reports for the customers.

In the Standby Role Properties tab in Figure 6-23, you can set attributes such as the transport
mode (but you will not be allowed to impact the protection mode), the net timeout (in seconds),
the apply delay (in minutes), or the standby archive location. In addition, you can expand the

1 To activate Real-Time Query, you must be licensed for the Active Data Guard Option.

FIGuRe 6-21. Processing: Change Protection Mode screen

FIGuRe 6-22. Edit Standby Database Properties General tab

Chapter 6: Oracle Enterprise Manager Grid Control Integration 237

Advanced Properties link to set properties such as enabling/disabling log shipping and changing
the filename conversion parameters. Bear in mind that changing these last two does require a
restart of the standby database.

You can delay application of redo data on the standby database to provide additional
protection from user error or corruption on the primary database. This can protect you against
incidents such as an accidental table drop on the primary database. You can prevent the table
drop from hitting the disaster recovery site. Instead of setting the apply delay time, you should
consider enabling Flashback Database with sufficient amount of space in the flash recovery area.

In the Common Properties tab shown in Figure 6-24, you can specify the connect identifier
for the standby database (how the primary should connect to this standby database), the number

FIGuRe 6-23. Edit Standby Database Standby Role Properties tab

FIGuRe 6-24. Edit Standby Database Common Properties tab

238 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 6: Oracle Enterprise Manager Grid Control Integration 239

of archive processes to be used for the LogArchiveMaxProcesses Broker property, and the
level of tracing to be set for the LogArchiveTrace property. These properties are not role-
specific and will take effect immediately after you click Apply.

Performing a Switchover
Simply stated, a switchover is the process in which the primary database and a standby database
perform a role reversal without resetting the online redo logs of the primary database. A switchover
is typically done within a planned maintenance time window. In a switchover scenario, the
primary database becomes the standby database, and the standby database becomes the new
primary database. During the switchover process, the primary database role is changed and the
database is shut down and restarted. When this process is complete at the primary, it is finished at
the standby you chose and the standby is opened without a restart.2 In a switchover, no data loss
occurs. With OEM Grid Control, performing a switchover has never been easier. Switchovers are
initiated only on the primary database, and database connections can be configured to switch over
automatically.3 The switchover process can be initiated by selecting the standby database that you
want to become the primary database and clicking Switchover on the Data Guard home page, as
shown next.

Behind the scenes, the switchover operation ensures that the primary and standby databases
are error free, and then it asks you to confirm the switchover. You may have to provide the OS
credentials for the physical database server; then do the following:

 1. Click Continue. You should see the Confirmation Switchover page as shown in the next
illustration.

2 In 10g, the standby would be restarted if it had been opened read-only since it was last started.
3 See Chapter 10 for client failover details.

Chapter 6: Oracle Enterprise Manager Grid Control Integration 239

 2. At the bottom of the page, you can also decide whether you want the Grid Control
Monitoring Settings and Jobs transferred to the new primary database, as shown in the
next illustration.

 3. If the standby database has archive logs that still need to be applied, you will see a
warning message indicating that the unapplied log files will be applied before starting the
switchover. You can also see the active sessions by clicking the Browse Primary Database
Sessions link. Once you are ready to process, click Yes to finalize the initiation process.

CAuTION
You cannot stop the switchover process once it starts.

 4. Immediately after you click Yes, you will see the Processing: Switchover screen, where
the processing operation will perform the steps to switch roles between the primary and
standby databases and the Data Guard Broker will restart the original primary database
and complete tasks to switch the database roles, as shown in the illustration.

 5. While waiting for the switchover process, click the View Alert Log link to review the
progress details in another browser window. After the switchover process is complete,

240 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 6: Oracle Enterprise Manager Grid Control Integration 241

you are routed to the Data Guard home page that shows the new primary database, as
depicted in the next illustration.

As you can see, Matrix_DR0 is now the primary database and Matrix is the new physical
standby. Switchover role transitions are risk-free and require an insignificant amount of outage to
the production database server.

Performing a Manual Failover
You should consider failing over to your standby database when you experience a complete outage
on your primary database. As discussed in Chapters 1 and 2, depending on your protection mode,
you may or may not lose data. You should perform a failover only if the primary database is
completely down and a switchover is not possible. Even though reinstating a failed primary database
using Flashback Database is a relatively simple operation, you should still exercise caution and
generally failover only in an emergency. Data loss and failover is discussed in detail in Chapter 8.

Similar to switchover, a database failover can be achieved by navigating through several screens:

 1. From the Data Guard home page,
you’ll see that the current primary
database, Matrix_DR0 (remember,
we just performed a switchover
so Matrix_DR0 was our primary
database), is no longer available, as
shown here in the illustration.

 2. To failover, select the standby
database at the bottom of the Data
Guard home page; this will be
your new primary database. In our
example, we will failover to our
original primary database, Matrix, as
also shown in this illustration.

Chapter 6: Oracle Enterprise Manager Grid Control Integration 241

 3. Click Failover to open the Confirmation page, where you are asked to confirm the
failover, as shown in the following illustration.

You are warned on this page to make sure the primary is really down, because a failover
here with it still running would leave you with two open primary databases. Here you are
also asked to select from the type of failover option, Complete or Immediate.

CAuTION
Be aware that even though the text says that Immediate is the fastest
type of failover, it is also the failover with the biggest data loss and
should be used only if you have a gap in the redo that you cannot
resolve.

At the bottom of the page, as shown in the next illustration, you are asked if you want to
move the Grid Control monitoring and job setup to the new primary database. These will
be transferred by default, but you can customize them at this point.

 4. In a complete failover scenario, all available redo data is applied on the standby
database. Oracle recommends performing a complete failover, and it happens to be the
default failover option. When the complete failover scenario is not an option, you have
a gap you cannot resolve, and you can perform an immediate failover instead. In an
immediate failover situation, no additional redo data is applied on the standby database,
resulting in data loss once you initiate the failover. If you had a zero transport lag and

242 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 6: Oracle Enterprise Manager Grid Control Integration 243

zero apply lag, all your data was applied; however, if you had an apply lag for some
reason, data that was not applied would result in data loss when the failover operation is
initiated. If you have a transport lag or apply lag, data loss is imminent when the failover
operation is initiated. Select the appropriate failover option and click Yes.

CAuTION
You cannot stop the failover process once it starts.

 5. A database failover will be initiated and you will not be able to cancel the database
failover. You will be routed to the Processing screen, where you will see the status of the
failover process, as shown in the following illustration. Similar to the switchover progress
screen, you can click the View Alert Log link to drill down to the alert log file and review
the details in another browser window. However, remember that this is a failover and the
alert log of the original primary (Matrix_DR0 in our case) may not be available.

 6. When the failover processing gets to the stage where it is transferring the jobs, the failover
is complete. You can manually navigate back to the Data Guard home page using
your bookmark or you can just wait, and once the processing is complete, you will be
returned to the Data Guard home page.

 7. If you were running in Maximum Protection or Maximum Availability mode before the
failover, you will notice that you have been downgraded to Maximum Performance
mode after the failover. To get your new production database back to its original
protection level, you must mount the old primary database and reinstate it as the standby
database if possible. Exercise caution and make sure that you do not open the old
primary database; otherwise, you will have two primary databases up and running. In the
Data Guard home page, you will see the Data Guard Status link stating that the Database
Must Be Reinstated, as shown in the next illustration.

 8. Click the Data Guard Status link to open the Edit Standby Database Properties page. If
you had Flashback Database enabled and have all the required flashback logs, you can
reinstate the old primary database. If you have mounted the old primary database, you
will have to follow these steps only once. However, if the old primary database is not

Chapter 6: Oracle Enterprise Manager Grid Control Integration 243

mounted, you will have to execute this procedure twice, because the first time around,
Grid Control will mount only the failed primary database.

TIP
Enabling Flashback Database on both the primary and standby
databases is strongly recommended. Flashback Database allows for
the former primary database to be reinstated after a failover operation
without being restored with sufficient flashback log availability.

 9. In the Edit Standby Database Properties page, click the Reinstate button near to the Status
Role, as shown in the illustration.

 10. On the Confirmation page, click Yes to initiate the reinstating of the failed primary
database and continue to the Processing page, as shown in the illustration.

 11. Once the processing activities complete, the Data Guard home page appears. You may
notice an ORA-16778 redo transport error for the Data Guard Status. This error will
eventually clear, but if you want to clear it manually, you can click the ORA-16778 error
link to open the Edit Properties page.

 12. The errors on the Related Status section are expected errors. Click Reset to reset the log
services. When you reinstate a failed primary database, it will be brought back into your
configuration as the type of standby that matches the standby type you failed over to in the
first place. If OEM Grid Control is not able to reinstate the failed primary, you will have to
clean up the failed database manually and create a new standby by clicking Add Standby.

Fast-Start Failover
Fast-Start Failover allows the Data Guard Broker to failover automatically to a standby database
when a failure occurs at the primary database. No manual intervention is required, and Fast-Start
Failover effectively increases database availability since it decreases the amount of time for
manual failover operations. Like most other Data Guard functionalities, Fast-Start Failover can
also be configured and maintained within OEM Grid Control. We will discuss the Fast-Start
Failover architecture and how you enable it in Chapter 8.

244 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 6: Oracle Enterprise Manager Grid Control Integration 245

Creating a Logical Standby
You learned in Chapter 2 how to create a logical standby database manually, and you learned
pretty much everything else about a logical standby in Chapter 4. In this section, we will
demonstrate how easy it is to create a logical standby database with OEM Grid Control.

 1. To initiate the process to create a logical standby database, click Add Standby Database
on the Data Guard home page. (As we mentioned before, for a new database that does
not have any standby databases, the Data Guard home page will have just one option
to add a standby database.) You will see the Add Standby Database screen, shown in
preceding examples in this chapter and in Chapter 2.

 2. On the Add Standby Database screen, select Create A New Logical Standby Database, as
shown in the following illustration, and then click Continue.

 3. The Add Standby Database: Backup Type page is the same page you arrived at when you
created your physical standby database, but it now has a lot more information. At the
bottom of the screen, look at the SQL Apply Unsupported Tables section. Make sure that
your database does not have any unsupported data types.4 In the next illustration, you
can see the tables that contain unsupported data or storage types.

4 For a comprehensive list of all the unsupported data types, refer to the Data Concepts and Administration Manual,
Appendix C, to determine whether your primary database can sufficiently support a logical standby database:
http://download.oracle.com/docs/cd/B28359_01/server.111/b28294/data_support.htm#CHDGFADJ

http://download.oracle.com/docs/cd/B28359_01/server.111/b28294/data_support.htm#CHDGFADJ

Chapter 6: Oracle Enterprise Manager Grid Control Integration 245

 4. Instead of viewing only the tables, you may want to view the columns and data types
that Oracle detected as not being supported. To view the unsupported columns and data
types, click the Show drop-down list and choose Table Columns and Data Types. Then
click Go, as shown in the illustration.

 5. After you perform a thorough analysis of the unsupported tables and columns, choose to
continue to create a logical standby database, click the Backup Type radio button, and
click Next to be directed to the Add Standby Database: Backup Options page.

The rest of the steps are identical to those for creating a physical standby database, which is
thoroughly covered in Chapter 2. Instead of repeating the same figures here, we simply ask that
you review Chapter 2. The only other difference between this procedure and the former is that,
after the logical standby is created, the role will be listed as Logical Standby in the Standby
Databases section, as shown in Figure 6-25.

Skipping Table entries in Logical Standby Database
In the logical standby database world, you can skip certain, or all, types of SQL operations against
a specific table or schema from being applied by SQL Apply. You can also specify additional
processing on the logical standby database by using stored procedures.

In earlier releases of Oracle Database, you pretty much had to stop SQL Apply before making
any changes to these skip rules. In Oracle Database 11g, most changes no longer require that you
stop SQL Apply. Grid Control will take care of stopping the apply if necessary so you don’t have
to worry about it.

FIGuRe 6-25. Standby Databases logical standby role

246 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 6: Oracle Enterprise Manager Grid Control Integration 247

To configure skip operations, you have to set up the appropriate SQL Apply properties in the
Standby Role Properties page. To get to the Standby Role Properties page, select your logical
standby database and click the Edit button shown in Figure 6-25 to be routed to the Edit Standby
Database Properties screen. Click the Standby Role Properties tab to see the properties shown in
Figure 6-26.

Click Show Advanced Properties to expand the SQL Apply Properties, as shown in Figure 6-27.
You can specify the amount of system resources that SQL Apply can consume in the SQL

Apply Properties portion of the screen. By adjusting the MAX SGA in number of megabytes (MB),
you can allocate the amount of megabytes for SQL Apply to cache in the system global area
(SGA). If you specify a value of 0, SQL Apply will allocate one quarter of the value of the

FIGuRe 6-26. Edit Standby Database Properties for the logical standby

FIGuRe 6-27. SQL Apply Properties for the logical standby

Chapter 6: Oracle Enterprise Manager Grid Control Integration 247

SHARED_POOL_SIZE initialization parameter. You can also specify the number of parallel servers
specifically reserved for SQL Apply. In the Max Events Recorded field, you can set the number of
events that will be stored in the DBA_LOGSTDBY_EVENTS table. At the bottom of the page, you
can add tables for SQL Apply to ignore, or skip, by clicking Add and entering more tables.

TIP
The SQL Apply Properties portion of the page is visible only on the
logical standby database. If you view the Standby Role Properties page
on the primary database server, the SQL Apply Properties portion of
the page will not be available.

After you click the Add button, you’ll see the Add Skip Table Entry page, as shown in Figure 6-28.
In this particular example, SQL Apply will be instructed to skip all DML operations on the

SCOTT.EMP table. Click OK to go back to the Standby Role Properties page. Click Add once
more. This time, change the SQL Statement field to SCHEMA_DDL for the SCOTT.EMP table.

To add more tables to skip, click Add and enter more tables. You can see from Figure 6-29
that the EMP table is set up to have all DML and DDL skipped.

Lastly, once you’ve identified and entered all the tables you want SQL Apply services to skip,
click Apply to save your changes. You’ll see an Information bar telling you that the changes have
been applied, as shown in Figure 6-30.

FIGuRe 6-28. Add Skip Table Entry for the logical standby

FIGuRe 6-29. Skip Tables Entries after tables are added to the logical standby

248 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 6: Oracle Enterprise Manager Grid Control Integration 249

Later, if you want SQL Apply to start applying DML and DDL changes to the EMP table, you
can return to this screen and click Remove, as shown in Figure 6-31.

Once you have removed all the skip rules for the table you want SQL Apply to maintain, click
the Apply button at the lower-right corner of the page. You’ll see a TIP at the bottom of the page
telling you that the entry has been removed from the table, as shown in Figure 6-32.

This will process your request and remove the skip rules for EMP from the logical standby
database. But you are not done yet. The moment someone makes a change to the EMP table on a
row that either does not exist in the logical standby or has different data, the SQL Apply processes
will stop immediately and you will see an error on the Data Guard home page, as shown in the
lower-right corner in Figure 6-33.

Click the error message link to see more information about the problem in the Edit Properties
page, as shown in Figure 6-34.

You are offered a “Skip” button, but unless you are certain that you understand what
happened and you are 100-percent sure that you can skip this error, do not push the Skip button.
In general, you should not skip DML transactions for it can corrupt data on the logical standby
database. In this case, what you really need to do is reinstantiate the EMP table using the DBMS_
LOGSTDBY.INSTANTIATE_TABLE procedure. This procedure requires a Database link that points to
the primary database with a user that has the privileges to read and lock the table in the primary
database, as well as the SELECT_CATALOG_ROLE on the primary database. In this example, we use
the SYSTEM account for our database link.

SQL> CREATE DATABASE LINK MATRIX CONNECT TO SYSTEM
 IDENTIFIED BY oracle USING 'MATRIX';
Database link created.
SQL> EXECUTE DBMS_LOGSTDBY.INSTANTIATE_TABLE(SCHEMA_NAME => 'SCOTT',
 TABLE_NAME => 'EMP', DBLINK => 'MATRIX');
PL/SQL procedure successfully completed.
SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;
Database altered.
SQL>

FIGuRe 6-30. Your changes were successful.

FIGuRe 6-31. Removing a skipped table

Chapter 6: Oracle Enterprise Manager Grid Control Integration 249

FIGuRe 6-32. Skip rules removed for EMP

FIGuRe 6-33. SQL Apply error

FIGuRe 6-34. SQL Apply error information

250 Oracle Data Guard 11g Handbook Chapter 6: Oracle Enterprise Manager Grid Control Integration 251

Then you need to restart SQL Apply manually after the procedure is complete, as Grid
Control will still show the error state. After SQL Apply has restarted and applied the errant DML
to our EMP table, the Data Guard home page will once again show that everything is normal, and
you can relax.

Managing Active Standby
In Chapter 9, you’ll learn how to enable an active standby database using SQLPlus and the Data
Guard Broker CLI. OEM Grid Control 10g Release 5 starts to support the active standby
functionality that is available beginning in Oracle Database 11g. You can enable active standby
with a couple of clicks.

Managing Snapshot Standby
You will also learn how to create a snapshot standby database in Chapter 9. OEM Grid Control
10g Release 5 also supports the snapshot standby feature offered in Oracle Database 11g with a
simple click of the Convert button on the Data Guard home page and with a Yes click on the
confirmation page. The convert button will convert the standby database, depending on the role
at the current time, to a snapshot standby if it is a physical standby and to a physical standby if it
is a snapshot standby.

Removing a Standby Database from Broker Control
You can easily remove a standby database or Data Guard Broker configuration from OEM Grid
Control. Removing a standby from OEM Grid Control does not remove the database from the file
system or ASM, just from the Broker’s control. Removing a standby database profile in Grid
Control merely removes that database from the Data Guard Broker configuration file. By default,
during the Data Guard Broker decoupling phase, the standby destination is removed from the
primary database so that logs are no longer shipped to the standby database. You can specify
whether or not you want the Broker to leave the redo transport parameters in place after it is no
longer controlling the standby database by selecting the Preserve The Destination… check box
shown in Figure 6-35.

You can remove a standby database from the Data Guard Broker by selecting the standby
database you want to remove and clicking Remove from the Data Guard home page. OEM Grid

FIGuRe 6-35. Confirming a standby database removal

Chapter 6: Oracle Enterprise Manager Grid Control Integration 251

Control forwards you to a confirmation page to make sure that you really want to remove the
standby database, as shown in Figure 6-35.

Then click Yes to remove the standby database from Data Guard Broker control. Once the
standby database is profile is removed, you are returned to the Data Guard home page.

To remove an entire Broker configuration, navigate to the Data Guard home page and scroll
down to the bottom of the screen. In the Additional Administration section, look for the Remove
Data Guard Configuration link, as shown in Figure 6-36.

Click the link, and you will be routed to a confirmation page, shown in Figure 6-37, which
explains that the database will still stay intact. You also have an option to click the check box to
preserve all standby destinations so that redo data will continue to ship to the standby site.

Then click Yes to remove the Data Guard Configuration. When complete, you are returned to
the Data Guard home page.

NOTe
You can always add the Data Guard Broker configuration back by
clicking Add Standby Database from the Data Guard home page. You
can re-add the standby database by selecting the Manage An Existing
Standby Database With Data Guard Broker option.

FIGuRe 6-36. Remove Data Guard Configuration link

FIGuRe 6-37. Confirming that you want to preserve all standby destinations

252 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 6: Oracle Enterprise Manager Grid Control Integration 253

Keeping an eye on Availability
Now that you have examined what you can do with Grid Control and your Data Guard setup, it’s
time to get to know one final new feature of Grid Control 10.2.0.5. All the actions and screens
shown throughout this chapter, as well as the other chapters in which Grid Control is discussed,
are available in prior versions of Grid Control 10g. Starting with Grid Control 10.2.0.5, you can
navigate to a new, consolidated High Availability Console under the Availability tab on any of
your databases, as shown in the next illustration.

The console offers one place to monitor most things concerning high availability (HA) and
disaster recovery (DR). When we first access the console, it will pertain to the database to which
we want to connect, displaying the basic layout, as shown the next illustration, which is for our
primary database.

The console shows an Availability Summary, Availability Events, a Backup/Recovery Summary,
current Flash Recovery Area statistics if one is configured, and a Data Guard Summary if this
database is part of a Data Guard configuration. If it is not, you will see the Add Standby Database
link in the Data Guard Summary area. By default, the console screen has a manual refresh that
you can configure with the pull-down menu in the upper-right corner.

Click the Advanced View link at the top of the screen, and the console will be expanded with
some new charts and other information, as shown in the next illustration.

Chapter 6: Oracle Enterprise Manager Grid Control Integration 253

At the right side are three charts that have been added to the console: Availability History, a
history of the Used Flash Recovery Area space, and, since this is a primary database, a historical
chart of the Redo Generation Rate.

The Redo Generation Rate chart changes to the Standby Apply Lag history if the database you
are showing is a physical or a logical standby database. At the upper-right, you can use the
pull-down menu to select any one of the databases that are part of the Data Guard configuration.
The next illustration shows the console for our physical standby database, Matrix_DR0.

254 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 6: Oracle Enterprise Manager Grid Control Integration 255

The only difference here is the chart showing the apply lag historical statistics for the last
few hours. You can also view advanced information for a logical standby, as shown in the next
illustration.

Compare these two screens, and you’ll see two major differences between the statistics for the
physical standby and the logical standby, the apply lag, and the flash recovery area space usage. It
is pretty normal for the apply lag to be greater on a logical standby than a physical standby, as
SQL Apply does have more work to do. But you can tune both apply services to keep this number
as close to 0 as possible. A big spike in the apply lag for either type of standby database would
signify either that you had a burst of redo generation that exceeded your standby’s ability to apply
at the same speed (compare the spikes to the history of the redo generation rate in the primary
console) or something needs your attention on the standby database and should perhaps be
tuned.

The other interesting information shown in these two screens is the flash recovery area usage.
The logical standby database is 80 percent full with unreclaimable space while the physical
standby is only 4.5 percent used. This is due (in our case) to the fact that we have the RMAN
Archive Log Deletion Policy set on the physical standby to delete the archive logs when space is
needed in the flash recovery area as soon as they have been applied to all standbys, which
includes itself. The logical standby database is a read-write database and as such generates its
own archive logs as well as those that are coming from the primary database. As mentioned in
Chapter 2, you can place the incoming archive log files from the primary and the archive log files
generated by the logical standby into the flash recovery area. Data Guard can be configured to
automatically delete incoming archive log files that are no longer needed for the recovery or for
Flashback Database if enabled. So we would expect the space usage to be greater for a logical
standby than for a physical standby. However, the reason that the difference is so high is due to
the fact the RMAN deletion policy does not work on the logical standby, as it does on a physical
standby, and the generated archive log files are not marked as reclaimable. This is because,

Chapter 6: Oracle Enterprise Manager Grid Control Integration 255

unlike a physical standby which can be restored and recovered from the archive logs of the
primary database, the log files would be necessary to recover the database if you had to restore
your logical standby. So you will want to keep an eye on the flash recovery area for your logical
standbys and implement a backup strategy for the logical standby and its archive logs.

A last word on the High Availability Console: You can customize the console by clicking the
Customize link at the top of the page and choosing what you would like displayed, as shown in
this illustration.

Conclusion
OEM Grid Control allows a DBA to maintain and monitor what may seem like a complex Data
Guard environment with ease from a single GUI. OEM Grid Control can be the jewel of the
company, and, at the same time, the single hindrance for DBAs when things do not work as
expected. DBAs can effectively set up and manage a Data Guard environment without typing any
commands in SQL*Plus.

It would be foolish not to take advantage of the robust feature enabled in OEM Grid Control. At
the same time, we strongly advocate that you should also learn the command-line syntax of both
the Broker DGMGRL CLI and SQL*Plus and the in-depth architecture so that you can effectively
troubleshoot Data Guard behind the scenes. As you manage the Data Guard environment with
OEM Grid Control, you will quickly discover that heaps of the under-the-cover SQL commands are
exposed in the alert log file.

Chapter
7

Monitoring Data Guard
Implementations

257

258 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 7: Monitoring Data Guard Implementations 259

roactive database monitoring is vital to the task of keeping a production database
up and running. Monitoring a database for potential outage conditions is the best
way to maintain the highest uptime of your production environment. Monitoring
solutions such as HP OpenView, IBM Tivoli, and Oracle Grid Control classify
database alerts in two or three severity categories: critical, warning, and minor.

Basically, a critical condition would indicate that a database outage has occurred or is about to
happen. A warning condition would indicate that the database or the application component of
the database would become an outage if the condition were not handled by a DBA. A minor
condition is an informative message to the DBA. Typically a production database will be
monitored for at least the following:

 Tablespace free space ■

 Database alert log for ORA errors ■

 Archive log destination for free space thresholds ■

 Database/listener availability ■

 Blocking locks ■

When it comes to Data Guard, DBAs must monitor for conditions that may potentially risk
satisfying the company’s recovery point objective (RPO) and recovery time objective (RTO)
requirements. Proactive monitoring of Data Guard implementations can save DBAs hours or even
days of headaches in keeping the physical standby database in sync with the primary database.
Monitoring a Data Guard environment involves monitoring both the primary and all associated
standby databases. In addition to monitoring the databases for pertinent errors or conditions, the
DBA must check the existing configuration for compliance to industry standard practices; this can
also alleviate potential issues.

This chapter focuses on providing extensive monitoring solutions delivered in shell script
format that can be readily implemented in a Data Guard environment. In addition to the
monitoring scripts, a comprehensive checklist is also supplied to assist in diagnosing common
configuration issues. You can leverage this checklist to review your Data Guard configuration to
ensure that setup complies with the industry standard best practices.

Monitoring the Data Guard Environment
When it comes to monitoring a Data Guard environment, DBAs must closely monitor selective
components of the database topology, such as the file system or Automatic Storage Management
(ASM) diskgroup for archive log destination or the alert log file for ORA error messages. The goal
of monitoring a Data Guard environment is to detect and proactively eradicate server, network,
database, application, Storage Area Network (SAN), file system, operating system, and application
problems before they become full-scale outages. None of us wants these errors to jeopardize our
ability to failover to our disaster recovery site.

Your company may be deploying physical standby and/or logical standby databases.
Depending on the type of standby database being implemented, your monitoring objectives
will vary. Even though physical and logical standby databases share common elements to be
monitored, such as the alert log file, archive log destination, and archive log history, monitoring
a logical standby database is significantly different from doing so on a physical standby database.

P

Chapter 7: Monitoring Data Guard Implementations 259

In this chapter, we will share our expertise in how to monitor both the logical and physical
standby databases effectively.

Mining the Alert Log File (PS+LS)
Let’s start with monitoring the alert log file. Whether you are deploying a logical standby database or
a physical standby database, Data Guard monitoring begins by scrutinizing the alert log file, which
is your first line of defense against identifying and resolving Data Guard issues. An alert log
monitoring script should focus on mining for Data Guard–related ORA error messages, since most
of the errors associated with Data Guard are visible in the database alert log. As of Oracle Database
10g Release 2, many of the usual Data Guard messages have been removed from the alert log. This
will not affect our code examples in this book but if you have your own scripts that look for errors
that are no longer there, you can set LOG_ARCHIVE_TRACE=1 on the primary and the standby
databases and most of them will be reinstated.

For specific details of Data Guard error(s), you may need to examine the trace files to find the
root cause. In this chapter, we provide an alert log monitoring script called alert_log_monitor.ksh.

NOTE
You can review major components of the code in this section or
download the entire source code from this book’s web site, www
.dataguardbook.com, or from Oracle Press’s download web site: www
.oraclepressbooks.com.

The alert log monitoring script is designed to read the oratab file in either the /var/opt/oracle
directory in the Sun Solaris operating system or in the /etc directory in all other flavors of UNIX.
The script checks to see if the auto-startup flag in /etc/oratab is set to Y. If the flag is set to Y,
the alert log monitoring script will perform a diff command on the alert log and compare it to the
previous diff command output file. If additional ORA errors are encountered, the script will send
an alert to the DBA.

When an ORA error is encountered, DBAs will be notified of the issue so that they can examine
the root cause of the ORA error. The alert log monitoring shell script has an $IGNORELIST variable
that can be used to strip out certain ORA messages before deciphering the alert condition and
generating an alert. You can strategically input one or more ORA error codes in the $IGNORELIST
concatenated with pipes.

At times, you’ll probably not want to be notified of the errors generated by the application
queries. Or you may experience sporadic ORA-00600 messages in the alert log file. For example,
you may have already logged a technical assistance request (iTAR) with Oracle Support and have
identified a corrective action plan, but you do not want to receive alerts for ORA-00600 error
messages until the issue is resolved with Oracle Support.

PS and LS
We have labeled the paragraph headings with PS (physical standby) and/or LS (logical standby)
to let you know the standby database type for which the section applies. A section may be
specific to a physical standby database or to a logical standby database, or to both.

www.dataguardbook.com
www.dataguardbook.com
www.oraclepressbooks.com.
www.oraclepressbooks.com.

260 Oracle Data Guard 11g Handbook Chapter 7: Monitoring Data Guard Implementations 261

The alert log monitor script will suppress the ORA error number messages specified in the
$IGNORELIST variable. All the scripts offered in this chapter source (or execute) a file called
.ORACLE_BASE in the Oracle user’s $HOME directory. The .ORACLE_BASE file defines basic
UNIX environment variables such as ORACLE_BASE, PATH, and SH:

export BASE_DIR=/apps/oracle
export ORACLE_BASE=/apps/oracle
export PATH=/usr/local/bin:/usr/bin:/usr/sbin:$PATH
export SH=$ORACLE_BASE/general/sh

After you source the .ORACLE_BASE file, you can set additional parameters relevant for the
alert log monitoring script such as the oratab file location. Here is the content of the alert_log_
monitor.ksh script for your perusal:

#!/usr/bin/ksh

INITIAL SETUP

. $HOME/.ORACLE_BASE
[-f /etc/oratab] && export ORATAB=/etc/oratab || export
ORATAB=/var/opt/oracle/oratab
echo "oratab is: $ORATAB"

cat $ORATAB|grep -v \^# |grep :Y |cut -d: -f1 |sort |sed 's/ //g' |while read DB
do

export ORACLE_SID=$DB
export ORAENV_ASK=NO
. oraenv
export DECIMAL_VERSION=$(sqlplus -V |sed -e 's/[a-z]//g' -e 's/[A-Z]//g' -e 's/
//g' |sed 's/[*:=-]//g' |grep -v ^$)
export NUMERIC_VERSION=$(echo $DECIMAL_VERSION |sed -e 's/\.//g')
echo "The database version is: $DECIMAL_VERSION - $NUMERIC_VERSION"
echo "Checking Alert Log for: $DB"

export TMPDIR=/tmp
IGNORELIST="03113|19809|19804|01013|07445"
RUNDATE=`date "+%d/%m/%y at %H:%M:%S"`
LOGFILE=${SH}/${DB}_chkalerts.log
DIFFFILE=${TMPDIR}/${DB}_chkalert.diff
ALERT2FILE=${TMPDIR}/${DB}_chkalert2
export IGNORELIST RUNDATE LOGFILE DIFFFILE ALERT2FILE

[-f $DIFFFILE] && rm $DIFFFILE
echo "Execution starts on ${HOSTNAME} on $RUNDATE"

(

Chapter 7: Monitoring Data Guard Implementations 261

SETUP Oracle Environment and alias for every database in the $ORATAB file

ALERTLOG_10g=${BDUMPDIR}/alert_${DB}.log
ALERTLOG_11g=$ORACLE_BASE/diag/rdbms/$(echo $ORACLE_SID|tr A-Z a-
z)/$ORACLE_SID/trace/alert_$ORACLE_SID.log

if ["$NUMERIC_VERSION" -lt 11]; then
 BDUMPDIR=${ORACLE_BASE}/admin/${DB}/bdump
 [! -d $BDUMPDIR] && echo "BDUMP Dir: $BDUMP does not exist!!!!"
 echo "bdump: $BDUMPDIR"

 ALERTLOG=${BDUMPDIR}/alert_${DB}.log
else
 ALERTLOG=$ORACLE_BASE/diag/rdbms/$(echo $ORACLE_SID|tr A-Z a-
z)/$ORACLE_SID/trace/alert_$ORACLE_SID.log
fi

[! -f $ALERTLOG] && echo "ALert Log File $ALERTLOG does not exist!!!!"
echo "Alert Log is: $ALERTLOG"

if [! -r ${ALERTLOG}] ; then
 echo "$RUNDATE Could not read alert log ${ALERTLOG} for SID ${DB}"
 break
fi

touch ${SH}/chkalert1_${DB}
cp ${SH}/chkalert1_${DB} ${ALERT2FILE}

grep -n ORA- ${ALERTLOG} | egrep -v "${IGNORELIST}" > ${SH}/chkalert1_${DB}
set `wc -l ${SH}/chkalert1_${DB}`
COUNT1=$1
set `wc -l ${ALERT2FILE}`
COUNT2=$1

if [$COUNT1 -lt $COUNT2] ; then
 > ${ALERT2FILE}
 COUNT2=0
fi

if [$COUNT1 -gt $COUNT2] ; then
 diff ${SH}/chkalert1_${DB} ${ALERT2FILE}|grep "<" > ${DIFFFILE}

 FN=`echo $0 | sed s/\.*[/]//`
 export HOSTNAME=$(hostname)
 echo "Sending Alert - Diff file is: $DIFFFILE"
 echo "$SH/alert_notification.ksh $FN `hostname` $DB "" "Alert log errors for

262 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 7: Monitoring Data Guard Implementations 263

${DB}" ${DIFFFILE}"
 $SH/alert_notification.ksh $FN `hostname` $DB "" "Alert log errors for ${DB}"
${DIFFFILE}

fi

) >> ${LOGFILE} 2>&1

done

The alert log monitoring script checks the Oracle database version by means of the sqlplus
–V syntax. We chose this method because you cannot query the database for the version as the
database may not be online. As of Oracle Database 11g, the database version becomes pertinent
for alert log monitoring since the alert log file is located in the trace directory of the DIAG_DEST
location.

TIP
DBAs can create symbolic links from the $ORACLE_BASE/
admin/$ORACLE_SID for the bdump directory that points to
the trace directory of the new Oracle Database 11g diagnostic
repository. Here’s a simple example of creating a symbolic link from
the older location $ORACLE_BASE/admin/$ORACLE_SID directory
to the trace directory:

$ pwd
/apps/oracle/admin/RACQA
ln -s /apps/oracle/diag/rdbms/racqa/RACQA1/trace bdump

When the alert log monitor script detects new ORA error code(s) in the alert log, the alert_
notification.ksh script is invoked. This script reads another script that is a control file called
alert_notification.ctl, and based on the name of the invoking script, the recipients of the alert
condition are determined. You can specify any number of recipients in this file based on the script
name. Here’s an example of an alert_notification.ctl control file:

SCRIPT_NAME KEYWORD SEVERITY NOTIFICATION_LIST
======================= ======= ======== =========================
oraping.ksh DB CRITICAL authors@dataguardbook.com
ping_server.ksh OSE CRITICAL authors@dataguardbook.com
dgmon.ksh OSE WARNING authors@dataguardbook.com
dgmon_arch.ksh OSE WARNING authors@dataguardbook.com
archmon.ksh OSE MINOR authors@dataguardbook.com
 te@dataguardbook.com
dg_archivelog_monitor.ksh DB MINOR authors@dataguardbook.com
 te@dataguardbook.com
tbsp_free.ksh_PG DB MINOR authors@dataguardbook.com
tbspmon.ksh DB MINOR authors@dataguardbook.com
 te@dataguardbook.com
tbspmon.ksh_PG DB MINOR authors@dataguardbook.com
 te@dataguardbook.com

Chapter 7: Monitoring Data Guard Implementations 263

diskfree.ksh OSE MINOR authors@dataguardbook.com
 te@dataguardbook.com
[…]
*: OTH MINOR authors@dataguardbook.com
 te@dataguardbook.com
#*: OTH MINOR test@dataguardbook.com

If a script that matches the invoking script is not found, the alert notification is sent out to a
catch-all recipient. The catch-all recipient is configured as the last line of the control script
alert_notification.ctl file that is not commented out. The alert notification control file also labels
the severity of the alert with the possible severity categories: MINOR, WARNING, and CRITICAL.
Obviously, additional categories can be defined, but WARNING and CRITICAL severities happen
to be the same categories that are recognized by leading industry management consoles such as
HP OpenView and IBM Tivoli.

For larger companies that depend on network operation centers (NOCs) or surveillance teams,
the alert notification shell script also has API hooks to HP OpenView and IBM Tivoli. You can send
alert notifications directly to the monitoring consoles with the severity levels specified. The
alert_notification.ksh script escalates severities if DBAs do not clear the alert within a specified
number of alert intervals. By default, the alert notification script will raise up to five alerts. The goal
of the alert notification script is not to flood your e-mail inbox with database alerts but to send you
proactive information so that you can deal with potential outages. In this example, if the specific
alert is not corrected or cleared by the fourth alert, the alert will be escalated to the next higher
severity. For certain situations, the script has been modified to change the recipient list as well.

The alert log monitoring script detects the differences in the ORA error messages since the last
time it was executed and writes the alert to a file in the /tmp directory. The alert log monitoring
script invokes the alert notification script and passes all the necessary parameters to send the alert
with all the information required. Here’s a sample alert generated by the alert log monitoring script:

< 201: returning error ORA-16191
< 204:ORA-16191: Primary log shipping client not logged on standby
< 216: returning error ORA-16191
< 219:ORA-16191: Primary log shipping client not logged on standby
< 223:ORA-16055: FAL request rejected
[…]
< 520:ORA-01034: ORACLE not available
< 524:ORA-16055: FAL request rejected
< 551: returning error ORA-16191
< 554:ORA-16191: Primary log shipping client not logged on standby
< 566: returning error ORA-16191
< 569:ORA-16191: Primary log shipping client not logged on standby
[…]
< 641: returning error ORA-16191
< 644:ORA-16191: Primary log shipping client not logged on standby
< 897:ORA-03135: connection lost contact
< 1160:ORA-16055: FAL request rejected
< 1242:ORA-12541: TNS:no listener
< 4459:ORA-12537: TNS:connection closed
< 4491:ORA-01034: ORACLE not available
< 4500:ORA-03135: connection lost contact

264 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 7: Monitoring Data Guard Implementations 265

You can perceive from the alert notification that the alert is probably due to the primary
database not identifying the archive log on the standby site. The issue in this e-mail output seems
to be that either the database was shut down or the listener was not available. Once you receive
the alert from e-mail, pager, or cell phone, you can examine the alert log to view additional
information relative to the issue(s) causing the alert. By viewing the alert log, you can see detailed
messages that are not captured by the alert log monitor script, such as the Remote File Server
(RFS) messages:

RFS[17]: Possible network disconnect with primary database
Thu Aug 28 06:44:40 2008
Aborting archivelog file creation:
+FRA/matrix-DR0/archivelog/2008_08_28/thread_1_seq_11067.3622.663921821
If this a network disconnect, then this archivelog will be fetched again
by GAP resolution mechanism.
Thu Aug 28 06:44:40 2008

Gathering Statistical Information
from Archive Log History (PS+LS)
In general, archive logs should switch about every 30 minutes, but no less than every 15 minutes.
You should examine the V$LOG_HISTORY view to review the frequency of archive log switches.
If the archive log switches occur at an astronomical rate, you may need to consider increasing the
size of the online redo logs. Keep in mind that if you increase the size of the online redo logs, the
size of the standby redo logs needs to be increased as well. You must also remember that Oracle
recommends N + 1 standby redo logs on the standby database. The following formula can be
used to compute the number of standby redo logs for a RAC environment:

Total Number of Standby Redo Logs = (No. of ORL per RAC instance +1)
 * No. of Instances

Logical Standby Alert Log File Entries
In the logical standby database alert log file, you will see entries that start with the words
“LOGSTDBY status:” followed by the Oracle error message. You may choose to search
selectively for the words “LOGSTDBY status:” to scan directly for logical standby–related
error messages. Here are several examples of the logical standby errors in the alert log file:

LOGSTDBY status: ORA-16081: insufficient number of processes for APPLY
Wed Feb 11 23:27:13 2009
Errors in file /apps/oracle/admin/MATRIXRT/bdump/matrixrt_lsp0_3966.trc:
ORA-16081: insufficient number of processes for APPLY
LOGSTDBY status: ORA-16222: automatic Logical Standby retry of last
action
LOGSTDBY status: ORA-16111: log mining and apply setting up

Chapter 7: Monitoring Data Guard Implementations 265

For example, for a 3-node RAC that has 3 ORLs per instance:
Total Number of Standby Redo Logs: (3+1)*3 =12 Standby Redo Logs.

You can review the alert log historical information, such as number of archive logs generated,
in these increments:

 Past one hour ■

 Past one day ■

You should also capture related information such as the number of archive logs generated per
day and the size of online redo logs. Based on how many archive logs are generated on an hourly
basis, database architects can design a proper wide area network (WAN) infrastructure and
determine bandwidth requirements to satisfy RTO and RPO requirements. Archive log generation
during peak database usage will dictate the bandwidth needed for the WAN. The following query
can be used on the primary database to identify peak archive times for a specified day:

SELECT TO_CHAR(TRUNC(FIRST_TIME),'Mon DD') "DG Date",
TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'00',1,0)),'9999') "12AM",
TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'01',1,0)),'9999') "01AM",
TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'02',1,0)),'9999') "02AM",
TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'03',1,0)),'9999') "03AM",
TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'04',1,0)),'9999') "04AM",
TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'05',1,0)),'9999') "05AM",
TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'06',1,0)),'9999') "06AM",
TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'07',1,0)),'9999') "07AM",
TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'08',1,0)),'9999') "08AM",
TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'09',1,0)),'9999') "09AM",
TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'10',1,0)),'9999') "10AM",
TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'11',1,0)),'9999') "11AM",
TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'12',1,0)),'9999') "12PM",
TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'13',1,0)),'9999') "1PM",
TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'14',1,0)),'9999') "2PM",
TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'15',1,0)),'9999') "3PM",
TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'16',1,0)),'9999') "4PM",
TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'17',1,0)),'9999') "5PM",
TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'18',1,0)),'9999') "6PM",
TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'19',1,0)),'9999') "7PM",
TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'20',1,0)),'9999') "8PM",
TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'21',1,0)),'9999') "9PM",
TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'22',1,0)),'9999') "10PM",
TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'23',1,0)),'9999') "11PM"
FROM V$LOG_HISTORY
GROUP BY TRUNC(FIRST_TIME)
ORDER BY TRUNC(FIRST_TIME) DESC
/

The output of this query will span beyond the width of your UNIX terminal. You may want to
maximize your UNIX terminal to view the output in a friendly format. For display purposes,

266 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 7: Monitoring Data Guard Implementations 267

we will execute the SQL statement and truncate the output after 11 a.m. to display the number of
archive logs generated from 12 a.m. to 12 p.m.:

DG Date 12AM 01AM 02AM 03AM 04AM 05AM 06AM 07AM 08AM 09AM 10AM 11AM ...

------ ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- ...

Jul 17 0 0 0 0 10 25 39 0 0 0 0 0 ...

Jul 16 0 0 0 0 6 0 55 6 0 1 0 0 ...

Jul 15 0 0 0 0 7 0 43 5 20 8 11 0 ...

Jul 14 0 0 0 0 7 7 39 25 30 52 0 0 ...

Jul 13 0 0 0 0 6 1 0 0 0 0 0 0 ...

Jul 12 0 0 0 6 0 0 0 0 0 0 0 0 ...

Jul 11 0 0 0 0 6 0 45 20 0 2 1 0 ...

Jul 10 2 0 0 0 7 0 0 32 1 16 24 0 ...

Jul 09 0 0 0 30 33 32 32 31 1 25 13 1 ...

Jul 08 0 0 0 6 0 32 29 7 2 3 0 0 ...

Jul 07 0 0 0 6 0 0 42 0 0 0 0 0 ...

Jul 06 0 0 0 7 1 0 1 0 1 0 6 0 ...

Jul 05 0 0 0 12 0 0 0 0 4 6 0 0 ...

Jul 04 0 0 0 12 0 0 0 32 13 7 0 0 ...

Jul 03 0 0 0 14 3 31 33 0 0 8 0 0 ...

Jul 02 1 0 0 12 0 0 46 0 0 24 0 0 ...

Jul 01 0 0 0 13 1 0 0 0 0 6 39 8 ...

Jun 30 0 0 0 12 0 0 57 12 12 18 7 0 ...

When you run the script, the output will display every hour of the day and the number of
archive logs generated per hour. Let’s review some interesting statistics from this output. On July
9, 30-plus archive logs were generated from 3 a.m. to 7 a.m. Additionally, you will notice that on
June 30 and July 16, 55-plus archive logs were generated at 6 a.m. You can use these numbers to
determine your bandwidth requirements to satisfy your RPO and RTO.

NOTE
The ARCHIVE_LAG_TARGET parameter forces a log switch after a
specified threshold set in seconds. This initialization parameter will
influence this report since it influences redo log switches even during
low or no activity on the database. By default, ARCHIVE_LAG_TARGET
is set to 0, indicating that the primary database does not participate in
a time-based redo switch. The recommended setting for this parameter
is 1800, which is equivalent to 30 minutes, indicating that the primary
must switch online redo log files every 30 minutes at a minimum. Be
aware that a low value can cause performance degradations.

Detecting Archive Log Gaps (PS+LS)
For one reason or another, you may encounter gaps in archive log sequences on the standby database.
Gap sequences typically occur as a result of a network outage. Archive gaps occur when an archive
log is generated on the primary database but not received at the standby site. The primary database
pings the standby database every minute to detect archive log gaps. Archive log gaps should
be monitored to make sure that a gap does not exceed a large number of archive logs or for an
extended period of time. Most archive log gaps are resolved by the ping ARCH process or by

Chapter 7: Monitoring Data Guard Implementations 267

the Fetch Archive Log (FAL) process; typically, DBA intervention is not required. In the event of an
extended outage or multiple gap sequences, manual intervention may be required to copy or
restore the archive logs from the primary database to the standby database.

Archive log gaps can be monitored by examining the low and high sequence numbers in the
V$ARCHIVE_GAP view, as shown here:

SELECT THREAD#, LOW_SEQUENCE#, HIGH_SEQUENCE#
FROM V$ARCHIVE_GAP;

By reviewing the THREAD# column, you can detect missing sequences at the Real Application
Clusters (RAC) instance level.

If you find that Data Guard cannot resolve a gap automatically, it is probably because a required
archive log file no longer resides on disk at the primary. The following script, dg_gap_detect.ksh,
not only monitors the archive log gap on the standby database, but the gaps are correlated to the
archive log names on the primary database that need to be copied or restored to the standby site:

File Name: dg_gap_detect.ksh
export DR_DB=DEV_STDBY
export GAPFILE=${DR_DB}_gap.log

[-f $GAPFILE] && rm $GAPFILE

echo "Gaps in DR DB: $DR_DB"
echo "set head off ver off pages 0 feed off lines 122
SELECT * FROM V\$ARCHIVE_GAP;" |sqlplus -s "sys/${SYSPASSWD}@${DR_DB} as sysdba" >
$GAPFILE

Print the contents of the GAPFILE
cat $GAPFILE

cat $GAPFILE |while read THREAD LOW HIGH
do
echo "Reporting Archivelogs that need to be manually shipped"
echo "set head off ver off pages 0 feed off lines 222
select name
from v\$archived_log
where thread#=${THREAD}
and dest_id=1
and sequence# between ${LOW} and ${HIGH};" |sqlplus -s / as sysdba
done

The following example shows that a gap exists on THREAD #1, and archive log sequences 87
and 88 need to be copied or restored from the primary to the standby database server:

$./dg_gap_detect.ksh
Gaps in DR DB: DEV_STDBY
 1 87 88
Reporting Archivelogs that need to be manually shipped
/u04/oradata/DEV/recovery_area/arch_1_87_656445787.log
/u04/oradata/DEV/recovery_area/arch_1_88_656445787.log

268 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 7: Monitoring Data Guard Implementations 269

Now you can manually scp or sftp the archive logs to the physical standby database server
if they exist on the primary server (or restore them from a backup) and register the archive logs.
For detailed steps on how to troubleshoot archive log gaps, refer to Chapter 13.

Identifying Delays in Redo Transport (PS)
Delays in redo transport can be monitored by comparing the highest sequence numbers of both
primary and physical standby databases. If the maximum sequence number deviates by a specified
number of archive logs, you can send an alert indicating that the standby Data Guard is falling
behind. To view the highest sequence numbers, you can query the V$ARCHIVED_LOG view:

SELECT MAX(SEQUENCE#), THREAD#
FROM V$ARCHIVED_LOG GROUP BY THREAD#;

We have provided a script called dg_archivelog_monitor.ksh to detect delays in redo transport
(even for a RAC environment) and alert DBAs in conditions where redo transport exceeds a
specified threshold. The dg_archivelog_monitor.ksh script accepts three parameters (in the order
specified):

 1. The primary database name

 2. The Transparent Network Substrate (TNS) alias to the physical standby database

 3. The archive log threshold specified in numeric format

Here’s an example of usage for this script:

dg_archivelog_monitor.ksh MATRIX MATRIX_DR0 25

This particular example specifies that you want to be alerted if the number of archive logs on
the standby site falls behind by 25 or more archive logs. Here’s a sample e-mail produced from
the dg_alertlog_monitor.ksh script:

Subject: :OTH:MINOR:rac05:MATRIX:MATRIX_DR0:Primary: and DG:
Archive Logs are not in sync on 012109:1500 - Alert#: 2

Primary MATRIX and Data Guard MATRIX_DR0 ArchiveLogs are not in sync

There is a gap in Archive Log Sequence of: 27 for Thread#1 and 10 for
Thread#2
thread1 37918
thread1 37945
thread2 30689
thread2 30699
---#
- Here's a look at the status on the DR Site:
---#

NAME
CREATOR T# S# APPL FIRST_CHANGE# NEXT_CHANGE#
--
------ ------- --- ------- ---- ------------- ------------

Chapter 7: Monitoring Data Guard Implementations 269

+FRA/matrix_dr0/archivelog/2009_01_20/thread_1_seq_37881.5092.676
652477 ARCH 1 37881 YES 3.273329E+12 3.273329E+12
+FRA/matrix_dr0/archivelog/2009_01_20/thread_1_seq_37882.4980.676
652965 ARCH 1 37882 YES 3.273329E+12 3.273329E+12
+FRA/matrix_dr0/archivelog/2009_01_20/thread_1_seq_37883.4558.676
653449 ARCH 1 37883 YES 3.273329E+12 3.273329E+12
[…]

In this particular example, an alert notification was sent since the deviance of 27 archive logs for the
sequence numbers exceeded the specified threshold of 25 archive logs. Notice that for Thread #1,
the current sequence number is 37945, while the current sequence number on the physical standby
is 37918. The dg_archivelog_monitor.ksh script monitors each thread of the RAC environment on
the physical standby database to compare the maximum sequence number (of each thread) of the
primary thread with the corresponding standby thread.

When you detect a redo transport delay, execute the following query on the primary database
to identify archive logs that have not made it to the standby destination:

SELECT L.THREAD#, L.SEQUENCE#
FROM
 (SELECT THREAD#, SEQUENCE#
 FROM V$ARCHIVED_LOG
 WHERE DEST_ID=1) L
WHERE L.SEQUENCE# NOT IN
 (SELECT SEQUENCE#
 FROM V$ARCHIVED_LOG
 WHERE DEST_ID=2
 AND THREAD# = L.THREAD#);

Monitoring Archive Log Destinations (PS+LS)
If the archive log destination happens to be in an ASM diskgroup, DBAs have to monitor the
ASM diskgroup for available space. You can compute the percentage of free information by
dividing the value of the FREE_MB column with the value in the TOTAL_MB column of the
V$ASM_DISKGROUP view. The shell script, dgmon_arch.ksh, computes the percentage of free
space and sends a notification to the DBAs based on a given threshold. This script accepts
three parameters: the alert notification threshold, the database name, and the diskgroup to which
the archive logs are written. If the ASM diskgroup used space threshold exceeds the notification
threshold, or if an ORA-00257 error is encountered, the DBAs will be notified according to the
escalation procedures.

#!/bin/ksh
Filename: dgmon_arch.ksh
export PAGE_THRESHOLD=$1
export DB=$2
export ARCH_DG=$3

[…] Deleted Portion to reduce page count

270 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 7: Monitoring Data Guard Implementations 271

function exam_dg_threshold
{
export PAGE_THRESHOLD=$1

sqlplus -s $CONNECT_STRING 2>&1 <<__ENDSQL
 whenever sqlerror exit sql.sqlcode;

 set pages 60
 set lines 90
 set verif off
 set trims on

 col pct_free for 999.9 hea '%_FREE'
 define ORA_SID='$DB'
 define PAGE_THRESHOLD=$PAGE_THRESHOLD
 define LOG_DIR='$LOGDIR'

 spool $LOGFILE

 select name DG_NAME, total_mb/1024 GB, round(free_mb/total_mb,2)*100 pct_free
 from v\$asm_diskgroup
 where round(free_mb/total_mb,2)*100 < &PAGE_THRESHOLD
 and name=upper('$ARCH_DG');
 spool off

 set pages 14
 set lines 80
 set verif on
__ENDSQL

grep "DG_NAME" $LOGFILE
export RC1=$?

grep ORA-00257 $LOGFILE
export RC2=$?

if [["$RC1" -eq 0 || "$RC2" -eq 0]]; then
 ((EMAIL_COUNTER = ${COUNTER} + 1))

 # ---
 # Set ALERT_COUNTER to be passed into alert_notification.ksh
 # ---
 export ALERT_COUNTER=$EMAIL_COUNTER

 print "Sending dgmon Archive Destination alert ... $ALERT_COUNTER for $DB"

 $SH/alert_notification.ksh ${FN} `hostname` $DB "" "ARCH: Alert#: $EMAIL_COUNTER
for Archive Destination Disk Group Free < $PAGE_THRESHOLD percent!" $LOGFILE

 # Increment the counter by one and append it to the LOGFILE filename
 ((COUNTER = ${COUNTER} + 1))

Chapter 7: Monitoring Data Guard Implementations 271

 echo $COUNTER
 mv ${LOGFILE} ${LOGFILE}.${COUNTER}

fi
}

#+++
MAIN LOGIC
#+++

 #--
 # Count the number of error files (LOGFILE)
 # in the /tmp directory
 #--
 if [-f ${LOGFILE}.*]; then
 export COUNTER=$(ls ${LOGFILE}.* |wc -l)
 else
 COUNTER=0
 fi

#show_debug_parameters;

#--
If # of error files on disk is greater than
$MAX_NUMBER_ALERTS, then skip to the next database
#--
if ["${COUNTER}" -ge "$MAX_NUMBER_ALERTS"]; then
 echo "Exceeded Max number of Alerts: $MAX_NUMBER_ALERTS"
else
 exam_dg_threshold $PAGE_THRESHOLD;
fi

This shell script addresses monitoring of the archive destination if the archive destination
happens to be written to an ASM diskgroup. Feel free to download its counterpart, called
archmon.ksh, to monitor the archive log destination if your archive logs are written to the file
system from Oracle Press’s script repository or the Data Guard book web site.

Examining Apply Rate and Active Rate (PS)
The recovery performance can easily be monitored in real time by querying the V$RECOVERY_
PROGRESS view as shown here:

SELECT TO_CHAR(START_TIME, 'DD-MON-RR HH24:MI:SS') start_time,
 ITEM, SOFAR
FROM V$RECOVERY_PROGRESS
WHERE ITEM IN ('Active Apply Rate',
 'Average Apply Rate',
 'Redo Applied')
/

272 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 7: Monitoring Data Guard Implementations 273

The output of this query can be used to determine how fast the standby database is able to
keep up with the primary database. One thing to consider while diagnosing the performance
numbers is that the average apply rate includes the think time for waiting for the redo to arrive.
The active apply rate is the calculation of redo applied over time based on a moving average
during the last 3 minutes. Here’s a sample output of V$RECOVERY_PROGRESS:

START_TIME ITEM SOFAR
------------------------ -------------------------------- ----------
30-JUN-08 23:20:14 Active Apply Rate 26953
30-JUN-08 23:20:14 Average Apply Rate 742
30-JUN-08 23:20:14 Redo Applied 843227

The Redo Applied value is measured in megabytes while the Active Apply Rate and Average Apply
Rate are calculated in KB/sec. For this example, if you divide the output of 26953/1024 to
determine the MB/sec, you derive an active apply rate of 26.12 MB/sec.

Reviewing Transport and Apply Lag (PS+LS)
The V$DATAGUARD_STATS view provides information on how far behind the redo transport and
redo apply processes are. Here’s an example of how to determine the delay in redo transport and
apply processes on the physical standby:

COL NAME FOR A13
COL VALUE FOR A20
COL UNIT FOR A30
SET LINES 122
SELECT NAME, VALUE, UNIT, TIME_COMPUTED
FROM V$DATAGUARD_STATS
WHERE NAME IN ('transport lag', 'apply lag');

NAME VALUE UNIT TIME_COMPUTED
-------------- ------------- ------------------------------ --------------------
apply lag +00 00:33:41 day(2) to second(0) interval 11-JUL-2008 11:20:13
transport lag +00 00:01:18 day(2) to second(0) interval 11-JUL-2008 11:20:13

The transport lag value of 00:01:18 indicates that shipment of redo from the primary to the
physical standby is behind by 1 minute, 18 seconds. In the event of a catastrophe on the primary,
you stand to lose 1 minute, 18 seconds’ worth of data if you lose the primary site or have to wait
1 minute, 18 seconds if you want to perform a switchover. Notice the apply lag value of 33:41
indicating that the apply lag is more than 33 minutes behind. The apply lag value reflects the
30-minute DELAY attribute in the ARCHIVE_LOG_DEST_n parameter.

Do You Know Where Your Standby Database Is?
Monitoring where your standby database is in relation to the redo generated on your
primary database is paramount to knowing whether you are meeting your RPO at any
given moment.

Chapter 7: Monitoring Data Guard Implementations 273

Determining the Current Time on the Standby Database (PS)
Another method for measuring how far behind your physical standby database is from your
primary database is to convert the current SCN to timestamp with the SCN_TO_TIMESTAMP
function. The current timestamp of the physical standby can be compared to the timestamp of the
primary database to find the lag. You cannot convert the CURRENT_SCN to a timestamp on the
physical standby. Attempting to convert the CURRENT_SCN on the physical standby will produce
an ORA-00904 error:

SELECT SCN_TO_TIMESTAMP(CURRENT_SCN) FROM V$DATABASE;
 *
ERROR at line 1:
ORA-00904: "SCN_TO_TIMESTAMP": invalid identifier

The CURRENT_SCN column of the V$DATABASE view of a physical standby database must be
converted to a timestamp value on the primary database. Once the timestamp values of CURRENT_
SCN of both the primary and physical standby databases are available, the delay information of the
physical standby relative to the primary database can be computed accurately. Note that the
CURRENT_SCN column of an Active Data Guard standby database is actually the query SCN, the
most current SCN that queries can access.

The shell script dg_time_lag.ksh connects to the physical standby database, selects the
CURRENT_SCN value from V$DATABASE, and stores the output in a log file. The content of the
dg_time_lag.ksh script is shown here:

export CONF=$PWD/dg.conf
[! -f "$CONF"] && { echo "Configuration file: $CONF is missing."; echo
"Exiting."; exit 1; }
. $CONF

export SYSPASSWD=$(cat .syspasswd)
export DR_LOG=db_db.log
export LOG=db.log

[-f $DR_LOG] && rm $DR_LOG
[-f $LOG] && rm $LOG

echo "Printing Standby Current SCN and Primary Current SCN"
echo "set echo off ver off feed off head off pages 0;
select current_scn from v\$database;" |
 sqlplus -s "sys/${SYSPASSWD}@${STANDBY_HOST}:${STANDBY_PORT}/${STANDBY_DB} as
sysdba" |
 tee $DR_LOG

echo "set echo off ver off feed off head off pages 0;
select current_scn from v\$database;" |
 sqlplus -s "sys/${SYSPASSWD}@${PRIMARY_HOST}:${PRIMARY_PORT}/${PRIMARY_DB} as
sysdba" |
 tee $LOG

echo ""

274 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 7: Monitoring Data Guard Implementations 275

export DR_SCN=$(cat $DR_LOG |sed -e 's/ //g')
export SCN=$(cat $LOG |sed -e 's/ //g')

Convert SCN to timestamp on the Primary DB
echo "Printing Standby Current SCN To Timestamp and Primary Current SCN To
Timestamp"
echo "set echo off ver off feed off head off pages 0;
select scn_to_timestamp(current_scn) from v\$database;" |
 sqlplus -s "sys/${SYSPASSWD}@${PRIMARY_HOST}:${PRIMARY_PORT}/${PRIMARY_DB} as
sysdba"

echo "set echo off ver off feed off head off pages 0;
select scn_to_timestamp(${DR_SCN}) from dual;" |
 sqlplus -s "sys/${SYSPASSWD}@${PRIMARY_HOST}:${PRIMARY_PORT}/${PRIMARY_DB} as
sysdba"

echo "set echo off ver off feed off
 col Primary for a32
 col DR for a32
 col wks for 999
 col days for 9999
select scn_to_timestamp(${SCN}) Primary
 ,scn_to_timestamp(${DR_SCN}) DR
 ,trunc(to_number(substr((scn_to_timestamp(${SCN})-
scn_to_timestamp(${DR_SCN})),1,instr(scn_to_timestamp(${SCN})-
scn_to_timestamp(${DR_SCN}),' ')))/7) Wks
 ,trunc(to_number(substr((scn_to_timestamp(${SCN})-
scn_to_timestamp(${DR_SCN})),1,instr(scn_to_timestamp(${SCN})-
scn_to_timestamp(${DR_SCN}),' ')))) Days
 ,substr((scn_to_timestamp(${SCN})-
scn_to_timestamp(${DR_SCN})),instr((scn_to_timestamp(${SCN})-
scn_to_timestamp(${DR_SCN})),' ')+1,2) Hrs
 ,substr((scn_to_timestamp(${SCN})-
scn_to_timestamp(${DR_SCN})),instr((scn_to_timestamp(${SCN})-
scn_to_timestamp(${DR_SCN})),' ')+4,2) Mins
 ,substr((scn_to_timestamp(${SCN})-
scn_to_timestamp(${DR_SCN})),instr((scn_to_timestamp(${SCN})-
scn_to_timestamp(${DR_SCN})),' ')+7,2) Secs
from dual;" |
 sqlplus -s "sys/${SYSPASSWD}@${PRIMARY_HOST}:${PRIMARY_PORT}/${PRIMARY_DB} as
sysdba"

Let’s execute the dg_time_lag.ksh script on a Data Guard environment where the archive log
gap has gone unresolved for an extended period of time. Executing dg_time_lag.ksh results in the
following output:

 822999
 1000327

Printing Standby Current SCN To Timestamp and Primary Current SCN To Timestamp
 Standby Current SCN: 822999 Time Stamp: 15-JUL-08 08.28.34.000000000 PM
 Primary Current SCN: 1000327 Time Stamp: 08-JUL-08 12.47.49.000000000 AM

Chapter 7: Monitoring Data Guard Implementations 275

[SC: Suggested Output]PRIMARY DR
WKS DAYS HR MI SE
------------------------------- ------------------------------- ---- ---- -- -- --
15-JUL-08 08.28.34.000000000 PM 08-JUL-08 12.47.49.000000000 AM 1 7 19 40 45

The output confirms that the physical standby is significantly behind the primary database. In
terms of SCN comparisons, the output indicates that the physical database is behind by about
1 week, 7 days, 19 hours, 41 minutes.

Reporting the Status of Managed Recovery Process (PS)
The V$MANAGED_STANDBY view reports the progress of the standby database in managed
recovery mode. This view provides information regarding current activities for Redo Apply and
Redo Transport Services. A separate set of views can be used to monitor SQL Apply. Processes that
you repeatedly notice in the V$MANAGED_STANDBY view relative to the managed recovery
process (MRP) include Media Recovery Process (MRP0), archiver process (ARCH), log writer
(LGWR), Remote File Server (RFS), and LogWriter Network Service (LNS). You can execute the
following SQL query to view the progress of each of the processes:

SET LINES 132
SET PAGESIZE 9999
COL CLIENT_PID FORMAT A12
 1 SELECT PID, PROCESS, STATUS, CLIENT_PROCESS,
 2 CLIENT_PID, THREAD#, SEQUENCE# SEQ#,
 3 BLOCK#, BLOCKS
 4* FROM V$MANAGED_STANDBY
SQL> /

Here’s a sample output of the V$MANAGED_STANDBY view where the MPR0 (the detached
managed recovery process) is applying archive logs:

PID PROCESS STATUS CLIENT_P CLIENT THREAD# SEQ# BLOCK# BLOCKS
 PID
----- --------- ------------ -------- ------ ------- ---- ------ ------
 5489 ARCH CONNECTED ARCH 5489 0 0 0 0
 5491 ARCH CONNECTED ARCH 5491 0 0 0 0
 5493 ARCH CONNECTED ARCH 5493 0 0 0 0
 5495 ARCH CONNECTED ARCH 5495 0 0 0 0
 5660 RFS IDLE UNKNOWN 20691 0 0 0 0
23054 MRP0 APPLYING_LOG N/A N/A 1 89 18423 24430
23064 RFS IDLE UNKNOWN 20687 0 0 0 0
23336 RFS IDLE UNKNOWN 20693 0 0 0 0

In this case, Redo Apply is in the process of applying the archive logs from a recent gap. The
RFS process receives redo data from the primary database and writes it to the standby redo logs.
The output of the query reveals that the Redo Apply process is currently applying archive log
sequence 89 for thread 1. The last block that Redo Apply applied was block number 18423.
A total of 24,430 512-byte blocks need to be applied. Lastly, the other processes, ARCH and RFS,

276 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 7: Monitoring Data Guard Implementations 277

are idle, and you can see that no current connection exists with the primary for the current
redo stream.

Data Guard Menu Utility
The Data Guard monitoring scripts, DG Menu, are an interactive toolkit designed to help DBAs
and architects assess the Data Guard configuration quickly and seamlessly. The purpose of DG
Menu is to provide detailed reports so that the Data Guard implementation can be bulletproof.
You can leverage the DG Menu to check your existing configuration for requirement compliance
or to troubleshoot a configuration with issues.

TIP
You can download the Data Guard monitoring scripts (DG Menu)
from Oracle Press’s web site or from this book’s web site at
www.dataguardbook.com. The scripts are provided in a single
archived file in a UNIX TAR format. You can download the dg.tar file
and extract it using the tar –xvf dg.tar command. As long as you
have access to a korn or bourne shell and SQL*Plus, you can execute
DG Menu. All the monitoring scripts are easily accessible from the
initial menu screen.

The DG Menu utility uses a configuration file called dg.conf that defines the topology of the
Data Guard environment. This configuration file can be modified to suit your needs. Here’s a
sample dg.conf file:

PRIMARY_HOST=rac3a
PRIMARY_DB=DEV
PRIMARY_PORT=1523
STANDBY_HOST=rac4a
STANDBY_DB=DEVDR
STANDBY_PORT=1523

FLASH_DG=/u04/oradata/$ORACLE_SID/recovery_area
DATA_DG=/u02/oradata
DATA_DG2=/u03/oradata
PRIMARY_DOMAIN=dbaexpert.com
PRIMARY_VIP=rac3a-vip
DR_VIP=rac4a-vip
Valid entries for FS=FS for file system or ASM for automated storage management
FS=FS
FS=FS [SC: suggest to spell FILE_SYSTEM for clarity]

In the dg.conf file, you define the primary database server (PRIMARY_HOST), the primary
database (PRIMARY_DB), and the database listener port (PRIMARY_PORT). Furthermore, you define
the standby database server (STANDBY_HOST), the standby database (STANDBY_DB), and the standby
database listener port (STANDBY_PORT).

www.dataguardbook.com.

Chapter 7: Monitoring Data Guard Implementations 277

Optionally, you can define the SYS password in the .syspasswd file. If the .syspasswd file does
not exist, you will be prompted to enter the SYS password. Since this is a client application,
you should provide the SYS password even to diagnose the primary database configuration. For
security considerations, the .syspasswd file is an optional file that is provided at your discretion. It
is a simple matter of convenience to include an entry for the .syspasswd file.

To run DG Menu, only an Oracle client with SQL*Plus is required. Even the instant client with
SQL*Plus is adequate to launch DG Menu. DG Menu does not use a TNSNAMES.ORA file.

NOTE
If you want to execute DG Menu from the Microsoft Windows
environment, you can download and install CYGWIN (www.cygwin
.org) or UNIX Services for Windows from Microsoft’s web site.

Reviewing the Current Data Guard Environment
The DG Menu toolkit includes shell scripts that execute SQL or that run behind the scenes to
diagnose a Data Guard configuration. Each of the shell scripts executes SQL*Plus to gather
pertinent information from the database. More than half the scripts have been converted to PL/SQL
for friendly output purposes. The shell scripts leverage the SYS account to log in to the primary and
standby databases. The optional password file, .syspasswd, can be updated to automate the login
to the primary and standby databases.

NOTE
The supplied DG Menu does not issue any Data Definition Language
(DDL) on the database. Only SELECT statements are issued
against relevant V$ and DBA_ views to extract Data Guard–related
information.

The SYSDBA role is required simply because the SQL*Plus connection must be established to
the physical standby database, which is in mounted mode. The DG Menu checks the following
components and more:

 The existence of a password file is checked in both the primary and standby databases. ■

 SYSDBA role is granted to the SYS system account. ■

 Forced logging is enforced on the primary database. ■

 Unrecoverable activities on the primary database are closely scrutinized. ■

 The primary database runs in archive log mode. ■

 The existence of standby redo logs is checked on both the primary and standby ■
databases.

 The existence of TNSNAMES.ORA file entries is checked for both the primary and standby ■
databases.

 Standby file management is set to AUTO. ■

www.cygwin.org
www.cygwin.org

278 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 7: Monitoring Data Guard Implementations 279

You can invoke the DG Menu by typing ./dg in the directory where you have extracted the
dg.tar archive. Each of the menu items executes a submenu command via SQL*Plus or another
shell script. Here’s an example of the DG Menu UI:

--- #

Data Guard Check List - DBA.local

0. Review database information and status #
1. Check for password file #
2. Check for forced logging and unrecoverable activities #
--- #
3. Check for archive log mode #
4. Check for standby redo logs #
5. Check current SCN on primary and standby databases #
6. Check archive log destinations #
--- #
7. Check Data Guard Status View for errors and fatal messages #
8. Check Managed Recovery Process Status #
9. Check for missing archive logs #
10. Check archive log gaps on the standby database #
11. Check average apply rate / active apply rate #
12. Check transport / apply lag #
13. How far behind is my Data Guard in terms of time? #

--- #
20. Launch the Logical Standby Data Guard Submenu #
--- #
21. Generate init.ora entries for primary database #
22. Generate init.ora entries for standby database #
23. Generate tnsnames.ora entries for primary and standby databases #
24. Generate SQL syntax to create standby redo logs #

--- #
30. Generate syntax to duplicate standby database from active database #

x. Exit #

NOTE
In the remainder of this chapter, we will discuss individual checklist
menu items of the DG Menu starting with checking the password file.
Notice that option 20 will invoke a logical standby DG submenu. The
logical standby DG submenu can save you hours of troubleshooting-
related efforts.

Checking the Password File (PS+LS)
If DG Menu is launched from the database server, it checks for the existence of the password file in
the $ORACLE_HOME/dbs directory. If DG Menu is launched from the client, it will not check
for the password file. DG Menu compares the local hostname to the PRIMARY_HOST and the

Chapter 7: Monitoring Data Guard Implementations 279

STANDBY_HOST defined in the dg.conf file. If the local hostname matches either the PRIMARY_HOST
or the STANDBY_HOST, the orapw$ORACLE_SID file will be expected in the $ORACLE_HOME/dbs
directory as specified here:

ls -l ${ORACLE_HOME}/dbs/orapw${ORACLE_SID}
rc=$?
if ["$rc" -ne 0]; then
 echo "Password file for your database: $ORACLE_SID does not exist!"
 echo "Please create a password file using the orapwd utility"
[…]

Not only does Data Guard require a password file, but it also expects SYS to be granted the
SYSDBA role. The V$PWFILE_USERS data dictionary view provides detailed information on
database accounts that have been granted the SYSDBA and/or SYSOPER roles:

SELECT * FROM V$PWFILE_USERS;

Checking for Nologging Activities (PS+LS)
As discussed in Chapter 3, the impact of allowing nologging operations on your primary database
can be immense when you have to failover to your standby database. Although forced logging
should be mandated at the database level, your performance requirements may dictate that you
use forced logging at the tablespace level instead. If the database forced logging is enabled, all
nologging activities will be logged. Users who issue NOLOGGING transactions may think that they
have completed successful NOLOGGING transactions, but behind the scenes, Oracle logs the
transaction. Forced logging at the database level trumps all other levels of NOLOGGING settings or
transactions.

We strongly recommend that you set up forced logging at the database level. If you do not do
so, you can set the forced logging option at the tablespace level by using the FORCE LOGGING
clause. By default, all tablespaces are created with the logging option enabled but with forced
logging disabled. All newly created tablespaces should always be created with the forced logging
feature if database logging is not forced. NOLOGGING activities are speculated to increase
performance throughput, so users often prefer to trade the benefits of performance for risk of
corruption on the standby database.

DBAs should be cognitive of tablespaces that allow NOLOGGING activities. Just as important,
DBAs should check for NOLOGGING activities at the datafile level. The script shown here checks
for tablespaces in NOLOGGING mode and datafiles with NOLOGGING activity such as SQL*Loader
or index rebuilds with the NOLOGGING option enabled:

set serveroutput on size 1000000
set feed off ver off pages 0 lines 2000 trims on
DECLARE
cursor c1 is
select file#, name, unrecoverable_change#,
 to_char(unrecoverable_time, 'DD-MON-RR HH24:MI:SS') unrecoverable_time
from v$datafile
where unrecoverable_time is not null;

cursor c2 is

280 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 7: Monitoring Data Guard Implementations 281

select tablespace_name, logging ,status
from dba_tablespaces
where logging='NOLOGGING'
and contents <> 'TEMPORARY';

BEGIN
dbms_output.put_line('Checking for datafiles with unrecoverable activities');
FOR r1 in c1 loop
 dbms_output.put_line('FOUND ... File Name: '|| r1.name||' - '||'Unrecoverable
Time: '|| r1.unrecoverable_time);
END LOOP;

dbms_output.put_line('Checking for tablespace(s) that are not being logged');
FOR r2 in c2 LOOP
 dbms_output.put_line('FOUND ... Tablespace Name: '|| r2.tablespace_name||' -
'||'Logging: '|| r2.logging);
END LOOP;

END;
/

Here’s a sample output with several datafiles with NOLOGGING activities:

Checking for forced logging at the database level
--- #
Executing dg_check_unrecoverable.sql on DB: DEV
--- #
Checking for datafiles with unrecoverable activities
FOUND ... File Name: /u04/oradata/Matrix_DR0/docs_i_01.dbf - Unrecoverable Time:
04-JUL-08 14:25:45
FOUND ... File Name: /u02/oradata/Matrix_DR0/kb_d_01.dbf - Unrecoverable Time:
04-JUL-08 14:27:39
FOUND ... File Name: /u04/oradata/Matrix_DR0/sox_i_01.dbf - Unrecoverable Time:
04-JUL-08 14:27:39
Checking for tablespace(s) that are not being logged
FOUND ... Tablespace Name: USERS - Logging: NOLOGGING

When checking for unrecoverable activities that can invalidate your standby database, you
need to note the date of the unrecoverable activity. If the date of the unrecoverable activity
occurred after the database restore of your standby database, you must recopy the datafile(s) in
question or perform an incremental backup on the primary database based on the SCN and apply
the incremental backup on the physical standby database. For detailed instructions on how to
perform an SCN-based incremental backup to apply on the standby database, refer to Chapter 13.

If you do not specify forced logging at the database level, you should carefully consider the
risk implications. If for some reason you choose to disable forced logging at the database level,
we strongly recommend forced logging at the tablespace level for all the tablespaces that are not
designated for the NOLOGGING activities, or you risk data corruption on the standby database. For
example, your company may drop and/or re-create materialized views on the OLTP database on
a nightly basis. In addition to the materialized view reinstantiation, you also need to re-create
all the indexes associated with the materialized view. At the same time, you discovered that by

Chapter 7: Monitoring Data Guard Implementations 281

adding the NOLOGGING option for creating the materialized views and indexes, you can save three
to four hours of processing time. In such situations, you may consider specifying one or two
tablespaces for the NOLOGGING activities and set forced logging for the remaining tablespaces in
the database. To set the tablespace at FORCE LOGGING mode, you can use the FORCE LOGGING
clause shown here:

1* CREATE TABLESPACE DATA_FORCE
2 DATAFILE '+DATA' SIZE 1M LOGGING FORCE LOGGING;

Tablespace created.

For demonstration purposes, we will create a tablespace with the NOLOGGING option for the
tablespace designated for unrecoverable activities:

1* CREATE TABLESPACE DATA_NOLOG
2 DATAFILE '+DG_DBA_DD501' SIZE 1M NOLOGGING;

Tablespace created.

You can see from the following SQL output that the FORCE_LOGGING column of the
DBA_TABLESPACES view indicates that forced logging is enabled for the DATA_FORCE
tablespace we just created. On the other hand, you can also see that the DATA_NOLOG tablespace
is set to NOLOGGING, which means that data in this tablespace will not be available after you open
the database in the standby database.

SQL> SELECT TABLESPACE_NAME, LOGGING, FORCE_LOGGING
 FROM DBA_TABLESPACES;
TABLESPACE_NAME LOGGING FOR
------------------------------ --------- ---
SYSTEM LOGGING NO
UNDOTBS1 LOGGING NO
SYSAUX LOGGING NO
TEMP NOLOGGING NO
USERS LOGGING NO
TOOLS LOGGING NO
EGG_WHITE_D LOGGING NO
DATA_FORCE LOGGING YES
DATA_NOLOG NOLOGGING NO

In addition to monitoring for NOLOGGING at the database and tablespace levels, you should also
monitor for NOLOGGING settings at the object level—objects that need to be monitored are tables
and indexes. Tables should always be kept in logging mode. Indexes should also be kept in logging
mode even though they can be rebuilt on the standby database after the database is opened. You
can issue the following query to determine all the tables that are currently in NOLOGGING mode:

 1 SELECT OWNER||'.'||TABLE_NAME, LOGGING FROM DBA_TABLES
 2 WHERE LOGGING ='NO'
 3 AND OWNER NOT IN ('SYS', 'SYSTEM', 'EXFSYS',
 'WMSYS', 'MDSYS', 'OLAPSYS', 'DBSNMP')
 4* ORDER BY OWNER, TABLE_NAME
SQL> /

282 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 7: Monitoring Data Guard Implementations 283

TABLE_NAME LOG
--- ---
RODBA.EDBA_NOROWS NO

To disable NOLOGGING at the table level, you can issue this command:

ALTER TABLE RODBA.EDBA_NOROWS LOGGING;

As mentioned earlier, you should also scrutinize the indexes for NOLOGGING settings. You can
use the following query to determine what indexes are configured for nologging activities:

SQL> SELECT OWNER||'.'||INDEX_NAME INDEX_NAME, LOGGING
 2 FROM DBA_INDEXES
 3 WHERE LOGGING ='NO'
 4 AND OWNER NOT IN ('SYS', 'SYSTEM', 'EXFSYS',
 5 'WMSYS', 'MDSYS', 'OLAPSYS', 'DBSNMP')
 6 /
INDEX_NAME LOG
--- ---
TSMSYS.SRSIDX NO

Although indexes can be rebuilt, and you may be tempted to disable logging at the index
level, you do not want to be in a situation where you are rebuilding the standby database after a
switchover/failover condition. Indexes on large tables can take several to many hours to rebuild.

Although we mentioned how you can check for NOLOGGING activities at the tablespace,
datafile, and even object levels, the best recommendation that we can make to you is to enable
forced logging at the database level. Enforcing database-level logging keeps everything simple.

Looking at Archivelog Mode and Destinations (PS+LS)
A required prerequisite to implement a physical or logical Data Guard standby is that the database
must be running in archive log mode. The DG Menu checks for archive log mode and archive log
destinations for errors. During the probe of archive log destinations, relevant information such as
archive log destination, archive log status, and error messages are revealed. Starting with Oracle
Database 11g, Oracle provides the redo compression feature for Data Guard. If your company
happens to use the new technology, you can confirm that compression of archive logs is enabled
during transmission when Data Guard is resolving a gap. The following script checks the two
views, V$ARCHIVE_DEST_STATUS and V$ARCHIVE_DEST, and provides pertinent information
related to archive destinations:

SET SERVEROUTPUT ON SIZE 1000000
SET LINES 132
COL ERROR FORMAT A32
COL DESTINATION FORMAT A35
SET VER OFF HEAD OFF FEED OFF PAGES 0

DECLARE
pad10 CHAR(10) := ' ';
CURSOR c1 is
select s.db_unique_name,
 s.database_mode,

Chapter 7: Monitoring Data Guard Implementations 283

 s.dest_id id, s.status stats,
 s.recovery_mode,
 s.protection_mode, s.standby_logfile_count,
 s.standby_logfile_active,
 s.archived_thread#, s.archived_seq#,
 s.applied_thread#, s.applied_seq#,
 d.status, d.destination, d.archiver,
 d.transmit_mode, d.affirm, d.async_blocks,
 d.net_timeout, d.delay_mins, d.reopen_secs,
 d.register, d.binding, d.compression, d.error err
from v$archive_dest_status s, v$archive_dest d
where d.dest_id=s.dest_id
and s.db_unique_name <> 'NONE'
and d.destination is not null;

BEGIN
dbms_output.put_line('---');
FOR r1 IN c1 LOOP
 dbms_output.put_line('Dest ID: '||r1.id||pad10||'Status: '||r1.stats);
 dbms_output.put_line('DB Name: '||r1.db_unique_name||pad10||'DB Mode:
'||r1.database_mode);
 dbms_output.put_line('Recovery Mode: '||r1.recovery_mode);
 dbms_output.put_line('Protection Mode: '||r1.protection_mode);
 dbms_output.put_line('SRL Count: '||r1.standby_logfile_count||pad10||'SRL
Active: '||r1.standby_logfile_active);
 dbms_output.put_line('Archived Thread#: '||r1.archived_
thread#||pad10||'Archived
Seq#: '||r1.archived_seq#);
 dbms_output.put_line('Applied Thread#: '||r1.applied_
thread#||pad10||'Applied
Seq#: '||r1.applied_seq#);

 dbms_output.put_line('Destination: '||r1.destination);
 dbms_output.put_line('Archiver: '||r1.archiver);
 dbms_output.put_line('Transmit Mode: '||r1.transmit_mode);
 dbms_output.put_line('Affirm: '||r1.affirm);
 dbms_output.put_line('Asynchronous Blocks: '||r1.async_blocks);
 dbms_output.put_line('Net Timeout: '||r1.net_timeout);
 dbms_output.put_line('Delay (Mins): '||r1.delay_mins);
 dbms_output.put_line('Reopen (Secs): '||r1.reopen_secs);
 dbms_output.put_line('Register: '||r1.register);
 dbms_output.put_line('Binding: '||r1.binding);
 dbms_output.put_line('Compression: '||r1.compression);
 dbms_output.put_line('Error: '||r1.err);
dbms_output.put_line('--');
END LOOP;
END;
/

284 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 7: Monitoring Data Guard Implementations 285

The script is intentionally written in PL/SQL to provide easier readability. In addition to the
COMPRESSION column, you should pay particular attention to the ERROR column from the
V$ARCHIVE_DEST view.

Checking Standby File Management (PS)
Standby file management should be enabled as part of Data Guard best practices. Standby file
management enables automatic file creation or deletion on the physical standby when files are
added or dropped on the primary database. The files are created based on the value set in the DB_
FILE_NAME_CONVERT initialization parameter. Use the following query to verify that the physical
standby has standby file management enabled:

COL NAME FOR A33
COL VALUE FOR A10
SELECT NAME, VALUE
FROM V$PARAMETER
WHERE NAME='standby_file_management';

A value set to AUTO indicates that standby file management is enabled, as shown here:

NAME VALUE
--------------------------------- ----------
standby_file_management AUTO

If this parameter is not set, or it accidentally becomes unset, and a datafile is added to the
primary database, it is possible that you will encounter an “ORA-1274: cannot add datafile ‘%s’ –
file could not be created” error. The datafile will not be generated on the standby file system, but
an entry will be added to your standby control file that refers to this datafile as an UNNAMEDxxx
file. To remedy this, you will have to add the missing datafile manually.1 Here’s an example:

SQL> ALTER SYSTEM SET STANDBY_FILE_MANAGEMENT=MANUAL;
SQL> ALTER DATABASE CREATE DATAFILE
 2 '…/dbs/UNNAMED00007'
 3 AS
 4 '…/realfilename/';

Revealing Errors in the Data Guard Status View (PS)
The V$DATAGUARD_STATUS view identifies events that write error messages to the alert log file
and/or generate trace files associated with the error. This view reveals information about all the
severities including informational messages, but only for the last 256 Data Guard–related
messages written to the alert log file. The MESSAGE column may provide more information than
you need. DBAs can restrict the output of messages to the important ones by qualifying the CALLOUT
column with a value of YES. A YES value indicates that a DBA intervention may be required.

1 See MetaLink Note 388659.1: ORA-1274 Encountered on Physical Standby After Adding Datafile to Primary, and
MetaLink Note 304488.1: Using standby_file_management with Raw Devices.

Chapter 7: Monitoring Data Guard Implementations 285

Here’s a code example of querying the V$DATAGUARD_STATUS view and restricting the output
that requires a DBA response:

SET LINES 132
COL MESSAGE FOR A80
COL TIMESTAMP FOR A20

SELECT ERROR_CODE, SEVERITY, MESSAGE,
 TO_CHAR(TIMESTAMP, 'DD-MON-RR HH24:MI:SS') TIMESTAMP
FROM V$DATAGUARD_STATUS
WHERE CALLOUT='YES'
AND TIMESTAMP > SYSDATE-1;

Valid values for the SEVERITY column are Informational, Warning, Error, Fatal, and
Control. You also want to restrict the output depending on how far back you would like to see
by qualifying the TIMESTAMP column.

Logical Standby Data Guard Menu
The remainder of the chapter is dedicated to logical standby monitoring. We hope to provide you a
comprehensive toolkit to monitor a logical standby configuration. We are releasing a full screen’s
worth of logical standby monitoring scripts. From the tar extract, you can easily determine what is
related to the logical standby monitoring versus the physical standby monitoring scripts. All the
scripts that start with dg_ prefix are associated with the physical standby database. Note that quite
a few of the scripts that were intended for the physical standby are applicable to the logical
standby database as well. All the shell scripts and SQL scripts that pertain to the logical standby
monitoring start with the logical_ prefix.

From the main DG menu screen, menu option 20 invokes the logical standby DG submenu. By
invoking task option 20, you will invoke the dg_logical_menu.ksh shell script. You can optionally
invoke this shell script independently to access the logical standby menu options directly. The
logical standby screen provides specific options to monitor and assist you in troubleshooting the
logical standby database.

For demonstration purposes, we will directly execute the logical standby DG submenu. Here’s
the UI of the logical standby DG submenu:

./dg_logical_menu.ksh
--- #

Logical Standby Data Guard Check List - DBA.local

1. Check Logical Progress - View Overall Progress Of SQL Apply #
2. Check Logical Events - History on Logical Standby Apply Activity #
3. Check Logical Events - Detailed View #
4. Check Logical Stats - Logical Standby Stats #
5. Check Logical Parameters - Logical Standby Parameters #
6. Look At What The Logical Standby Processes Are Doing #
Coordinator, Reader, Builder, Preparer, Analyzer, Applier ... #
7. Look At The Status Codes For The Logical Standby Processes #
8. Look At Events The Applier Process Is Stuck On #
--- #

286 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 7: Monitoring Data Guard Implementations 287

10. Check the LCR - Look At Bytes Paged Out #
11. Generate Syntax To Skip Transactions #
Based On MAX(EVENT_TIME) FROM DBA_LOGSTDBY_EVENTS #
DO NOT SKIP DML STATEMENTS #
12. Diagnostic Script Per Metalink Note ID: 241512.1 #
Look for output in logical_diag_[ORACLE_SID_MONDD_HHMM.out] format #
--- #
20. Review What Is NOT Supported In Your Logical Standby Database #

--- #
30. Start Logical Standby Database #
40. Stop Logical Standby Database - PLEASE BE CAREFUL !!!!! #
THIS WILL STOP THE LOGICAL STANDBY APPLY PROCESS #
--- #

x. Exit #
--- #
Enter Task Number:

Each of the menu options can be invoked by typing the corresponding numeric value and
pressing enter. At the end of execution of each script, you will be presented with a message to
press any key to continue. Simply pressing any key will re-invoke the DG submenu.

Checking the Progress
Our first menu option in the logical standby DG submenu exposes all the relative information
about how far the logical standby database has progressed. Here’s sample output from the first
menu option:

1
--- #
Executing logical_progress.sql on DB: MATRIXRT
--- #
Session altered.

APPLIED_SCN LATEST_SCN MINING_SCN RESTART_SCN
----------- ---------- ---------- -----------
 6590562696 6590562726 6590562700 6590562699

APPLIED_TIME RESTART_TIME LATEST_TIME
------------------ ------------------ ------------------
06-apr-09 01:00:48 06-apr-09 01:00:49 06-apr-09 01:00:52

Your Apply Lag
--
+000000000 00:00:04.000000000

Your Standby Redo Lag
--
+000000000 00:00:01.000000000

Chapter 7: Monitoring Data Guard Implementations 287

You can see from the output that the SQL Apply is only 4 seconds behind the newest SCN
recorded in the standby redo logs. The output shown here provides information regarding SCN
and time in seconds. The most important aspect of monitoring the logical standby is to compare
the APPLIED_TIME relative to the LATEST_TIME. In addition, we compare the LATEST_TIME
with the system time to review how fast the standby redo logs are being updated.

NOTE
We recommend that both the primary and the standby database
servers’ time is synchronized with that of the NTP server.

As a final output, we save you from calculating the delta between the LATEST_TIME and the
APPLIED_TIME with the NUMTODSINTERVAL function. You can see from the following queries
how the output is being determined:

ALTER SESSION SET NLS_DATE_FORMAT='dd-mon-rr hh24:mi:ss';
SELECT APPLIED_SCN, LATEST_SCN, MINING_SCN, RESTART_SCN FROM V$LOGSTDBY_PROGRESS;

SELECT APPLIED_TIME, RESTART_TIME, LATEST_TIME
FROM V$LOGSTDBY_PROGRESS
/

SELECT NUMTODSINTERVAL(LATEST_TIME - APPLIED_TIME,'day') "Your Apply Lag"
FROM V$LOGSTDBY_PROGRESS;

SELECT NUMTODSINTERVAL(SYSDATE - LATEST_TIME,'day') "Your Standby Redo Lag"
FROM V$LOGSTDBY_PROGRESS;

The view V$LOGSTDBY_PROGRESS provides the single insight into how well the logical
standby is keeping up with the primary database. As someone who has to support a logical
standby database in a reporting environment, you may have a stringent requirement that the
reporting database server (logical standby database) be at least in sync with the primary
database by a margin of 15 minutes or so. In some cases, the expectation can be that the
reporting database must be in sync with the primary database in almost real time. Even though
we can implement the logical standby with the Maximum Protection or Maximum Availability
option, SQL Apply still must be able to keep up with the latest SCN written to the standby redo
logs. You should monitor your reporting database server on a regular basis to see if your
reporting requirements are satisfied. During peak hours, you should monitor the reporting
database server to see if SQL Apply can keep in sync. Following is a simple shell script called
logical_check_every_5min.ksh that wakes up every 5 minutes and appends entries to two log
files: logical_progress.log and logical_metalink.log. You can review two log files and determine
whether you are able to satisfy your corporate reporting needs. If you cannot accommodate the
SQL Apply rate that you are expecting, you may need to set and tune relevant initialization
parameters and logical standby attributes. Review Chapter 4 for additional details on logical
standby performance tuning.

You should kick off the logical_check_every_5min.ksh script in the background with the
nohup option as shown here:

nohup logical_check_every_5min.ksh > /tmp/ logical_check_every_5min.log 2>&1 &

288 Oracle Data Guard 11g Handbook Chapter 7: Monitoring Data Guard Implementations 289

Here’s the complete shell script for you to review:

cat logical_check_every_5min.ksh
echo "CURRENT_TIME APPLIED APPLIED_TIME RESTART
RESTART_TIME LATEST LATEST_TIME" >>logical_progress.log
echo " SCN SCN
SCN ">>logical_progress.log
echo "------------------ ----------- ------------------ ----------
------------------ ---------- ------------------" >>logical_progress.log

while true
do

echo "
col applied_time for a18
col restart_time for a18
col latest_time for a18
col current_time for a18
set echo off ver off head off feed off lines 255 pages 0 trims on
SELECT to_char(sysdate, 'dd-mon-rr hh24:mi:ss') current_time, APPLIED_SCN, to_
char(APPLIED_TIME, 'dd-mon-rr hh24:mi:ss') APPLIED_TIME,
 RESTART_SCN, to_char(RESTART_TIME, 'dd-mon-rr hh24:mi:ss') RESTART_TIME,
 LATEST_SCN, to_char(LATEST_TIME, 'dd-mon-rr hh24:mi:ss') LATEST_TIME
FROM V\$LOGSTDBY_PROGRESS;
" |sqlplus -s / as sysdba > logical_progress_temp.log
cat logical_progress_temp.log >> logical_progress.log

sleep 300;
done

Shown next is a sample output of the logical_progress.log file. The shell script will append an
entry into this file every 5 minutes. You can compare the LATEST_TIME and the APPLIED_TIME
columns to determine whether SQL Apply is keeping up. Likewise, you can compare the
CURRENT_TIME and LATEST_TIME columns to see if any latencies are of concern.

CURRENT_TIME APPLIED APPLIED_TIME RESTART RESTART_TIME
LATEST LATEST_TIME
 SCN SCN
SCN
------------------ ----------- ------------------ ---------- ------------------
---------- ------------------
05-apr-09 08:32:31 6590373143 05-apr-09 08:32:18 6590373144 05-apr-09 08:32:18
6590373160 05-apr-09 08:32:27
05-apr-09 08:37:31 6590373844 05-apr-09 08:37:25 6590373845 05-apr-09 08:37:25
6590373852 05-apr-09 08:37:31
05-apr-09 08:42:31 6590374530 05-apr-09 08:42:13 6590374531 05-apr-09 08:42:13
6590374558 05-apr-09 08:42:31
05-apr-09 08:47:32 6590375156 05-apr-09 08:47:07 6590375157 05-apr-09 08:47:07
6590375205 05-apr-09 08:47:31

289

05-apr-09 08:52:32 6590375931 05-apr-09 08:52:13 6590375932 05-apr-09 08:52:13
6590375956 05-apr-09 08:52:31
05-apr-09 08:57:32 6590376581 05-apr-09 08:57:23 6590376582 05-apr-09 08:57:23
6590376594 05-apr-09 08:57:29
…

Checking for Events
You can obtain the history on logical standby apply activity by querying the DBA_LOGSTDBY_EVENTS
view. This view can provide relevant information to determine the root cause of failures that occur
when applying redo data to the logical standby database. Here’s a simple query against the
DBA_LOGSTDBY_EVENTS view ordered by the event time and the order it was committed on the
primary database:

cat logical_events.sql
ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YY HH24:MI:SS';

SET LONG 999999
SET LINES 255
COLUMN STATUS FORMAT A60
SELECT EVENT_TIME, STATUS, EVENT
FROM DBA_LOGSTDBY_EVENTS
ORDER BY EVENT_TIMESTAMP, COMMIT_SCN;

Execution of this script yields the following results:

EVENT_TIME STATUS
EVENT
------------------ ---
--
17-MAR-09 22:15:37 ORA-16226: DDL skipped due to lack of support
alter database backup controlfile to '/apps/oracle/admin/MATRIX/bkups/control01_

MATRIX1_17Mar09_1818.ctl.bkup'

18-MAR-09 01:00:44 ORA-16226: DDL skipped due to lack of support
alter database backup controlfile to trace
18-MAR-09 01:00:44 ORA-16226: DDL skipped due to lack of support
alter database backup controlfile to '/apps/oracle/admin/MATRIX/bkups/control01_
MATRIX_18Mar09_0100.ctl.bkup'

18-MAR-09 08:22:00 ORA-16226: DDL skipped due to lack of support
-- Create database link

create public database link DBATOOLS

connect to rodba_web identified by **********using 'DBATOOLS'

290 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 7: Monitoring Data Guard Implementations 291

18-MAR-09 08:45:47 ORA-02019: connection description for remote database not
found CREATE OR REPLACE VIEW V_WEB_DOCS
 (DOC_ID, DOC_TIMESTAMP, DESCRIPTION, CREATED, FILE_NAME,
CONTENT, DOC_TYPE)
AS
SELECT /*+ first_rows */ DOC_ID, DOC_TIMESTAMP, DESCRIPTION, CREATED, FILE_NAME,
CONTENT, DOC_TYPE
FROM DOCUMENTS

By default, only the last 100 records are stored in the DBA_LOGSTDBY_EVENTS view. You can
change the amount of history that is preserved with the DBMS_LOGSTDBY.APPLY_SET package
procedure.

In the preceding output, you can determine that the root cause of the failures on the logical
standby database was the CREATE DATABASE LINK command. Since the CREATE DATABSE
LINK command is skipped in the logical standby database, all subsequent CREATE VIEW
commands failed. You can also see that the command ALTER DATABASE BACKUP CONTROL is
also skipped on the logical standby database. For a complete list of unsupported commands,
review Chapter 4.

On the logical standby DG submenu, the option to check the detailed view of the events
displays all the columns of the DBA_LOGSTDBY_EVENTS view. In particular, the columns in which
we are interested are XIDUSN (Transaction ID undo segment number), XIDSLT (Transaction ID
slot number), XIDSQN (Transaction ID sequence number), and STATUS_CODE (Oracle error code
associated with the STATUS message).

Checking Stats
Valuable SQL Apply information such as LogMiner statistics, current state, and status information
on the logical standby database can be obtained by querying the V$LOGSTDBY_STATS view. The
V$LOGSTDBY_STATS view also exposes the custom logical standby options set by the DBMS_
LOGSTDBY.APPLY_SET procedure including the default values. In addition, you can compare the
values for transactions applied and transactions ready to determine whether transactions are being
applied as fast as they are being read.

Executing the option to check the stats from the logical standby DG Submenu yields the
following results:

Enter Task Number:
4
--- #
Executing logical_stats.sql on DB: MATRIXRT
--- #

NAME VALUE
----------------------------------- --
number of preparers 4
number of appliers 20
maximum SGA for LCR cache 1500
parallel servers in use 27
maximum events recorded 100
preserve commit order FALSE

Chapter 7: Monitoring Data Guard Implementations 291

transaction consistency NONE
record skip errors Y
record skip DDL Y
record applied DDL N
record unsupported operations N
coordinator state IDLE
transactions ready 8711
transactions applied 8711
coordinator uptime 200488
realtime logmining Y
apply delay 0
Log Miner session ID 1
txns delivered to client 95226
DML txns delivered 22860
DDL txns delivered 323
CTAS txns delivered 77
Recursive txns delivered 72043
Rolled back txns seen 23019
LCRs delivered to client 357570
bytes of redo processed 552773192
bytes paged out 0
…
…
33 rows selected.

In this environment, you can see that attributes for maximum SGA, preparers, appliers, and
commit order have been customized to suit the high amount of transactions on the reporting
database.

Checking the Logical Standby Parameters
The DBA_LOGSTDBY_PARAMETERS view provides a list of parameters used by SQL Apply on the
logical standby database. Querying on the NAME and VALUE columns, you can ascertain
miscellaneous options and settings on the logical standby. Menu option 5 provides a complete
output of the DBA_LOGSTDBY_PARAMETERS view:

Enter Task Number:
5
--- #
Executing logical_parameters.sql on DB: MATRIXRT
--- #

NAME VALUE
--------------------------------- ---------------------------------
APPLY_SCN 6557897644
APPLY_SERVERS 20
FIRST_SCN 6557896604
GUARD_STANDBY READY
LMNR_SID 1
LOG_AUTO_DELETE FALSE

292 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 7: Monitoring Data Guard Implementations 293

MAX_SERVERS 27
MAX_SGA 1500
PREP_DICT_RECEIVED
PRESERVE_COMMIT_ORDER FALSE
PRIMARY 1135258887
_SYNCPOINT_INTERVAL 4294967295

12 rows selected.

Checking the Logical Standby Processes
You can query the DBA_LOGSTDBY_PROCESS view to analyze the current state of each of the SQL
Apply processes. During the log mining process, the READER process reads redo records from the
standby redo logs or archive logs, the PREPARER process converts the block records into logical
change records (LCR), and the BUILDER process groups the LCRs into transactions and manages
the LCR cache in the shared pool of the system global area (SGA). As you can see in the following
output, you can have multiple PREPARER processes. Also, you will notice that an ORA-16116
error message appears in the STATUS column indicating that there is no work for the processes:

Enter Task Number:
6
--- #
Executing logical_process.sql on DB: MATRIXRT
--- #
TYPE SID SERIAL# LID SPID HIGH_SCN STATUS
------------ ----- ------- ----- ------- ---------- ---------------------------
COORDINATOR 248 1 -1 31451 6590542563 ORA-16116: no work available
READER 245 1 0 31454 6590542573 ORA-16116: no work available
BUILDER 246 1 1 31456 6590542573 ORA-16116: no work available
PREPARER 244 1 2 31458 6590542401 ORA-16116: no work available
PREPARER 241 1 3 31460 6590542542 ORA-16116: no work available
PREPARER 243 1 4 31462 6590542500 ORA-16116: no work available
PREPARER 242 1 5 31464 6590542506 ORA-16116: no work available
ANALYZER 237 1 6 31466 6590542542 ORA-16116: no work available
APPLIER 238 1 7 31468 6590542509 ORA-16116: no work available
APPLIER 236 1 8 31470 6590540298 ORA-16116: no work available
APPLIER 235 1 9 31472 6590512759 ORA-16116: no work available
…
…

During the apply phase, the ANALYZER process identifies dependencies; the COORDINATOR
process, also known as the LSP process, assigns and coordinates transactions to different APPLIER
processes; and the APPLIER process applies transactions to the logical standby database. Again,
you will notice multiple numbers of APPLIERS in the preceding output. Here’s the simple query to
view the logical standby processes:

COLUMN LID FORMAT 9999
COLUMN SERIAL# FORMAT 9999
COLUMN SID FORMAT 9999
COL STATUS FOr a55

Chapter 7: Monitoring Data Guard Implementations 293

SET LINES 255
COL TYPE FOR a12
COL SPID FOR a7
SELECT TYPE, SID, SERIAL#, LOGSTDBY_ID AS LID, SPID, HIGH_SCN, STATUS
FROM V$LOGSTDBY_PROCESS
/

The STATUS column informs you what the process is doing or waiting on or whether work is
available for it.

Checking Status Codes of Logical Standby Processes
Again, we will query from the V$LOGSTDBY_PROCESS view to determine the status codes of each
of the SQL Apply processes. In this menu option, we provide a high-level summary report
categorized by type and status code:

prompt 16113 -> Apply change to a particular object
prompt 16116 -> No work available
prompt 16117 -> Processing
prompt 16123 -> Transaction Waiting for Commit Approval
prompt 16124 -> Transaction Waiting on Another Transaction before proceeding

SELECT TYPE, STATUS_CODE,COUNT(1) NO_OF_TXNS
FROM V$LOGSTDBY_PROCESS
GROUP BY TYPE,STATUS_CODE
/

Executing menu option 7 from the logical standby DG submenu produces these results:

Enter Task Number:
7
--- #
Executing logical_trx.sql on DB: MATRIXRT
--- #
16113 -> Apply change to a particular object
16116 -> No work available
16117 -> Processing
16123 -> Transaction Waiting for Commit Approval
16124 -> Transaction Waiting on Another Transaction before proceeding

TYPE STATUS_CODE NO_OF_TXNS
------------------------------ ----------- ----------
APPLIER 16116 20
COORDINATOR 16116 1
READER 16116 1
PREPARER 16116 4
ANALYZER 16116 1
BUILDER 16116 1

6 rows selected.

294 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 7: Monitoring Data Guard Implementations 295

In our output, we provide some common status codes that you will likely encounter that can
help you quickly assess your situation.

Checking on Stuck Appliers
Correlating V$SESSION and V$LOGSTDBY_PROCESS, you can identify the events or resources that
the session is waiting on. The following query displays a high-level summary of the number of
appliers that may be waiting on a specified event:

COL EVENT FORMAT A50 TRUNC
SELECT LS.STATUS_CODE, S.EVENT, COUNT(1) No_Of_Appliers
 FROM V$LOGSTDBY_PROCESS LS
 ,V$STREAMS_APPLY_SERVER SAS
 ,V$SESSION S
 WHERE LS.TYPE = 'APPLIER'
-- AND LS.STATUS_CODE IN (16124, 16123)
 AND LS.LOGSTDBY_ID = SAS.SERVER_ID
 AND S.SID = SAS.SID
 GROUP BY LS.STATUS_CODE, S.EVENT;

You may want to also add additional filters for the STATUS_CODE column. Filtering on
transactions that are waiting for commit approvals with a STATUS_CODE of 16123, you may
encounter a similar kind of output, as shown here:

STATUS_CODE EVENT NO_OF_APPLIERS
----------- ----------------------------- --------------
 16123 enq: TX - allocate ITL entry 4
 16123 rdbms ipc message 4

Once you identify wait events to be the delaying factor for SQL Apply, you will want to
identify the SQL statements that are causing the issue(s) and take corrective tuning measures.

Checking the LCR for Paging
The LCR Cache is an area of the shared pool where the PREPARER process stages logical change
records (LCRs) as it converts redo change blocks to LCRs. If the LCR Cache is not sized adequately,
LCR paging can occur. LCR paging is an operation in which the SQL Apply process writes to a
SPILL table in the SYSAUX tablespace from memory to disk. LCR paging is a very expensive
operation and should be avoided. To determine whether you are experiencing LCR paging, you can
execute the following query:

SELECT VALUE BYTES
FROM V$LOGSTDBY_STATS
WHERE NAME = 'bytes paged out'
/

If a non-zero value is returned from this query, you should execute this query on a periodic basis and
determine what transactions are causing LCR paging. Remember that the 'bytes paged out'
value is a cumulative value since the SQL Apply process started. If you see this value increasing, you
may want to resize the MAX_SGA logical standby parameter.

Chapter 7: Monitoring Data Guard Implementations 295

Generating Syntax to Skip DDL Transactions
Rarely, conditions will warrant that you skip transactions on the logical standby database. When
you face such events, DDL statements such as CREATE TABLE AS SELECT (CTAS) or other DDL
statements will typically be a symptom of unsupported DDLs such as CREATE DATABASE LINK.
In general, you should never have to skip a Data Manipulation Language (DML) statement.
Skipping DML statements can cause logical corruptions on the logical standby database. The
following menu option can be helpful when you have to skip a transaction that is causing SQL
Apply to halt:

Enter Task Number:
11
--- #
Executing logical_skip_transactions.sql on DB: MATRIXRT
--- #

XIDUSN XIDSLT XIDSQN
------ ------ ------
 2 40 611166
 10 36 958286

To Skip, Execute:
--
EXECUTE DBMS_LOGSTDBY.SKIP_TRANSACTION(2,40,611166);
EXECUTE DBMS_LOGSTDBY.SKIP_TRANSACTION(10,36,958286);

The SKIP_TRANSACTION procedure accepts three parameters in the following order for the
transaction that is being skipped:

 1. Transaction ID undo segment number (XIDUSN)

 2. Transaction ID slot number (XIDSLT)

 3. Transaction ID sequence number (XIDSQN)

In our example, the following SQL statement is used to generate the syntax to skip
transactions on the logical standby:

SET NUMWIDTH 6
SET LINES 155

SELECT XIDUSN, XIDSLT, XIDSQN
FROM DBA_LOGSTDBY_EVENTS
WHERE EVENT_TIME = (SELECT MAX(EVENT_TIME) FROM DBA_LOGSTDBY_EVENTS);

SELECT 'EXECUTE DBMS_LOGSTDBY.SKIP_TRANSACTION('||xidusn||','||xidslt||','
||xidsqn||');' "To Skip, Execute:"
FROM DBA_LOGSTDBY_EVENTS
WHERE EVENT_TIME = (SELECT MAX(EVENT_TIME) FROM DBA_LOGSTDBY_EVENTS);

296 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 7: Monitoring Data Guard Implementations 297

We query the latest event from the DBA_LOGSTDBY_EVENTS to determine candidate
transactions that can be skipped. You should review the EVENT column to examine the statement
that caused the failure.

Executing Diagnostics
Another menu option worth noting is the diagnostic script per MetaLink Note 241512.1. This
script will generate a rather comprehensive report for troubleshooting purposes. The script
generates a log file with the following naming convention in the current directory: logical_diag_
[ORACLE_SID_MONDD_HHMM].out. Here’s a sample name of the output file: logical_diag_
MATRIXRT_Apr06_1058.out. Because the date, hour, and minute of the day is appended to
the output file, the diagnostic script should generate a new file every time you execute the
menu option.

Executing SQL Apply Lag Scheduled Monitoring
We provide another shell script called logical_lag_alert.ksh. We will not include the source code
for this shell script in this chapter, but it will be bundled with the tar extract. The logical_lag_alert
.ksh shell script is designed to be invoked from the cron job scheduler or as a daemon and will
send an alert to the recipients in the event that the SQL Apply lag exceeds the user-defined
threshold or if the standby redo log lag exceeds the user-defined threshold specified in minutes. If
you are launching the logical_lag_alert.ksh shell script as a daemon, make sure that it is part of
the server startup scripts. Alternatively, you can schedule this shell script to run every 5 minutes
from cron. You can create a cron job entry that resembles this:

0,5,10,15,20,25,30,35,40,45,50,55 * * * * /apps/oracle/general/sh/logical_lag_
alert.ksh MATRIX 10 10 > /tmp/logical_lag_alert.MATRIX.log 2>&1

This cron job entry will execute every 5 minutes 24 hours a day, 7 days a week. The logical_lag_
alert.ksh script accepts three parameters:

 Database name ■

 SQL Apply lag threshold in minutes ■

 Standby redo log lag threshold in minutes ■

The database name must exist as an entry in the ORATAB file in /etc/oratab or /var/opt/oracle/
oratab depending on the operating system. If you do not provide any parameters, the script will
spit out an error indicating that several parameters are required before it even starts the main
logic. Once all the required parameters are accepted, the shell script will source the Oracle-
supplied oraenv file to create or update the ORACLE_HOME and PATH environment variables.

Conclusion
Monitoring a Data Guard environment for proper configuration and performance can potentially
mitigate risks when it comes to opening the standby database in a disaster recovery situation.
First, you must discover settings in the primary database that can possibly corrupt the standby
database, such as nologging activities. Second, you must examine various log files such as Oracle
alert logs and trace files in a timely manner to capture any errors generated from the inception of
the redo buffer on the primary database to the Redo Apply process on the standby database.

Chapter 7: Monitoring Data Guard Implementations 297

Furthermore, you must monitor the performance of the Data Guard environment so that you do
not jeopardize the RPO or RTO of the disaster recovery requirements. By checking to see whether
your Data Guard configuration follows the industry best practices, you can be assured that you
can easily meet your RPO and RTO requirements.

The complete DG Menu, including the logical standby DG submenu, is available for
download from either the Oracle Press web site at www.oraclepress.com or from the Data Guard
Handbook web site at www.dataguardbook.com. Obviously, we cannot cover every facet of the
Data Guard monitoring components but hope to address the common metrics. As new techniques
are discovered, we will update our scripts and post revisions on the web site. You are strongly
encouraged to check for updates and download the scripts instead of copying the scripts
manually.

www.oraclepress.com
www.oraclepress.com

Chapter
8

Switchover and Failover

299

300 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 8: Switchover and Failover 301

f you have been reading all the preceding chapters, you should now be fully
versed in the Data Guard architecture; standby database creation, management,
and monitoring; what the different standby database types offer (and what they do
not); and what interfaces you can use to manage Data Guard. But up to now, you
have learned only how to set up your database to be protected in the event of

some sort of production failure. You haven’t yet learned how to use your standby database for
the purpose for which it was created: to take over as the production database. This is where role
transition comes into play.

Introduction to Role Transition
Role transition is divided into two basic functions: switchover and failover. Many DBAs use different
terms to describe these two functions, such as switchover and switchback or failover and failback,
for example. Some even combine or confuse the two functions, believing that they are doing a
failover when in fact they are doing a switchover. Let’s first clarify the purpose of each function
before we dive into the details. The procedures and commands used for each of the three interfaces
(SQL*Plus, Data Guard Broker, and Grid Control) are discussed in the appropriate sections.

After both role transition types have been discussed, we will contrast and compare the two
methods and the pros and cons of each.

Switchover
A switchover is the act of changing the primary database to a standby role and changing one of your
standby databases to the primary role. This role transition is a planned event in all cases and is safe
from data loss because the primary database must complete all redo generation on the production
data before allowing the switchover to commence. The switchback does not exist as a separate
procedure. You would switchover to a standby database, and, when you wanted to move production
back to the original site, you would perform another switchover, but in the reverse direction.

A switchover is usually performed when things are quiet, when no problems are occurring,
and you have some reason to move production from the normal site to one of your disaster
recovery sites. You might perform a switchover to test your disaster recovery (DR) solution to
ensure that everything works as planned when production moves to a different site, that the
database starts the correct services, that the middle tier clients can connect, that clients can
connect to the middle tier, and so on. Other reasons besides testing can prompt you to perform
a switchover in this planned manner. Changes to your hardware configuration (maintenance, new
systems), storage changes (newer, faster disks or moving from one storage vendor to another),
software changes (OS upgrades, and implementing Real Application Clusters [RAC] or Automatic
Storage Management [ASM], upgrading Cluster Ready Services [CRS] or ASM) are some of the
reasons you might employ a switchover to reduce the impact on production availability in addition
to testing. These scenarios will be discussed in more detail in Chapter 12.

When a switchover is complete, the new primary database will begin sending the new redo
to all standby databases, including the original primary database, since it is now a standby
database. Remember that when you use the Broker or Grid Control, all the parameters are
configured for you automatically after the switchover so that the new primary will send the redo
to all standby databases. If you are using SQL*Plus as your management interface, you would
have had to preconfigure all of the parameters on your databases before the switchover, which,
if you really did read “The Power User Method” in Chapter 2, you will have already done.

I

Chapter 8: Switchover and Failover 301

The Switchover Process
Depending on your circumstances (whether you’re using RAC or switching over to a logical standby
database, for example), you might need to do some preparatory work prior to starting the actual
switchover on your primary database, which will be discussed later on in this chapter.

A switchover always starts on the primary database and is completed on the selected standby
database regardless of the interface you are using—SQL*Plus, the Broker, or Grid Control. The
actual switchover is started by the SQL command ALTER DATABASE COMMIT TO SWITCHOVER
TO STANDBY;, which is executed for you if you are using the Broker or Grid Control. When the
switchover SQL command is executed at the primary database, redo generation is terminated, all
Data Manipulation Language (DML)–related cursors are invalidated and users are either prevented
from executing transactions (a logical standby switchover) or terminated (a physical standby
switchover), and the current log is archived for each thread. A special switchover marker called
the EOR (End Of Redo) is then placed in the header of the next sequence for each thread, and the
online redo log files are archived a second time, sending the final sequences to the standby
databases. If you are performing a physical standby switchover, the primary is closed and the
final log switch is done without allowing the primary database to advance the sequence numbers
for each thread.

After the EOR redo is sent to the standby databases, the original primary database is
finalized as a standby and its control file backed up to the trace file and converted to the
correct type of standby control file. The control file backup is recorded in the alert with a line
similar to the following:

Backup controlfile written to trace file
/scratch/OracleHomes/diag/rdbms/matrix/Matrix/trace/Matrix_ora_32137.trc

In the case of a physical standby switchover, the managed recovery process (MRP) is
automatically started on the original primary to apply the final archive logs that contain the
EOR so that the original primary has processed all redo ever generated. After the EOR has been
applied, the database is dismounted and must be restarted as a standby database in at least the
MOUNT state.

For a logical standby, this bit of redo does not need to be applied on the original primary by
SQL Apply since the database is still open in read-write and the redo has been processed as
normal. In this case, the GUARD is enabled, preventing users from modifying the data that is going
to be maintained by SQL Apply.

It is extremely important that the EOR redo is received by the standby databases, because
a switchover cannot complete without applying the EOR redo. Once the standby databases have
received and applied the EOR redo, the switchover is completed at the standby of your choice by
the execution of the ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY; SQL command.
This, too, is automatic if you are using Grid Control or the Broker.

A physical standby switchover will wait for the MRP to exit after processing the EOR redo and
then convert the standby control file into a normal production control file. A switchover does
require that all readers who were attached using Active Data Guard be disconnected first so the
switchover will wait for the sessions to be terminated. All that is left is to open the new primary
database for general production use with the ALTER DATABASE OPEN; SQL command.

A logical standby switchover also has to wait for the EOR redo from the primary to be applied
and SQL Apply to shut down before the switchover command can complete. Once the EOR has
been processed, the GUARD is turned off and production processing can begin. Any users who

302 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 8: Switchover and Failover 303

were attached to the logical standby database will not have been disconnected during the
switchover procedure.

At this point, you have moved production to one of your standby databases. Of course, you
have moved only the database role. Middle tiers and clients will have to be moved or redirected
depending on your requirements. Physically moving the middle tier and redirecting clients to the
new location of the middle tier is an optional step since the production site is not necessarily
down. Since a switchover is a planned event, your original middle tier and clients are still
capable of running on the original systems and may only need their database connections to be
redirected to the new primary database. In either case, you would need to move the required
services to the new primary database and clients would connect automatically if you have the
connection paths correctly configured. Client failover is discussed in Chapter 11.

Failover
A failover is an unplanned event that occurs when something bad has happened and you need
to move your production database to your DR site. This is a time when people are usually
running around trying to figure out what has happened and what needs to be done to get the
database back up and running. Phones are ringing from clients asking when the system will be
back up. Upper management is roaming the hallways looking for the guilty parties. But you are
reading this book, and when that time comes you will be the one calmly sitting at your desk (or
even at home in bed), safe in your knowledge that you have prepared for this eventuality and
all will be fine. You have a complete failover procedure in place and you have tested it many
times using switchovers (if not then you will have after you finish this book). You know that the
standby database is OK because it is a database that you can monitor, manage, and even open
to check on data—something that you cannot do with a mirroring solution, for example. There
is nothing more frightening to a DBA than a dark standby site and you don’t know whether it is
going to work until you need it. And if that thought doesn’t frighten you, remember that
bonuses and even careers have been lost due to failover setups that failed when they were
needed most.

This is why it is so important that you not only have a complete and tested DR solution,
especially for your Oracle database, but that you trust your DR solution so that you are ready to
move at a moment’s notice when needed. It makes no sense at all to spend the time, effort, and
money setting up a DR solution only to avoid using it when you experience a production failure.
This does not mean that you always have to failover. Your setup may be so complex that it is
easier to solve a problem in the short term instead of resorting to a failover. Or you might be in a
position to lose more data than you’d like if you perform a failover. But you do need to be ready
to failover when it is necessary.

Opening a Physical Standby After Switchover
Prior to Oracle Database 10g you had to shut down and restart a physical standby database
after it became a primary database. In 10g you could go directly to OPEN as long as it had
never been opened read-only since it was last started. As of 11g you always go directly to
the OPEN state.

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 8:

 Switchover and Failover 303

The Failover Process
Unlike a switchover, which begins on the primary, no primary is involved in the failover, so there
is no possibility of doing a switchover. If the primary is still available, why would you be doing
a failover in the first place? As with a switchover, Data Guard must finish up all possible redo
before the role transition can be completed. Once you have decided to perform a failover and
you’ve chosen the standby database that will become the primary database (and understood the
data loss, if any), you will begin the failover process by telling Data Guard to apply all remaining
redo that can be safely applied.

In the case of a physical standby, the finish-up-all-the-redo command will actually cause
Data Guard to emulate a switchover in the sense that the EOR marker will be added to the
current standby redo log file header and archived just as if that marker came from the primary
database. Once this final redo has been applied, the MRP will exit and you can finish the failover
using the same switchover command you would normally use to convert a physical standby to
a primary database. The idea behind this was to put the physical standby into the same state it
would be in if you were performing a switchover, so that the same steps can occur. The control
file is converted to a normal production control file, and you finish by opening the database
normally for read-write.

A logical standby failover is somewhat different, since the standby database is already open for
read-write. Like the switchover, the failover command also instructs SQL Apply to perform the
EOR processing and apply all the remaining redo possible, converts the control file to a production
control file (essentially activating the standby database), and removes the GUARD so that all data
can be updated as usual.

Once the failover is complete, the new primary will be running in Maximum Performance
mode even if it were previously running in Maximum Availability or Maximum Protection mode.
To return to the proper level, you will have to reinstate the primary or add another standby
database and then manually execute the steps (either in SQL*Plus, DGMGRL, or Grid Control)
necessary to raise the protection mode back to the desired level. This does mean that if you were
running in Maximum Protection mode you will have to suffer yet another outage to bounce the
new primary database, as Maximum Protection mode requires the database to be in the mount
state before the protection mode can be raised to that level.

Failover and Data Loss
In both physical and logical standby database failover, there is always the potential for data loss,
even if you have configured your Data Guard setup for Maximum Availability. The only absolute
zero data loss mode is Maximum Protection, where the primary database would be aborted if no
standby database were available to receive the redo for each and every transaction. Maximum
Availability can guarantee zero data loss only if the primary and standby were synchronized at the
time of the production failure. If the network were to go down for a period of time and you were
forced to execute a failover before the two databases could be resynchronized, you would lose
any data that was generated at the primary during the network outage period. This is sometimes
referred to as a “double failure” for which Maximum Availability cannot provide zero data loss.

Generally, however, data loss is encountered in situations in which you are running in the
default Maximum Performance mode (or unsynchronized). The topic of data loss was introduced
in Chapters 1 and 2 where the protection modes were discussed. To help you fully understand
why data loss occurs, we will expand on the details of a failover and what causes data loss in
addition to the network down situation already mentioned.

304 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 8: Switchover and Failover 305

During normal operation, Data Guard’s apply services, regardless of standby database type, will
process and apply the redo as it comes in from the primary database. But redo can only be applied
if there is a commit record for the transaction and that transaction is not dependent on another
transaction. Obviously, if you were using ARCH mode (deprecated in Oracle Database 11g) to
transport the redo, at failover time you would lose whatever redo was not shipped to the standby
database. This means the current online redo log files at the primary and potentially the previous
one that was archived but not yet sent to the standby.

When ASYNC is used to transport the redo, Data Guard will send the redo as fast as it can to
the standby databases, where it will be written to the SRL. But since you are using Maximum
Performance mode, there is no guarantee that all of the redo received by the standby database
can be applied when you failover. This is due to the thread merging that must occur at the
standby to ensure that all transactions are applied to the standby database in the correct order so
Data Guard does not compromise the integrity of the data when the primary database is a RAC.
There are implications to single node primary systems as well, which we will discuss at the end of
this section. Assuming that you are not using real-time apply, you can see the archive logs at the
standby database that have been archived by the standby in Figure 8-1.

The apply process has to figure out in what order it should apply the redo that is contained in
the six archive log files. Applying them in sequence number order makes no sense because
sequence numbers are not contiguous across the cluster.

As your primary database generates redo, normal cluster-wide locking occurs at the row and
block level to prevent one transaction from overwriting the updates made by another transaction.
But when the standby receives the same redo generated by those transactions, no locking per se
is going on, at least not in the same manner, since only one user (the apply process) is actually
processing and applying the transactions. To prevent any corruption, the threads of redo are
merged together in SCN order, as shown in Figure 8-2, and applied on the standby databases. In
this manner, the redo cannot be written to disk in the incorrect order.

A transaction that updates a block, for example, cannot be processed before another transaction
that updated the same block but on a different thread and at a previous time. This is usually referred
to as a dependant transaction. As the apply process reads the redo, it must go back and forth
between the archive logs, looking for the appropriate SCN. The thread merging logically makes the
redo streams look like a single stream of redo, as shown in Figure 8-3.

This thread merging is the reason you will see the apply processes waiting for something
when it would appear that there is sufficient redo to process. And this is also why data will be
lost at failover time.

Partial Archive Logs
If you use ARCH or ASYNC without standby redo log (SRL) files, Data Guard writes the
incoming redo directly to an archive log file at the standby database. If you were operating in
this manner in versions of Data Guard prior to 10.2.0.3, then a disconnect from the primary
Data Guard would leave a nonregistered partial archive log file on the standby server. This
was an attempt to help you avoid some of the data loss if you had to failover. Since this file
would ruin your standby database if you manually applied it without doing a failover, Data
Guard no longer leaves partial archive log files on disk. Use SRL files to avoid data loss.

Chapter 8: Switchover and Failover 305

FIGURE 8-2. Transactions by SCN in the redo stream

Thread 1 Thread 2

Sequence 500

Sequence 501

Sequence 502

Sequence 100

Sequence 101

Sequence 102

SCN 1000

SCN 1002

SCN 1005

SCN 1007

SCN 1009

SCN 1014

SCN 1016

SCN 1012

SCN 1010

SCN 1001

SCN 1003

SCN 1004

SCN 1006

SCN 1008

SCN 1015

SCN 1017

SCN 1013

SCN 1011

Thread
Merging

FIGURE 8-1. Redo ready to be applied

Standby
Database

Apply

Standby
Redo
Logs

RFS

RFS

Thread
One

ARCH

ARCH

Archived
Redo Logs

Standby
Redo
Logs

500

501

502

100

101

102

Thread
Two

306 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 8: Switchover and Failover 307

When you initiate a failover, the first thing you do is instruct Data Guard to finish applying all
the redo that it has received. If you were running real-time apply (with SRL files), then pretty
much all the redo that can be applied has been applied. Some redo may still be applied by using
the heartbeat redo that each thread sends when it is idle. But Data Guard must look at all of the
threads of redo and figure out where the last consistent heartbeat is in the redo stream and then
discard all transactions that might be in the redo after that point, as shown in Figure 8-4.

In our example, Thread 2 stopped sending redo at SCN 1008, but Thread 1 continued to
send its redo. At failover in Maximum Performance mode, all of the redo after SCN 1009 would
be discarded since there is no way for Data Guard to be sure that no transactions in Thread 2’s
stream that were not received by the standby which should be applied first. Since heartbeat redo
is sent every 6 seconds or so, the general rule of thumb is that you might lose around 6 seconds of
redo during a failover when all was running perfectly before the failure. But this is just a best
guess. There is no way to determine exactly how much redo was lost, and whatever number you
do come up with is based on redo volume over a period of time, not user transactions.

FIGURE 8-3. Merged redo

Sequence 500

Sequence 501

Sequence 502

Sequence 100

Sequence 101

Sequence 102

SCN 1000

SCN 1002

SCN 1005

SCN 1007

SCN 1009

SCN 1014

SCN 1016

SCN 1012

SCN 1010

SCN 1001

SCN 1003

SCN 1004

SCN 1006

SCN 1008

SCN 1015

SCN 1017

SCN 1013

SCN 1011

Chapter 8: Switchover and Failover 307

In Maximum Availability or Maximum Protection mode, the apply process would know that
it was impossible for Thread 2 to have generated any redo after the end of its redo stream and
therefore is able to apply the redo past that last consistent heartbeat in the redo stream—that is,
all of the transactions past SCN 1009.

This thread merging and failover can have a bigger impact on data loss if some sort of
disconnect occurred between the standby and just one of the primary nodes before the failure
that required a failover.

So what does that mean? You have multiple RAC nodes on your primary database, and in the
event that one of your primary nodes crashes, another node in the cluster will perform crash
recovery on the failed instance’s redo and ship the final archive log to the standby databases. In
that crash recovery log is enough information to tell Data Guard that the instance is in fact down
and is no longer generating any redo, and the apply services can safely apply all the redo in that
final log when required. In this manner, once that crash recovery archive log is sent to the standbys
and processed, that thread is ignored during the failover and the thread merging is done between
the surviving threads.

FIGURE 8-4. Lost redo

Thread 1 Thread 2

Sequence 500

Sequence 501

Sequence 502

Sequence 100

Sequence 101

SCN 1000

SCN 1002

SCN 1005

SCN 1007

SCN 1009

SCN 1014

SCN 1016

SCN 1012

SCN 1010

SCN 1001

SCN 1003

SCN 1004

SCN 1006

SCN 1008Last Consistent Heartbeat

Lost Redo upon failover!

Closed Threads and Data Guard
As of 10.2, any thread that was shut down is considered to be disabled by Data Guard as
long as compatibility was set to 10.2.0.2. If compatibility was not set to 10.2.0.2 or you are
using a previous release, those closed threads will have a major impact on data loss (it could
increase by one or more complete archive logs of redo). In that case you should manually
disable any threads that will be down for a period of time to prevent major data loss.

308 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 8: Switchover and Failover 309

If one of your primary threads is still generating redo but cannot communicate with the
standby (its network link to the standby is down) and the other threads are still sending redo,
a failover will have to find a consistent heartbeat redo point at the point at which the thread
stopped sending its redo. Since no actual crash occurred when the network connection was lost,
none of the surviving threads will perform crash recovery and send that final log notifying Data
Guard that the thread is truly down. At failover the thread merging will look at the last log of the
disconnected thread and use the last heartbeat in it to define the consistent point, throwing away
all the redo that the surviving nodes had been sending all along. The redo that is discarded from
Thread 1 in Figure 8-4 would be much larger.

But wait, you say, what about Data Guard’s gap resolution? Wouldn’t that get the missing
logs from the thread that lost its connection prior to the need to do a failover (when you lose the
entire cluster/site and so on)? No, it won’t. The proactive gap resolution depends on the ping
ARCH process on the primary to ask the standbys if they are missing archive logs. But proactive
gap handling ping does so only for its own thread, and the primary nodes will not resolve gaps for
another thread unless directly asked to do so by a Fetch Archive Log (FAL) request from the
standby. The apply process at the standby is responsible for making those FAL requests—but it
will make a reactive FAL request only in three cases:

 A log file should be present but is not. ■

 The apply process is processing a log file but encounters corruption in it. ■

 An actual hole exists in the sequence of archive logs. (Sequences 100, 101, and 103 are ■
present, but not 102.)

In the case of a lost connection but not a lost instance, none of these three cases exists and the
apply services will sit there quite happily sleeping until the next log from that thread arrives and
they can continue thread merging. If you encounter this situation, you must either repair the
communication problem or shut down that thread and manually resolve the missing log files so
you do not risk a large amount of data loss if you had to failover before Data Guard could resolve
the gaps itself.

As you can see, a failover in Maximum Performance mode will usually result in some data
loss, from at least 6 seconds or so to an unknown amount if the preceding situation occurs. And
remember that if some kind of disconnect occurs between the standby and one node in a RAC
primary, unless crash recovery exists for that node, Data Guard is going to be functioning using
Maximum Performance rules at failover time, even if you were originally in Maximum Availability.
If you are wondering what would happen in the lost connection case if you were in Maximum
Protection mode, here’s the simple answer: If the standby was your last SYNCHRONOUS transport
standby and the network connection was lost on only one node, that instance would crash,
causing crash recovery to be performed by another instance, and bringing the configuration
back in sync.

A final note about data loss: If your setup does not include a RAC primary database and
only one thread is to be processed at failover time, there is still no guarantee that you will
experience a zero data loss failover in Maximum Performance. It is possible but not a sure
thing. You must use at least Maximum Availability and not suffer that dreaded double failure
before you have to failover to ensure zero data loss. Only Maximum Protection can positively
guarantee zero data loss in all situations in which at least one synchronous standby database
survives a failure.

Chapter 8: Switchover and Failover 309

Switchover vs. Failover
Now that you understand how switchover and failover work, you need to understand when and
where you would use each method. Starting with Oracle Database 10g and the use of Flashback
Database (discussed in detail in the next section), a failover does not have the same implications
toward rebuilding your original primary as a standby that it had in Oracle9i. However, unless you
are running in a zero data loss protection mode, a failover is going to lose some data, which is
usually the driving force behind your trying to perform switchovers, with failover reserved for
those times when it is truly necessary.

Since a switchover has to “drain the redo pipe” (all redo generation has to cease on the
primary data), the chance of data loss is impossible. And if you encounter some problem that
prevents you from completing the switchover on a standby database, you can always go back to
your original primary and be back in business with very little effort. With a failover, you always
have to go through the reinstatement procedure (which requires that Flashback Database be
enabled before you failed over), which involves more steps and time—something you probably
don’t want to be involved in if you don’t have to be.

In any of your planned outages, you should be using a switchover, and if you have the luxury of
even a small amount of notice before an unplanned outage, try a switchover. If it fails to complete
on the primary database before the production site becomes unavailable, you can always failover to
the standby database. Since it does not normally take much time to send that last EOR redo, chances
are the switchover will succeed.

Flashback Technologies and Data Guard
We kept the topic of flashback in this chapter because it plays an important role in failover. You
need to use flashback to undo any error that occurred on the primary database. Flashback is also
extremely important when you’re getting back to a protected setup as soon as possible after a
failure of the primary database or the entire production site. In this section, we will briefly discuss
various ways you can use Flashback Database with Data Guard. You can, in fact, employ
Flashback Database even if you are not in the process of doing a failover.

Flashback in an Oracle context covers a lot of ground, and most of it is transparent to
Data Guard. All but one of the flashback technologies restores data back to a point in time,
generating redo in the process. For example, a flashback query puts a row back the way it
was at some prior point and generates redo that is then processed by your standby databases,
and the same “flashback” is performed there. Flashback drop puts an entire table back by
removing it from the recycle bin, which generates the necessary metadata redo. The same
process applies to the other flashback technologies, except for Flashback Database, which
uses its own flashback logs and some of the redo to put the entire database back to a previous
point in time or SCN. This process does not generate any redo, and when used on the primary
database, it also requires that OPEN RESETLOGS be executed to open the database again in a
read-write mode.

Flashback Database can be enabled on the primary database, on one or more standby databases,
or on any combination of the two. To enable it, you need to be in the MOUNT state, have the flash
recovery area configured, set the flashback retention period (DB_FLASHBACK_RETENTION_TARGET),

310 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 8: Switchover and Failover 311

and execute the ALTER DATABASE FLASHBACK ON; command.1 In the Data Guard context,
Flashback Database is used in the following circumstances:

 On any standby, to recover data in lieu of a ■ DELAY on the apply processing. Flashback
Database must be enabled and the retention period set to a period sufficient to recover
the data based on your requirements. The flash recovery area will need to be sized to
handle the amount of flashback logs generated for the retention period.

 On a physical standby, to open a physical standby database in snapshot mode (read- ■
write for testing). In this case, Flashback Database does not have to be expressly enabled
since Data Guard uses a guaranteed restore point (GRP) before opening the physical
standby in read-write mode. The retention period is also not required as the flashback
logs will be maintained as long as necessary. This also means that you will need to size
your flash recovery area accordingly, as there is no concept of a rolling flashback log
window. If the flash recovery area runs out of space, not only will the snapshot standby
come to a halt, but the incoming redo from the primary database will also be stopped.

 On both the primary and ■ all standby databases, if you want to be able to flash the
primary database back in time. In this case, Flashback Database must be expressly
enabled on all of your databases in the Data Guard setup before the flashback at the
primary database occurs. The retention period on the standby databases must also
be equal to or greater than the primary database retention period. If you perform a
Flashback Database operation on your primary database, you must first stop the apply
processes on all standby databases. Once the OPEN RESETLOGS command has been
executed on the primary database after the flashback, you must flash back each standby
database to a point in time prior to the primary flashback. When the redo starts to be
transmitted again (with the sequence numbers reset to 1), the standby will recognize the
change and recover the standby up to the point of the flashback and then start processing
the new redo stream.

 On the primary database, to be able to recover the database after a failover. Flashback ■
Database must be enabled before you failover to a standby in this case, but the retention
period needs to be set only to 60 minutes if you do not plan on using Flashback
Database, as in the preceding case. Data Guard needs only a little bit of flashback log to
move the failed primary back in time so that it can be converted to a standby database
and resynchronized with the new primary database. This will be discussed in the next
section in detail.

As you can see, you should enable Flashback Database in a Data Guard configuration for
many reasons. But do not dismiss the last one too quickly. In today’s world, databases are
growing at a tremendous rate. As we have said before, it is no longer a matter of if you will
failover but when you failover, and that could mean that you will have to take a long protection
outage if you did not have Flashback Database enabled on your original primary, even if your
production outage is very short. Having to back up and restore several terabytes of data and then
ship them to the original primary site just to get a standby up and running again can take a long
time. As we said in Chapter 2, Murphy’s Law says you will have a failure of the new production

1 See http://download.oracle.com/docs/cd/B28359_01/backup.111/b28270/rcmconfb.htm#BRADV83993 to read
about DB_FLASHBACK_RETENTION_TARGET and ALTER DATABASE FLASHBACK ON;.

http://download.oracle.com/docs/cd/B28359_01/backup.111/b28270/rcmconfb.htm#BRADV83993

Chapter 8: Switchover and Failover 311

site before that backup can be completed and resynchronized. Flashback Database enabled on
the primary database makes that process take only a few minutes.

Performing a Switchover
Performing a switchover is not rocket science, at least as far as the Oracle Database and Data Guard
are concerned. We realize that many other parts of your environment may need to be included in
the switchover process before the database goes down. And they will need to be restarted again
afterward, making connections to the new primary database. But other than the client failover we
discuss in Chapter 11, it is beyond the scope of this book to go into the details of client and middle
tier switchovers—there are just too many possible combinations.

As we mentioned in the beginning of this chapter, you need to take some preparatory steps
before starting the switchover. Then, depending on your configuration (RAC or single instance)
and target standby (physical or logical), some extra steps may also be necessary.

After we have discussed the preparatory steps, we will go through the actual switchover steps,
first for a physical standby database and then for a logical standby database using only SQL*Plus
(the Power User Method). After that, we will examine the steps for the Broker and Grid Control. It
is important that you understand the SQL*Plus method even if you are using the Broker or Grid
Control, because the preparatory work is required in all methods. And some of the tricks and
checks are worth doing regardless of your interface to Data Guard.

Configuration Completeness Check
As we mentioned, unless you are using the Broker or Grid Control, you must make sure that all of
the necessary Data Guard parameters have been defined on the primary and the standby
database, as outlined in Chapter 2.

Regardless of interface, you must also make sure that the SRL files have been created on the
current primary so that it can properly receive the redo when it becomes a standby database.
Finally, if you are switching over to a physical standby database, you need to make sure that it has a
temporary data file defined. If you followed Chapter 2 and used Recovery Manager (RMAN), this
will have been done for you in 11g. Prior versions of Oracle required that you manually create the
temp file on the physical standby.

NOTE
If you are using the Data Guard Broker, you must make sure that all
the prerequisites from Chapter 5 have been met before beginning a
role transition.

If you have not already enabled Flashback Database, now would be a good time to do so. If it
is enabled before you begin the switchover, you can use it to return to your original configuration
easily if you encounter some kind of failure during the switchover. Since this requires a bounce of
the primary, this should be done at some point prior to a switchover when your system can
withstand a quick restart of the primary database.

Preparatory Checks
Our preparatory work for a switchover begins before the pre-switchover work required for
your application starts. Since this is a planned event, your first step is to verify that you can
in fact perform a switchover. This is done by checking to make sure that the target standby

312 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 8: Switchover and Failover 313

(and preferably your other standby databases as well) is completely synchronized with the
current primary database. A switchover cannot complete until it has received and applied all
redo up to and including the EOR redo that you are going to generate when you actually start
the switchover.

Verifying That the Standby Has Received All Redo
If you are running in a zero data loss mode (Maximum Availability or Maximum Protection), you
can ensure that the target of your switchover is synchronized by examining the V$ARCHIVE_
DEST_STATUS view on the primary database:

SQL> SELECT DB_UNIQUE_NAME, PROTECTION_MODE, SYNCHRONIZATION_STATUS,
 2> SYNCHRONIZED FROM V$ARCHIVE_DEST_STATUS
DB_UNIQUE_NAME PROTECTION_MODE SYNCHRONIZATION_STATUS SYN
--------------- -------------------- ---------------------- ---
NONE MAXIMUM PERFORMANCE CHECK CONFIGURATION NO
matrix_dr0 MAXIMUM AVAILABILITY OK YES
NONE MAXIMUM PERFORMANCE CHECK CONFIGURATION NO
NONE MAXIMUM PERFORMANCE CHECK CONFIGURATION NO
NONE MAXIMUM PERFORMANCE CHECK CONFIGURATION NO
NONE MAXIMUM PERFORMANCE CHECK CONFIGURATION NO
NONE MAXIMUM PERFORMANCE CHECK CONFIGURATION NO
NONE MAXIMUM PERFORMANCE CHECK CONFIGURATION NO
NONE MAXIMUM PERFORMANCE CHECK CONFIGURATION NO
NONE MAXIMUM PERFORMANCE CHECK CONFIGURATION NO
10 rows selected.

As you can see in this above, our target standby (and our only standby) MATRIX_DR0 is
synchronized with the primary database. This is sufficient to verify that the standby has received
all the redo. But if SYNCHRONIZED does not say YES or you are running in Maximum
Performance mode, you need to do a bit more work to verify the redo status. Go to your target
standby database and execute the following SQL command:

SQL> SELECT CLIENT_PROCESS,PROCESS,SEQUENCE#,STATUS FROM V$MANAGED_STANDBY;
CLIENT_P PROCESS SEQUENCE# STATUS
-------- --------- ---------- ------------
ARCH ARCH 326 CLOSING
ARCH ARCH 0 CONNECTED
ARCH ARCH 327 CLOSING
ARCH ARCH 0 CONNECTED
N/A MRP0 328 APPLYING_LOG
LGWR RFS 328 IDLE
ARCH RFS 0 IDLE
N/A RFS 0 IDLE
8 rows selected.
SQL>

The output from this command will show you the current sequence that the primary is
sending, as evidenced by the CLIENT_PROCESS equal to LGWR, which is sequence 328 in our
case. If you are using SYNC or ASYNC, you will get the same result. If, however, you are using
ARCH (remember that ARCH has been deprecated but still exists in 11g and previous versions),

Chapter 8: Switchover and Failover 313

you should at least see an ARCH to RFS connection with the last archived sequence from the
primary, which should be no more than 1 less than the primary, as shown in the following
command executed on the primary:

SQL> SELECT THREAD#,SEQUENCE#,STATUS FROM V$LOG;
 THREAD# SEQUENCE# STATUS
---------- ---------- ----------------
 1 328 CURRENT
 1 326 INACTIVE
 1 327 INACTIVE
SQL>

If the standby is not receiving the current redo, you cannot switchover. Note that if your
primary is a RAC, you should see multiple LGWR to RFS connections, one for each primary
thread. You must validate that each primary thread is caught up.

Checking That the Apply Is Caught Up
Once you have determined that the redo stream is current, you need to make sure that the redo
has all been applied to the standby database.

Redo Apply In the case of a physical standby you will see the MRP0 line in the V$MANAGED_
STANDBY query like so:

CLIENT_P PROCESS SEQUENCE# STATUS
-------- --------- ---------- ------------
N/A MRP0 328 APPLYING_LOG
LGWR RFS 328 IDLE

If you are switching over to a physical standby and you do not see the MRP0 line, then the
apply is not running. To switchover, you must start the apply service and wait for it to catch up
with the current redo stream before starting.

If you see the MRP0 line but it has a status of WAIT_FOR_GAP, you cannot switchover until
the gap has been resolved.

Remember that a status of WAIT_FOR_LOG means that either you are not running real-time apply
or you have specified a DELAY. In the case of a DELAY, you must stop the apply process and restart it
using the NODELAY qualifier; otherwise, your switchover will not be able to complete.

SQL Apply If you are performing a switchover to a logical standby, there will be no indication
in the V$MANAGED_STANDBY view about the SQL Apply process, just the redo transport. To verify
that the logical standby is caught up with the primary, use the V$LOGSTDBY_PROGRESS view.
Here’s an example:

SQL> SELECT APPLIED_SCN, LATEST_SCN, MINING_SCN FROM V$LOGSTDBY_PROGRESS;
APPLIED_SCN LATEST_SCN MINING_SCN
----------- ----------- ----------
 7178240496 7178240507 7178240507

If the redo transport check from V$MANAGED_STANDBY is up to date and the MINING_SCN and
LATEST_SCN from the above command are in sync, then the logical standby is caught up and

314 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 8: Switchover and Failover 315

ready to go. If, on the other hand, transport looks correct but the MINING_SCN is behind the
LATEST_SCN, you may have a gap. You can check for this by using this SQL command:

SQL> SELECT STATUS FROM V$LOGSTDBY_PROCESS WHERE TYPE = 'READER';
STATUS
--
ORA:01291 Waiting for logfile

In this case, you have a gap that must be resolved before beginning the switchover, as with
a physical standby.

Canceling Jobs and Backups
Finally, you must cancel any running jobs on the primary database (and disable any new ones
from starting) such as RMAN backups, application cleanup jobs, Oracle Text Sync jobs, and so
on. In addition, stop any RMAN backups that are currently running on the target standby database
as this can interfere with the switchover. For example, to find out if RMAN is running, try the
following command:

SQL> SELECT PROCESS, OPERATION, R.STATUS, MBYTES_PROCESSED PCT, S.STATUS
 FROM V$RMAN_STATUS R, V$SESSION S WHERE R.SID=S.SID
PROCESS OPERATION STATUS PCT STATUS
------------------ ------------------------- ---------------- --- --------
19507 RMAN RUNNING 0 ACTIVE
19507 BACKUP BACKUPSET RUNNING 0 ACTIVE

Once you have performed all of the checks in this section and resolved any problems, you
are ready to continue. But if you cannot resolve them, you must abandon the switchover.

Preprocessing Steps
If your standby database passed the mandatory checks discussed so far, you are ready to begin the
switchover. Your first step is to start monitoring the alert logs of the primary and the target standby
databases. If possible, do a tail –f of each database’s alert log. If you are using Windows, you’ll
find third-party free tools that will let you do this if you want. Here’s an example on the primary
database system:

[Matrix] cd $ORACLE_BASE/diag/rdbms
[Matrix] tail -f ./matrix/Matrix/trace/alert_Matrix.log
Mon Jan 19 13:20:37 2009
Thread 1 cannot allocate new log, sequence 334
Private strand flush not complete
 Current log# 3 seq# 333 mem# 0:
 +DATA/matrix/onlinelog/group_3.297.671727289
 Current log# 3 seq# 333 mem# 1:
 +FLASH/matrix/onlinelog/group_3.256.671727297
LGWR: Standby redo logfile selected to archive thread 1 sequence 334
LGWR: Standby redo logfile selected for thread 1 sequence 334 for
 destination LOG_ARCHIVE_DEST_2
Thread 1 advanced to log sequence 334
 Current log# 1 seq# 334 mem# 0:
 +DATA/matrix/onlinelog/group_1.300.671727255

Chapter 8: Switchover and Failover 315

 Current log# 1 seq# 334 mem# 1:
 +FLASH/matrix/onlinelog/group_1.266.671727263

And here’s the corresponding target standby alert log:

[Matrix] cd $ORACLE_BASE/diag/rdbms
[Matrix] tail -f ./matrix_dr0/Matrix_DR0/trace/alert_Matrix_DR0.log
Mon Jan 19 16:19:49 2009
Primary database is in MAXIMUM AVAILABILITY mode
Standby controlfile consistent with primary
kcrrvslf: active RFS archival for log 6 thread 1 sequence 333
RFS[8]: Successfully opened standby log 5:
 '+DATA/matrix_dr0/onlinelog/group_5.258.671757777'
Mon Jan 19 16:19:51 2009
Media Recovery Waiting for thread 1 sequence 334 (in transit)
Recovery of Online Redo Log: Thread 1 Group 5 Seq 334 Reading mem 0
 Mem# 0: +DATA/matrix_dr0/onlinelog/group_5.258.671757777
 Mem# 1: +FLASH/matrix_dr0/onlinelog/group_5.421.671757783

These two alert logs will tell you what is happening during the switchover process, and you should
be monitoring them regardless of which interface you are using to manage Data Guard—SQL*Plus,
the Broker, or Grid Control.

If you are paranoid (and who isn’t?), you can also turn on Data Guard tracing to the maximum so
that all tracing information will be written out to the alert log and trace files for diagnostic purposes:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_TRACE=8192;

But if you set up tracing, remember to turn it off after you are done or you will be generating
a lot of information during production:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_TRACE=0;

In addition, you can define a Flashback Database guaranteed restore point (GRP) on both the
primary database and the target standby database that can be used to reverse the switchover.
However, if you have not previously enabled Flashback Database on the primary, you would have
to bounce the primary to create the GRP (or enable Flashback Database and create the GRP),
which may not be something you want to do at this point. If you create the GRP, make sure that
you drop it from both databases after the switchover is complete; otherwise, you will be generating
permanent Flashback Database logs forever, which will eventually fill up your flash recovery area.

Finally, switch logs at the primary to flush out any current redo and execute the switchover
command.

Switching over to a Physical Standby
Before you can execute the switchover SQL, you must bring the two databases down to one
instance each—the primary instance where you are executing the switchover and the standby
instance where the MRP0 (Redo Apply) is running. Obviously, if you do not have RAC on either
end, you don’t need to worry about this step.

Over the years, much discussion has focused on how to shut down the auxiliary instances,
IMMEDIATE or ABORT? Or, to put it another way, “slow but sure” versus “fast but risky.” Like
everything else in a Data Guard configuration (or any other type of DR solution for that matter),

316 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 8: Switchover and Failover 317

this is one of the trade-off decisions you have to make. If you are sure of your setup and want to
execute this part of the process as fast as possible, then perform a SHUTDOWN ABORT on the auxiliary
instance, but do not use ABORT on the instance from where you will execute the switchover. And be
aware of the fact that crash recovery is going to be taking place and ultimately you have to wait until
all the aborted instances have been recovered and the final redo log sent to the standby database
before you can continue.

If you think we are against using ABORT to shut down the auxiliary instances, this is not
necessarily the case. We are careful when it comes to our data, and since a switchover is a
planned event, what’s a few extra minutes? As we have said, if speed is paramount, then ABORT is
probably necessary, but use with care. If client connections are the issue, then shut down the
listeners before you begin the shutdown and do not restart them until the switchover is complete.
In any event, bring the instances down to 1 on each side and do the auxiliary instance shutdown
in parallel between the primary and standby databases

After you are down to one instance, do a final check by examining the column SWITCHOVER_
STATUS in V$DATABASE as follows:

SQL> SELECT SWITCHOVER_STATUS FROM V$DATABASE;
SWITCHOVER_STATUS

SESSIONS ACTIVE

Since you are going to use the session shutdown capability of Data Guard, you could ignore
the fact that some sessions are active on your remaining primary instance. But to find out what is
running, look at V$SESSION:

SQL> SELECT PROGRAM, TYPE FROM V$SESSION WHERE TYPE='USER';
PROGRAM TYPE
-- ----------
emagent@stadu67 (TNS V1-V3) USER
emagent@stadu67 (TNS V1-V3) USER
OMS USER
OMS USER
oracle@stadu67 (J000) USER
sqlplus@stadu67 (TNS V1-V3) USER
sqlplus@stadu67 (TNS V1-V3) USER

In our case, it was the Enterprise Manager Database Console. We don’t really need to worry
about those sessions, but to clear them out, we shut down the DB Console. Once that was done,
another look gives us the signal to move ahead:

SQL> SELECT SWITCHOVER_STATUS FROM V$DATABASE;
SWITCHOVER_STATUS

TO STANDBY
SQL>

This is it! Although it may seem like a long road to get here (and all of those checks were
worth it), we can now execute the switchover command:

SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO PHYSICAL STANDBY
 WITH SESSION SHUTDOWN;
Database altered.

Chapter 8: Switchover and Failover 317

You can see what transpired on the primary by examining the tail of the alert log:

Mon Jan 19 18:12:23 2009
ALTER DATABASE COMMIT TO SWITCHOVER TO PHYSICAL STANDBY
 WITH SESSION SHUTDOWN
Mon Jan 19 18:12:27 2009
LGWR: Standby redo logfile selected to archive thread 1 sequence 336
LGWR: Standby redo logfile selected for thread 1 sequence 336 for destination
LOG_ARCHIVE_DEST_2
Thread 1 advanced to log sequence 336
...
Active process 17986 user 'lcarpent' program 'oracle@stadu67 (FBDA)'
Active process 17986 user 'lcarpent' program 'oracle@stadu67 (FBDA)'
CLOSE: waiting for server sessions to complete.
CLOSE: all sessions shutdown successfully.
...
Mon Jan 19 18:12:47 2009
Thread 1 closed at log sequence 337
Successful close of redo thread 1
ARCH: Noswitch archival of thread 1, sequence 337
ARCH: End-Of-Redo Branch archival of thread 1 sequence 337
...
Mon Jan 19 18:12:53 2009
Backup controlfile written to trace file
/scratch/OracleHomes/diag/rdbms/matrix/Matrix/trace/Matrix_ora_32137.trc
Archivelog for thread 1 sequence 337 required for standby recovery
...
Mon Jan 19 18:12:56 2009
MRP0 started with pid=21, OS id=1728
MRP0: Background Managed Standby Recovery process started (Matrix)
Fast Parallel Media Recovery NOT enabled
Managed Standby Recovery not using Real Time Apply
 parallel recovery started with 2 processes
Media Recovery Log
 +FLASH/matrix/archivelog/2009_01_19/thread_1_seq_337.351.676577573
Identified End-Of-Redo for thread 1 sequence 337
Resetting standby activation ID 2212007183 (0x83d88d0f)
Media Recovery End-Of-Redo indicator encountered
Media Recovery Applied until change 7591537
MRP0: Media Recovery Complete: End-Of-REDO (Matrix)
MRP0: Background Media Recovery process shutdown (Matrix)
Switchover: Complete - Database shutdown required (Matrix)
Completed: ALTER DATABASE COMMIT TO SWITCHOVER TO PHYSICAL STANDBY
 WITH SESSION SHUTDOWN

From this edited output, you can see the steps covered earlier in the chapter:

 1. Switched log files immediately to sequence 336.

 2. Killed off any remaining users.

 3. Closed the database.

318 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 8: Switchover and Failover 319

 4. Put the EOR in sequence 337 (as shown later by the MRP).

 5. Switched logs again without allowing an advance in sequence numbers.

 6. Wrote out the command to re-create the control file to the trace files.

 7. Started the MRP, which processed the EOR in sequence 337 and shut down.

At this point, the primary database has been dismounted, and when it is restarted it will be
a physical standby database. To complete the switchover, you must wait for the EOR to be
processed at the target physical standby. Examine the tail of the standby alert log and you will
see where the MRP processes the EOR and exits:

Mon Jan 19 21:11:39 2009
Media Recovery Waiting for thread 1 sequence 336 (in transit)
RFS[8]: Successfully opened standby log 5:
 +DATA/matrix_dr0/onlinelog/group_5.258.671757777'
Recovery of Online Redo Log: Thread 1 Group 5 Seq 336 Reading mem 0
Mon Jan 19 21:11:51 2009
Media Recovery Waiting for thread 1 sequence 337
Mon Jan 19 21:11:58 2009
Redo Shipping Client Connected as PUBLIC
-- Connected User is Valid
RFS[10]: Assigned to RFS process 19665
RFS[10]: Identified database type as 'physical standby'
RFS[10]: Archived Log:
 +FLASH/matrix_dr0/archivelog/2009_01_19/thread_1_seq_337.350.676588325'
Mon Jan 19 21:12:07 2009
Media Recovery Log
 +FLASH/matrix_dr0/archivelog/2009_01_19/thread_1_seq_337.350.676588325
Identified End-Of-Redo for thread 1 sequence 337
Resetting standby activation ID 2212007183 (0x83d88d0f)
Media Recovery End-Of-Redo indicator encountered
Resetting standby activation ID 2212007183 (0x83d88d0f)
MRP0: Media Recovery Complete: End-Of-REDO (Matrix_DR0)
MRP0: Background Media Recovery process shutdown (Matrix_DR0)

Once the MRP has shut down after processing the EOR, the SWITCHOVER_STATUS from
V$DATABASE will show TO PRIMARY as long as no users are accessing the database. If it says
SESSIONS ACTIVE, then use the WITH SESSIONS SHUTDOWN qualifier on the switchover
command.

Complete the switchover with the ALTER DATABASE COMMIT TO PRIMARY command:

SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY
 WITH SESSION SHUTDOWN;
Database altered.

This command finishes up the processing of the switchover by clearing various memory
structures as needed and converting the standby control file to a normal database control file.
When complete, the standby can be opened as the primary:

Mon Jan 19 21:45:17 2009

ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY WITH SESSION SHUTDOWN

Chapter 8: Switchover and Failover 319

ALTER DATABASE SWITCHOVER TO PRIMARY (Matrix_DR0)

Backup controlfile written to trace file <trace>/Matrix_DR0_ora_20944.trc

SwitchOver after complete recovery through change 7591537

…

Online log +DATA/matrix_dr0/onlinelog/group_1.259.671758349: Thread 1 Group 1 was

previously cleared

Online log +DATA/matrix_dr0/onlinelog/group_2.272.671758359: Thread 1 Group 2 was

previously cleared

Online log +DATA/matrix_dr0/onlinelog/group_3.274.671758367: Thread 1 Group 3 was

previously cleared

Standby became primary SCN: 7591535

Converting standby mount to primary mount.

Switchover: Complete - Database mounted as primary (Matrix_DR0)

Completed: ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY

 WITH SESSION SHUTDOWN

If you used the THROUGH ALL SWITCHOVER startup qualifier for the MRP, the switchover
command will stall for a maximum of 15 minutes for the MRP to stop. You will see the line
Media Recovery Continuing in the alert log:

Mon Jan 19 21:12:07 2009
Media Recovery Log
 +FLASH/matrix_dr0/archivelog/2009_01_19/thread_1_seq_337.350.676588325
Identified End-Of-Redo for thread 1 sequence 337
Resetting standby activation ID 2212007183 (0x83d88d0f)
Media Recovery End-Of-Redo indicator encountered
Media Recovery Continuing
Resetting standby activation ID 2212007183 (0x83d88d0f)
Media Recovery Waiting for thread 1 sequence 338

This means that the MRP has been told to ignore the switchover (you used the THROUGH ALL
SWITCHOVER clause to start managed recovery). If you encounter this situation, the switchover
will cancel the MRP automatically once it has applied the EOR:

Mon Jan 19 21:12:27 2009
alter database commit to switchover to primary with session shutdown
ALTER DATABASE SWITCHOVER TO PRIMARY (Matrix_DR0)
Maximum wait for role transition is 15 minutes.
Mon Jan 19 21:12:57 2009

Stopping the MRP
The MRP process must complete applying the EOR redo and then exit. In Oracle10g, if you
used the THROUGH ALL SWITCHOVER startup qualifier to the MANAGED RECOVERY command,
you had to stop the MRP manually before the switchover command could complete on the
standby; otherwise it would fail. In Oracle Database 11g, the switchover command will stop
the MRP once there is no more redo to apply. The THROUGH ALL SWITCHOVER qualifier has
been deprecated since Oracle Database 10g Release 2.

320 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 8: Switchover and Failover 321

Switchover: Media recovery is still active
Role Change: Canceling MRP - no more redo to apply
Mon Jan 19 21:12:58 2009
MRP0: Background Media Recovery cancelled with status 16037
ORA-16037: user requested cancel of managed recovery operation
Managed Standby Recovery not using Real Time Apply
Shutting down recovery slaves due to error 16037
Recovery interrupted!

The THROUGH ALL SWITCHOVER qualifier has been deprecated since Oracle Database 10g
Release 2.

Finish the switchover by opening the new primary database with ALTER DATABASE OPEN,
at which point users can start to reconnect. Restart the old primary as a standby and start Redo
Apply (the MRP). Of course, the restart of the old primary can be done in parallel with the
switchover processing on the standby.

On the new primary, use this command:

SQL> ALTER DATABASE OPEN;

And on the original primary, now a standby database, use this command:

SQL> SHUTDOWN IMMEDIATE
SQL> STARTUP MOUNT
SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE
 2> USING CURRENT LOGFILE DISCONNECT;

Then you can start up the auxiliary RAC instances on the primary and standby databases if
you are using RAC. Your client switchover will occur based on your service relocation strategy,
which is discussed in Chapter 10.

Switching over to a Logical Standby
The switchover process for a logical standby is somewhat simpler because of improvements in
Oracle Database 11g and the fact that a logical standby is already open read-write. But it also has
a second set of steps that guarantee the safety of your data if a failure occurs after the switchover
but before the new logical standby database can process new transactions.

Remember, though, that when you switchover to a logical standby, any physical standby
databases will no longer receive redo from this new primary as they are not physical copies of
the new primary but rather of the old primary. Other logical standby databases can be manually
reintegrated.

As of Oracle Database 11g, you no longer need to shut down any database instance (primary
or logical standby) when you perform a switchover between your primary and a logical standby
database. In Oracle Database 10g Release 2, you do need to shut down all auxiliary instances
just like a physical standby switchover as long as your COMPATIBILITY is set to 10.2.0.2 or
higher. If COMPATIBILITY is not set to 10.2.0.2 or you are using a prior version of Oracle, then
not only do you need to shut down the auxiliary instances, but you must disable their threads on
both the primary database and the target logical standby database. Once the switchover is
complete, you can re-enable the threads and restart the instances.

Chapter 8: Switchover and Failover 321

NOTE
As of Oracle Database 11g, you no longer need to shut down any
database instance (primary or logical standby) when you perform a
switchover between your primary and a logical standby database.

As with a physical standby, you can check the SWITCHOVER_STATUS column of V$DATABASE
to make sure that the primary is in a state to consider a switchover:

SQL> SELECT SWITCHOVER_STATUS FROM V$DATABASE;
SWITCHOVER_STATUS

TO STANDBY

But before you can commence the switchover, you must first prepare the two databases for the
operation. Unlike a physical standby, which is an exact copy of the primary, a logical standby
could be different, and once the roles have reversed, the new logical standby database needs to
know what the new primary looks like so SQL Apply can process the redo stream. To start the
preparation, you execute the following statement on the current primary database:

ALTER DATABASE PREPARE TO SWITCHOVER TO LOGICAL STANDBY

This tells the primary that a role transition could happen and that it needs to allow redo to be
shipped to it from a logical standby database.

Normally, a primary database receives redo from another database only if the primary
database is the target of a streams downstream capture setup and a streams client process is
responsible for receiving and processing the redo. When the primary is ready, it will show
PREPARING SWITCHOVER in the SWITCHOVER_STATUS column of the V$DATABASE view. You
then go to the logical standby database that will become the new primary database and tell it to
send the preparation information to the primary in its redo stream:

ALTER DATABASE PREPARE TO SWITCHOVER TO PRIMARY;

The logical standby will then commence a dictionary build and put it into the redo stream of the
logical standby, which will be sent to the primary. You do not need to tell the logical standby
where to send the redo because it knows where the primary is and only one primary database
can be in a Data Guard configuration. While the prepare is running, you will see PREPARING
DICTIONARY in the SWITCHOVER_STATUS column of V$DATABASE view.

The reason for this extra step is to ensure that the new logical standby database knows how to
apply the redo from the new primary the moment new primary transactions start to generate redo.
If you skip this preparatory step, you will be generating redo from business transactions that will
be sent to your logical standby. The new dictionary would then be behind that redo, and if you
had a failure of the new primary before the dictionary was sent to the new logical standby, a
failover would results in data loss.

Once the dictionary is built and sent, it will show PREPARING SWITCHOVER and you can
continue. You can check this by looking at the switchover status again. Now it will say TO
LOGICAL STANDBY instead of TO STANDBY as it has received and processed the new dictionary
and knows who is going to be the boss:

SQL> SELECT SWITCHOVER_STATUS FROM V$DATABASE;
SWITCHOVER_STATUS

TO LOGICAL STANDBY

322 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 8: Switchover and Failover 323

At this point, you are not 100-percent committed to the switchover, as the prepare phase can
be canceled using the CANCEL command. Cancel switchover on the primary database first:

SQL> ALTER DATABASE PREPARE TO SWITCHOVER CANCEL;

And then cancel the switchover on the logical standby database:

SQL> ALTER DATABASE PREPARE TO SWITCHOVER CANCEL;

This will unwind everything that the prepare has done and put the primary back into its normal
TO STANDBY state.

If you are committed to your logical standby switchover, the process is pretty much the same
as that for a physical standby from this point on. Tell the primary database that it is going to become
a logical standby database:

ALTER DATABASE COMMIT TO SWITCHOVER TO LOGICAL STANDBY;

This will cause the longest outage to your updating users as the switchover waits for all current
read-write transactions to commit and prevents any new read-write transaction from starting. If
a lot of activity with long-running read-write transactions is occurring on your primary when you
issue this command, you could see a significant stall to the users and the time it takes to complete
the switchover. Unlike the physical standby switchover, users are not terminated. As mentioned
earlier, since this is a planned event, plan accordingly and perform the switchover in a quiet time.
When the read-write transactions have all committed, the switchover completes and Data Guard
enables the GUARD on the primary to prevent any more updates to the data, as this is now a logical
standby database.

NOTE
When you switchover, the SQL Apply GUARD is enabled to its highest
level, ALL, which prevents anyone other than a SYSDBA user from
updating anything in the logical standby, not just the tables that SQL
Apply is maintaining from the primary. If you need to write to the
logical standby and previously lowered the guard to STANDBY, you will
have to set the guard manually to STANDBY on the new logical standby.

Querying the switchover status on the logical standby will tell you when it is ready to assume
the primary role:

SQL> SELECT SWITCHOVER_STATUS FROM V$DATABASE;
SWITCHOVER_STATUS

TO PRIMARY

Finish the switchover just as you did for the physical standby switchover by executing the
COMMIT command on the logical standby:

SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY;
Database altered.

Chapter 8: Switchover and Failover 323

NOTE
Notice that we did not use the WITH SESSION SHUTDOWN on either of
the two switchover commands in this case. This is because there is no
need to knock users off to do the switchover with a logical standby.

Since there was no need to shut down any RAC instances, everything on both sides is up and
running, and the only thing left to do is to start up SQL Apply on the new logical standby:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;

Any user-added objects to the original logical standby (now the primary) would of course not
exist in the new logical standby, and their redo would be skipped until you created and
instantiated them again in your new logical standby.

That is it! As with physical standby switchover, your client switchover will occur based on
your service relocation strategy.

Using the Broker or Grid Control to Switchover
We went through the Power User Method first in this chapter so that you understand Data Guard’s
under-the-cover processing, since none of it is exposed to the user when you use DGMGRL or
Enterprise Manager to perform the switchover.

Even though you are not using SQL*Plus to perform the switchover, you still need to perform
the steps of checking the configuration completeness, setting up the Broker prerequisites, and
performing the preparatory steps before you can begin a switchover. You do not necessarily have
to do the preprocessing steps, but it cannot hurt. In fact, you can also tail the Broker log as well as
the alert log for even more information. The Broker log is in the same directory as the database
alert log and begins with DRC.

Once you have completed the mandatory checks, you connect to DGMGRL through the
target standby database or the primary and perform the switchover:

[Matrix] dgmgrl
DGMGRL for Linux: Version 11.1.0.6.0 – Production
Copyright (c) 2000, 2005, Oracle. All rights reserved.
Welcome to DGMGRL, type "help" for information.
DGMGRL> CONNECT sys@MATRIX_DR0
Password:
Connected.
DGMGRL> SWITCHOVER TO MATRIX_DR0;

That’s about as simple as it can get! No RAC auxiliary instance shutdown and restart for
physical standby switchover, no CRS reconfiguration, no restart of the old primary (if performing
a physical standby switchover), no manual startup of the apply process—nothing, just a single
command.

The Broker does all of the processing for you regardless of the type of standby you are switching
to. And Grid Control is just a button click away, as you can see in Figure 8-5.

You select the target standby by clicking the radio button of that standby and clicking
Switchover. This will open a confirmation page, where you can choose YES or NO to have Grid
Control set up and submit a job to begin the switchover processing. Then it will return to the Data
Guard home page. Here, if you have the page refresh set to automatic, you can watch as the
switchover processes and the standby database becomes the primary and the primary a standby.

324 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 8: Switchover and Failover 325

Switchover Health Check
As you can see, performing a switchover is not a difficult process, even if you use SQL*Plus. The
actual commands are very simple and need to be done in order. The bulk of the work is
accomplished prior to your even getting close to executing the switchover and are steps that you
should be checking all the time:

 Make sure your configuration has been set up correctly and has not been altered. ■

 Meet all of the Data Guard prerequisites. ■

 Enable Flashback Database. ■

 Verify that redo is being sent to the standbys and is being applied. ■

 Ensure that the standby will not encounter problems during switchover/failover due to ■
nologging DML on the primary if you have not enabled FORCE LOGGING.

A Data Guard configuration that is not set up correctly, not receiving the primary redo, or not
applying it is pretty useless when it comes to failover, which is the subject of the next section. As
long as you follow the guidelines and rules for configuring your Data Guard implementation and
you take the time to understand and perform the switchover steps in the correct manner, you will be
able to execute switchovers whenever you need to, whether for testing or other planned outages.

Performing a Failover
This is it! This is what you have been preparing for ever since you started to read this book: how
to get your database back into production as quickly as possible after that dreaded failure.
Everything else we have been talking about so far in this book described how to set up your Data
Guard configuration correctly to meet the RTO and RPO requirements your business needs, how
things work under the covers, and how to use (to some extent) your Data Guard environment. In
this section, you can finally test your mettle—you want to be the one sitting calmly at your desk
when it seems like the world is ending. You want to prove Evans wrong!2

When you find that you must perform failover, it is an unplanned event, and there is no way
to resolve most of the things that you need to check in the preparatory steps before a switchover.
If you have a gap in the redo, that is where the failover will occur; there’s no going back and
getting the missing redo now, because the primary site is gone. Even though we sometimes talk
about trying to resolve a gap after the failure to get as much redo as possible to the standby before

2 Evans’s Law says that if you can keep your head when all about you are losing theirs, then you just don’t understand
the problem.

FIGURE 8-5. Using Grid Control to switchover

Chapter 8: Switchover and Failover 325

you failover, in reality, you will not be able to get that data, because it’s gone. If you can get it,
great; you were extremely lucky this time.

Even though some of the configuration completeness checks can be resolved now (temp files,
for example), there is no way to move to zero data loss after the failure at the primary, and you
are going to lose data. You made that decision when you configured Data Guard. So plan according
to your business requirements and configure for zero data loss before the failure happens!

What do you do before you failover? Stop any jobs (RMAN backups, and so on) and tail the
alert log file; that’s pretty much it as far as the database is concerned. Your next big task is to figure
out which database to failover to if you have more than one standby database. If you only have
one, it’s a moot point: choose that one. If you have multiple standby databases, you need to
examine each one and figure out which one has received the most redo, and then choose that
standby database as your failover target.

If you were running in Maximum Protection mode, one standby is guaranteed to be
synchronized with the primary database at the time of failure. But if you followed the suggestions
in this book and ran with two SYNC standby databases, you need to determine which one has the
most redo if both of them are synchronized (look at SYNCHRONIZED in V$ARCHIVE_DEST_STATUS)
at the time of failover.

The same thing applies to running in Maximum Availability mode. If a standby were
synchronized with the primary database at failure time, it should be your failover target. But if
you had two SYNC standby databases that were synchronized at the time of failure (as with
Maximum Protection), you also need to figure out which one has the most redo.

And with Maximum Performance, there is no column to examine to determine whether one
standby was synchronized or not, as there is no concept of that in Maximum Performance.

Consider the standby databases that you have defined and that meet the protection mode you
have defined as your first failover targets. If you have a SYNC standby and an ASYNC standby and
are running in Maximum Availability mode, you would choose the SYNC standby first. In addition,
choose a physical standby database over a logical standby database if you have both. The logical
standby database will easily follow along as a standby to the new primary (you may have to
reintegrate it first using Flashback Database) if you failover to a physical standby database, whereas
a physical standby database will never cooperate with the new primary if it was a logical standby in
a former life.

If you end up with more than one potential failover target, you should examine each one to
determine which has the most redo. You can examine (as the Data Guard manual shows) the
V$DATAGUARD_STATS view:

SQL> SELECT NAME, VALUE, TIME_COMPUTED
 FROM V$DATAGUARD_STATS WHERE NAME LIKE '%lag%';
NAME VALUE TIME_COMPUTED
------------------ ---------------- ------------------------
apply lag +00 00:00:00 20-JAN-2009 22:54:18
transport lag +00 00:00:00 20-JAN-2009 22:54:18
SQL>

This will show you where this standby database “thinks” it is in relation to the primary, but it
does not show you exactly the last SCN that was received. You can find this information by looking
at the standby redo log files using V$STANDBY_LOG:

SQL> SELECT THREAD#,SEQUENCE#,LAST_CHANGE#,LAST_TIME FROM V$STANDBY_LOG;
 THREAD# SEQUENCE# LAST_CHANGE# LAST_TIME

326 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 8: Switchover and Failover 327

---------- ---------- ------------ ---------
 1 0 0
 1 5 7671155 21-JAN-09
 0 0 0
 0 0 0

NOTE
In versions of Oracle prior to 11g, the LAST_CHANGE# and LAST_
TIME columns of V$STANDBY_LOG are only filled in when the RFS
processes run down after they discover the disconnect from the
primary. You may have to wait until they do run down to get a valid
value from this view at failover time if you are not using Oracle
Database 11g.

Once you have selected your target, you are ready to failover. The procedure used depends
on the type of standby you have chosen.

Failing over to a Physical Standby
A failover to a physical standby is executed only on the target standby and uses some of the same
commands used for a switchover. As with a switchover, you must shut down all but the instance
of a RAC standby where the MRP is running. SHUTDOWN IMMEDIATE or ABORT has less importance
other than speed in this case, since no redo is being generated by the standby and hence no real
crash recovery needs to take place.

When those instances are shut down, you must first tell the apply process that the primary is
gone and this standby database is going to become the new primary. You do this by instructing it
to apply all the redo it can using an additional qualifier to the RECOVER MANAGED STANDBY
DATABASE command, FINISH. To do this, you first cancel the MRP and then restart it with the
extra qualifier:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;
Database altered.
SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE FINISH;
Database altered.

TIP
If you have a gap in the redo and it is not possible for the MRP to
apply all the redo it has received, the FINISH command will fail and
you must revert to the old ALTER DATABASE ACTIVATE PHYSICAL
STANDBY DATABASE; to failover your standby database, which will
incur data loss from the last redo successfully applied onward. This
command can also be used explicitly to prevent redo from being
applied at failover time.

This tells the MRP not to wait any longer for more redo and to apply all the redo it can and finish
up by emulating the switchover command at the primary and placing the Terminal EOR (TEOR) in
the header of the last redo log from the primary. You can see this in the alert log output:

ALTER DATABASE RECOVER MANAGED STANDBY DATABASE FINISH
Attempt to do a Terminal Recovery (Matrix_DR0)

Chapter 8: Switchover and Failover 327

Media Recovery Start: Managed Standby Recovery (Matrix_DR0)
Fast Parallel Media Recovery enabled
Managed Standby Recovery not using Real Time Apply
Terminal Recovery timestamp is '01/20/2009 23:56:20'
Terminal Recovery: applying standby redo logs.
Terminal Recovery: thread 1 seq# 377 redo required
Terminal Recovery:
Recovery of Online Redo Log: Thread 1 Group 6 Seq 377 Reading mem 0
 Mem# 0: +DATA/matrix_dr0/onlinelog/group_6.265.671757787
 Mem# 1: +FLASH/matrix_dr0/onlinelog/group_6.420.671757793
Identified End-Of-Redo for thread 1 sequence 377
Incomplete recovery applied all redo ever generated.
Recovery completed through change 7658944 time 01/20/2009 20:55:47
Media Recovery Complete (Matrix_DR0)
Terminal Recovery: successful completion
Resetting standby activation ID 2216964717 (0x8424326d)
Completed: ALTER DATABASE RECOVER MANAGED STANDBY DATABASE FINISH

An interesting note regarding the FINISH command is that in prior releases, the existence of
RFS processes would cause the failover to fail since the MRP considered the presence of an RFS
process evidence that the primary was still functioning. And in that case, why are you failing
over? In Oracle Database 10g Release 2, Data Guard added a FORCE qualifier that allows the
DBA to force the shutdown of those errant RFS processes. In 11g, FORCE was made the default
and the FORCE qualifier deprecated.

Once the FINISH command has completed, the protection mode of the primary database is
lowered to Maximum Performance, regardless of its original protection mode. This is done so that
the new primary database can open without a standby if you had only one standby database, and
it is now the failed primary database. With Maximum Protection mode, it is extremely important
that the protection mode is lowered to Maximum Performance in this case, since the absence of a
viable standby will prevent the primary database from opening. In addition, the protection level is
set to UNPROTECTED at this point in the procedure because Data Guard does not even know if you
have a standby database configured to protect it when you open for business:

Protection Mode Protection Level
-------------------- --------------------
MAXIMUM PERFORMANCE UNPROTECTED

The standby database is now in the same place that it was in the switchover when the MRP
applied the EOR—in limbo. Now you can issue the switchover command and open the new
primary database:

SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY WITH SESSION SHUTDOWN;
Database altered.
SQL> ALTER DATABASE OPEN;
Database altered.
SQL>

The open will pause while Data Guard tries to establish a connection with the standby
databases you have configured, which in our case is the failed primary database. Once it tries
a couple of times, the open will finish and the protection level of the database will be set to

328 Oracle Data Guard 11g Handbook Chapter 8: Switchover and Failover 329

MAXIMUM PERFORMANCE until you manually raise it back to AVAILABILITY or PROTECTION as
required:

Protection Mode Protection Level
-------------------- --------------------
MAXIMUM PERFORMANCE MAXIMUM PERFORMANCE

If users were connected to the physical standby using the Active Data Guard option, they will
be terminated as with a switchover. You now have a new primary database, and as with switchover,
the client failover will occur based on your service relocation strategy.

Failing over to a Logical Standby
As with physical standby failover, if you have a gap in the redo, you are going to failover to your
logical standby with major data loss unless you can somehow find all that missing redo. But this
is not all bad news. As with a logical standby switchover, you do not need to shut down any extra
RAC instances, nor do you have to terminate any users who might be attached to the logical
standby. Once you have decided to failover to your logical standby, you execute one command:

SQL> ALTER DATABASE ACTIVATE LOGICAL STANDBY DATABASE FINISH APPLY;
Database altered.
SQL>

CAUTION
If you do not specify the FINISH APPLY qualifier to the logical
standby activate command, all redo that has not been applied will
be discarded. Omitting the FINISH APPLY qualifier should be used
only to prevent all the redo from being applied at failover time, after a
FLASHBACK DATABASE for example.

When this command completes, SQL Apply will have applied all the available redo using the
same rules applied to the physical standby (remember thread merging and data loss?), converted
the control file to a primary control file, and removed the GUARD so that all users can update all
data in the database as usual. The same advice on protection modes with physical standby
failover mentioned in the last section also applies here, as does client failover.

As with a switchover to a logical standby, you must remember that any physical standby
databases will no longer receive redo from this new primary because they are not physical copies

Speeding Up the Open
When running in Maximum Availability, you can defer the destination used for the original
primary database that you defined for switchover until you reinstate the old primary as a
standby database. In this manner, Data Guard will not try to attach to the standby before
allowing the database to open. If you were running in Maximum Protection mode and no
other standby was configured with SYNC transport, you must lower the protection mode to
Maximum Performance before performing the failover.

Chapter 8: Switchover and Failover 329

of the new primary but rather of the old primary. Other logical standby databases can be
manually reintegrated.

Bringing Back the Old Primary
So what do you do about the original primary database after a failover? Regardless of which type
of standby you failed over to, if that was your only standby database you are going to be running
unprotected until you can set up a new standby database and get it synchronized.

If you did not follow our suggestion and enable Flashback Database before you had to failover,
your only choice is to delete the original primary database (even if it is in perfect condition) and re-
create it following the procedures outlined in Chapter 2.

If, on the other hand, you did enable Flashback Database before the primary failure and the
original primary database is still intact when the primary site comes back, you can easily bring
back the original primary as a standby with a few simple steps. This procedure is usually referred
to as reinstatement.

CAUTION
Be careful not to let the old primary database come back up as an
open read-write primary database after you have failed over to a
standby. This could cause your applications to connect to this stale
database and begin generating transactions at the same time other
client applications are connected to the real primary. We refer to this
as a “split brain” situation that is difficult to recover from, at least for
those transactions that were run on the old primary by mistake. Never
let a failed primary database go beyond the mount phase if you have
already failed over to a standby.

Reinstating the Primary After a Physical Standby Failover
To begin the process, we need to figure out the point at which our standby database became the
primary database. Since redo is applied by SCN, we need the failover SCN from the new primary.
When a physical standby becomes the primary, the failover SCN is written to the control file and
visible through the column STANDBY_BECAME_PRIMARY_SCN:

SQL> SELECT TO_CHAR(STANDBY_BECAME_PRIMARY_SCN) FAILOVER_SCN
 FROM V$DATABASE;
FAILOVER_SCN
--
7658942

Armed with this SCN number, we can go back to the original primary database, mount it,
flash it back to that SCN, and convert it in place to a physical standby database. Add a restart,
and we have a physical standby database again!

SQL> STARTUP MOUNT
ORACLE instance started.
Database mounted.
SQL> FLASHBACK DATABASE TO SCN 7658942;
Flashback complete.
SQL> ALTER DATABASE CONVERT TO PHYSICAL STANDBY;

330 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 8: Switchover and Failover 331

Database altered.
SQL> SHUTDOWN IMMEDIATE
ORA-01507: database not mounted
ORACLE instance shut down.
SQL> STARTUP MOUNT
ORACLE instance started.
Database mounted.

The new primary’s Arch ping process will find the standby and immediately begin to resolve
any gaps in the redo at the next log switch, and will start sending the current redo stream. Now we
can restart the MRP to get the apply going again so we can get caught up as fast as possible:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE
 USING CURRENT LOGFILE DISCONNECT;
Database altered.
SQL>

We now have a running physical standby that is at SCN 7658942, and the MRP will start to
look for redo from that point on. In the normal sequence of events, the MRP will need the redo
that is contained in sequence number 377, because that is where we were on the original primary
when the failure happened. Remember that, unlike a switchover, which forces a log switch
followed by the EOR in the header of the next log, the FINISH command puts the EOR into the
header of the current log file. This brings us back to the subject of THROUGH ALL SWITCHOVER.
If we had specified this deprecated qualifier when we started the MRP, then this EOR would be
ignored and the apply would continue. Since we did not use it this time, the MRP stopped. But
this also told us that it knows there is more redo beyond the EOR archive log:

Media Recovery Log
+FLASH/matrix/archivelog/2009_01_20/thread_1_seq_377.370.676680217
Identified End-Of-Redo for thread 1 sequence 377
Resetting standby activation ID 2216964717 (0x8424326d)
Media Recovery End-Of-Redo indicator encountered
Media Recovery Applied until change 7658944
MRP0: Media Recovery Complete: End-Of-REDO (Matrix)
Media Recovery archivelogs detected beyond End-Of-REDO
MRP0: Background Media Recovery process shutdown (Matrix)

All we have to do is restart the MRP once again, and it will continue on until is sees another
EOR in the incoming redo at some point in the future. Another interesting point is that a failover
in 11g will also reset the sequence numbers for the threads to one much like an open reset logs.
In Oracle9i, this would have destroyed our standby database, but not anymore. Since 10g, Data
Guard is capable of processing a reset like this and applying only what it needs from the old log
stream and then switching over to the new log stream that begins at 1 again:

Tue Jan 20 22:45:22 2009
ALTER DATABASE RECOVER MANAGED STANDBY DATABASE
USING CURRENT LOGFILE DISCONNECT
Attempt to start background Managed Standby Recovery process (Matrix)
Tue Jan 20 22:45:22 2009
MRP0 started with pid=30, OS id=21131
MRP0: Background Managed Standby Recovery process started (Matrix)

Chapter 8: Switchover and Failover 331

Fast Parallel Media Recovery enabled
Managed Standby Recovery starting Real Time Apply
…
 parallel recovery started with 2 processes
Waiting for all non-current ORLs to be archived...
Media Recovery Log
+FLASH/matrix/archivelog/2009_01_20/thread_1_seq_1.372.676680255
Media Recovery Log
+FLASH/matrix/archivelog/2009_01_20/thread_1_seq_2.517.676680255
Completed: ALTER DATABASE RECOVER MANAGED STANDBY DATABASE
 USING CURRENT LOGFILE DISCONNECT

Data Guard gap resolution will take place and all the missing redo, since the failover will be
sent to the standby and applied, bringing us back to synchronization again, and we will once
more be protected. When you have some planned downtime, you can execute a switchover and
return production processing to the original site, and return the DR site to its usual function,
protecting your data.

Reinstating After a Logical Standby Failover
If you failed over to a logical standby, then you have to reinstate your old primary database as
a logical standby. The old primary cannot be a physical standby, since it is not an exact copy of
the new primary. During the reinstatement process it will become a physical standby database for
a brief moment before becoming a logical standby.

As with a physical standby reinstatement, you must figure out the SCN at which the logical
standby became the new primary database. However, unlike the physical standby process, in this
process you cannot use the STANDBY_BECAME_PRIMARY_SCN. The SCNs of a logical standby
have no direct bearing on the SCNs that the original primary was generating and sending to the
logical standby, where SQL Apply converted them into SQL and data and executed them as
transactions, generating other SCNs in the logical standby. You must poke around in the logical
standby metadata and determine where you need to flash the old primary back to so you can
realign it with the new primary using Flashback Database. But you also need to know how far
SQL Apply got in the original primary redo stream during the failover, so you can limit how far
the old primary recovers, so that it can then become a logical standby. Make sense? OK… the
flashback part should be easy to understand—you have to rewind the failed primary just as with
the physical reinstatement to some point in the past before the failover. That is referred to as the
flashback SCN. But since a recovery of the failed primary would try to apply all the redo it could
find, it would recover past the point where SQL Apply finished up at the failover. This would put
the reinstated primary in the future at the point where the logical standby became the primary,
and you’d have to start all over again. This SCN is referred to as the recovery SCN. Still doesn’t
make sense? Well, don’t worry, the command you need is well documented. Just run the following
SQL on your new primary database:

SQL> SELECT merge_change# AS FLASHBACK_SCN, processed_change#
 AS RECOVERY_SCN
 FROM DBA_LOGSTDBY_HISTORY
 WHERE stream_sequence# = (SELECT MAX(stream_sequence#)-1
 FROM DBA_LOGSTDBY_HISTORY);
 FLASHBACK_SCN RECOVERY_SCN
------------- ------------
 7658942 7659569

332 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 8: Switchover and Failover 333

NOTE
If you are using Oracle Database 10g, these columns are not present
and you have to use a time-based method to reinstate the old primary
database rather than this SCN-based method.

Take the FLASHBACK_SCN number and go to the old primary, start it up in the MOUNT state,
and flash it back to this number. Then, just as with physical standby reinstatement, convert it to
a physical standby database:

SQL> STARTUP MOUNT
ORACLE instance started.
Database mounted.
SQL> FLASHBACK DATABASE TO SCN 7658942;
Flashback complete.
SQL> ALTER DATABASE CONVERT TO PHYSICAL STANDBY;
Database altered.
SQL> SHUTDOWN IMMEDIATE
ORA-01507: database not mounted
ORACLE instance shut down.
SQL> STARTUP MOUNT
ORACLE instance started.
Database mounted.

This is not a physical standby database in the normal sense; it is a physical standby database
all by itself, since it has no primary. The new primary has a different DBID and DB_NAME, and this
physical standby will neither receive nor apply the redo from the primary, which would not help
anyway since we are still missing the redo from the flashback time to the failover time. So we
have to figure out what archive logs we need from the logical standby metadata and hand-feed
them to MRP. Back to the new primary—and, using the two SCNs you obtained, execute this
command:

SQL> SELECT file_name FROM DBA_LOGSTDBY_LOG
 WHERE first_change# <= recovery_scn
 AND next_change# > flashback_scn;
NAME

+FLASH/matrix/archivelog/2009_01_20/thread_1_seq_376.370.676680217
+FLASH/matrix/archivelog/2009_01_20/thread_1_seq_377.372.676680255

This will give you a short list of archive logs that you need to carry back to the old primary
and make them available to the MRP when you start it up to continue this reinstatement process.
To make them available to the MRP, once they are there, you need to register them as if you were
manually resolving a gap, which, in fact, you are:

SQL> ALTER DATABASE REGISTER LOGFILE '<from your list>';

If all the archive logs returned by the query are not available to be registered at the old primary,
then your work is done here and you must rebuild a logical standby following the procedures
outlined in Chapter 2. But if all goes well and you have the logs, and the registration was successful,
then you can perform the next part: telling the physical standby database just how far you want it to

Chapter 8: Switchover and Failover 333

recover and no further. This requires that you use another qualifier to the managed recovery
command to start the MRP, using the UNTIL CHANGE syntax:

SQL> RECOVER MANAGED STANDBY DATABASE UNTIL CHANGE 7659569;
Database altered.

This qualifier instructs the MRP to recover the redo data up to, but not including, the specified
SCN which aligns the physical standby with the failover point of the new primary. When done,
the MRP exits, and this is where it ends its short life as a physical standby. Activate and open the
database:

SQL> ALTER DATABASE ACTIVATE STANDBY DATABASE;
Database altered.
SQL> ALTER DATABASE OPEN;
Database altered.

Your failed primary database is now ready to assume its role as the new logical standby
database. But before it can do this, it needs to know what the new primary looks like so it can
process the redo—that is, it needs the LogMiner dictionary. But, unlike the procedure in Chapter
2 where you did the build on the primary and used the MRP to recover up to the build and then
let SQL Apply take over, you are already past that point. So you need to tell your new logical
standby to ask the primary database for a new copy of the dictionary and all the redo in between.
To do this, you use an additional qualifier on the Logical Standby Process (LSP) command called
NEW PRIMARY, which instructs SQL Apply to get the dictionary over a database link that you
provide:

SQL> CREATE PUBLIC DATABASE LINK reinstatelogical
 CONNECT TO system IDENTIFIED BY password
 USING 'service_name_of_new_primary_database';
SQL> ALTER DATABASE START LOGICAL STANDBY
 APPLY NEW PRIMARY reinstatelogical;
Database altered.

SQL Apply will connect to the new primary using the database link and retrieve the LogMiner
dictionary. Once the dictionary has been built, SQL Apply will apply all the redo sent from the
new primary and get itself synchronized.

NOTE
One thing to remember is that SQL Apply will apply redo only for
objects that existed in the old primary database before the failover. As
with switchover, any user-added objects to the original logical standby
(now the primary) would of course not exist and their redo would be
skipped until you created and instantiated them again in your new
logical standby.

You now are protected again by your logical standby. This may seem like a cumbersome
process, but the steps are few and really not too difficult or time consuming. And executing these
steps is always going to be a lot easier and much faster than using a new backup to create a new
logical standby database.

334 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 8: Switchover and Failover 335

Using the Broker or Grid Control to Failover
So, after all that, are we going to tell you just how easy it is to failover using the Broker or Grid
Control? Of course we are! The only difference is the command (or button) used and the fact that
you can connect only to the standby since the primary is not there anymore.

[Matrix] dgmgrl
DGMGRL for Linux: Version 11.1.0.6.0 – Production
Copyright (c) 2000, 2005, Oracle. All rights reserved.
Welcome to DGMGRL, type "help" for information.
DGMGRL> CONNECT sys@MATRIX_DR0
Password:
Connected.
DGMGRL> FAILOVER TO MATRIX_DR0;

As with switchover, the Broker does all of the processing for you. But what about all those
reinstatement steps we just went through? That is a lot easier, too. Once you have verified that
the old primary is still viable, mount it and execute a single Broker command:

DGMGRL> REINSTATE DATABASE MATRIX;

If the Broker discovers it is not possible to reinstate the failed primary, it will tell you so, and
you must re-create the standby database. Failover with Grid Control is just a button click away,
as you can see in Figure 8-6.

Select the target standby of your choice by clicking the radio button of that standby and then
clicking Failover. This will take you to a confirmation page where you can say YES or NO to have
Grid Control set up and submit a job to begin the failover processing, after which it will return to
the Data Guard home page. Set the page refresh to automatic and watch as the failover processes
and the standby database becomes the primary and the original primary disabled.

Now, since the original primary has failed, once the failover is complete, the old primary will
appear in the Standby Databases grid and Grid Control will mark it as Needs Reinstatement in the
Data Guard Status column. (If the Broker tells Grid Control that the old failed primary cannot be
reinstated, it will be flagged as Disabled.)

This status is a live link to a confirmation page. Once you click YES, the process will start.
However, if the old primary is not mounted, Grid Control will just start and mount the database
and the status will remain as Needs Reinstatement. You will have to click the link a second time
to start the actual reinstatement process. If it is mounted already, one click is enough. As you can
see, the process of failover and reinstatement is much simpler when the Broker is involved. But if
you are a Power User, the steps in the preceding sections are for you.

FIGURE 8-6. Using Grid Control to failover

Chapter 8: Switchover and Failover 335

Automatic Failover
Now that you have gotten this far into this book, it is time to take a walk on the wild side. If
you thought that we had a reason for sprinkling information about the Broker and Grid Control
throughout this book, especially this chapter, you are right. We wanted you to see how the Broker
can simplify the management of Data Guard. But we had an ulterior motive as well.

Over the years, database administrators have been confronted with the requirement of
automating as much as possible of their disaster recovery plans so that anyone on duty can
engineer a move to the disaster recovery site at the drop of a hat. Everyone is afraid that if only one
person knows how to recover the database, that person won’t be around when the failure happens.
However, despite many people’s best efforts and no matter how scripted you make the process,
you still need people to get involved before the transition can take place. Once people get
involved, decisions have to be made, doubt is thrown into the mix, investigations occur, phone
calls happen, and usually errors are made. These are not things you want to happen when your
databases are down and your business is on hold. That is why Data Guard implemented Fast-Start
Failover. And Fast-Start Failover requires the Broker.

Fast-Start Failover (FSFO) removes the people from the equation. That is not as harsh as it
sounds. It means that when there is a problem, there is no room for error, and people make
mistakes, especially when they are stressed. It also means that you do not end up relying on a
script or document that was written by someone who may no longer work for the company.

Fast-Start Failover Architecture
The architecture employed by FSFO is a third-member quorum that ensures that the failover occurs
only when everything meets the rules you have defined, and the failed primary is never allowed to
open after a failover to avoid any chance of the split brain scenario we discussed earlier in this
chapter. That is one of the biggest dangers when someone tries to automate a Data Guard failover
without FSFO. There is nothing they can do or write a script for that will prevent someone from
mistakenly opening the failed primary after their scripts have performed an automatic failover, or
firing off a false failover because their scripts cannot get to the primary, yet the users are still
working. In both cases, two databases are open for business, acting as the primary database and
advertising all the services. This is not a situation you want to be in, because someone’s transactions
are going to get discarded when your sort it all out.

The third member is called the Observer, and its job is to maintain a connection with the
primary and the target standby, monitoring the health of the configuration and performing the
failover when required. The Observer is also responsible for performing the automatic
reinstatement of the failed primary database when it comes back online, if possible. The other
two members are the primary database and the standby database, of course, running in a normal
configuration setup as we have discussed in this book.

Myth Buster: No One Will Ever Allow Data Guard to Failover Automatically!
This is something we have heard a lot. A lot of people now get to sleep at night because the
phone doesn’t ring when a failure occurs—Data Guard has already moved production
processing to the disaster recovery site. Try it, you might like it!

336 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 8: Switchover and Failover 337

When everything is running according to plan, redo is being shipped from the primary, the
standby is applying it, no gaps exist, and communication between all three parties is normal. The
Observer is pinging the primary database on a very frequent basis to keep an eye on things, and at
the first sign of trouble goes into a countdown state (which you configure). During the countdown
state, the Observer continually attempts to reestablish communication with the primary database. If
the connection to the primary returns (either the original instance is reachable again or one of the
other RAC instances can be reached) before the timer expires, then the Observer will check to make
sure things are OK, and when everything is synchronized again, it goes back to its normal watch
mode. When the primary is a RAC, the Observer is connected only to one primary instance at a
time, and your Broker connect identifier must include all primary RAC instances so that the
Observer can try to connect to any one of them after a disconnect; otherwise, you could failover
when the primary was still running fine.

If the countdown timer expires before the Observer can reconnect, it then checks with the
standby to see if a failover can be executed. At this point, the standby database must respond that
it is synchronized as much as required at that time (we will discuss what as much as required
means later on). If the standby is ready and capable of failover, the Observer initiates the process
and the standby database becomes the primary, just as it did in our manual failover.

In certain types of failures, when the Observer is able to reconnect with the failed primary
database, it will automatically reinstate the failed primary as a standby if possible, unless you have
explicitly told it not to reinstate the failed database automatically. In user-configured failover
events, an automatic reinstate is not performed.

As you can see, the Observer is the piece that makes FSFO work. The rest is really just
standard Data Guard managed by the Broker. Before we get into configuring FSFO, you need to
spend some time thinking about where you are going to put the Observer; otherwise, things may
not happen like you expect or want.

Observer Placement
Only one Observer can exist per Data Guard FSFO configuration, and if that Observer is not
running or is not reachable, then your automatic failover ceases to be automatic. Worse, if the
Observer is not reachable from the primary, in certain circumstances it can cause a hang of your
production database! For example, if you decide to put the Observer on the production system
somewhere, a crash of that node will take out the Observer and no failover would occur. You
could put it on the middle tier systems and avoid that problem, but then a complete site failure
would have the same effect. What about moving the Observer to the standby site and putting it
on the same system as the standby? In this case, when the network between the primary database
and the standby site goes down, your primary database will hang, waiting for the go-ahead from

Primary Database Shutdown
In 11g, the stalled primary will abort once the countdown period has expired, as it is assumed
that a failover occurred. This can be avoided using a FSFO configuration property. In Oracle
Database 10g, where FSFO was introduced, the primary database would remain open for
readers even when its FSFO rules told it to stop generating redo. The 11g method of shutting
down the primary after the threshold expired was implemented in 10.2.0.4 so a primary
database that is stalled because of FSFO will always shut down.

Chapter 8: Switchover and Failover 337

the Observer. In the meantime, the Observer has gone into its countdown phase and will failover
the standby if the network does not come back in time. All the while your users who are trying to
update the primary database are stalled and unable to generate any redo. And the readers are still
capable of reading the data until the primary goes down, which is also configurable in Oracle
Database 11g.

You can see why it is important to put the Observer where it has a better chance of remaining
in contact with both the primary and the standby when they themselves remain up and running.
That way, a true crash of the primary database, system, or site will cause a failover to occur (if the
configuration was synchronized at the time of failure), and a crash of the standby instance,
system, or site will not cause a hang of the primary database; it will just temporarily disable FSFO
until things get back to normal.

But wait! Does that mean you have to find a place to put the Observer, a system there that
matches the systems used by the databases, install Oracle Enterprise Edition (complete with
license), and fire up an instance so you can start the Observer? Not at all. The Observer, unlike
the databases in your configuration, does not have to be on the same platform or operating
system on which the databases reside, and it does not need Oracle EE and an instance (which
means no extra license). The Observer can be installed on any system and requires only the
Oracle Client Kit for the version of the database you are using (or higher). The only requirement is
for TNSNAMES to be set up to allow the Observer to attach to your standby database.

The Observer system is one point of failure for FSFO, however. If the system crashes or becomes
unavailable, FSFO is disabled until the Observer comes back. A failure of the primary during this
period would require that you enact those manual failover steps as of old. This is where Grid Control
really helps, because it can allow you to specify two systems and Oracle homes where the Observer
can run. Then, when the main Observer system becomes unreachable and Grid Control cannot
restart the Observer there, it will start up the Observer on the other system in your list, getting FSFO
re-enabled as quickly as possible. As with any installation of Grid Control, this does require that you
install the agent on the Observer systems. We have placed a sample script on www.dataguardbook
.com to restart the observer automatically in the event you are not using Grid Control.

Conditions That Precipitate FSFO
We touched on the subject of events that can cause a FSFO to occur in the previous section
“Observer Placement”. But failover can occur in a lot more ways, and you can configure events
that the Broker can watch for and handle with an immediate failover.

The usual way that a failover will be triggered is when the Observer and the target standby
lose their connections with the primary database, but the Observer and the standby database are
still communicating. This can be a database crash, a system crash, the loss of the network, or an
entire primary site outage—as in a complete power failure of the locality where the primary is
running. The threshold will be honored and the failover will not commence until the timer has
expired. Since this is an unexpected event and there is no information as to the health of the
primary database, the Observer will attempt to reinstate the failed database automatically as a
standby when it is restarted.

You can also force a FSFO by performing a SHUTDOWN ABORT on the primary database. Of
course, if the primary is a RAC, a SHUTDOWN ABORT will only cause a failover if the instance being
aborted is the last surviving instance and your FastStartFailoverThreshold is exceeded. As
with the normal lost connection event, the Observer will reinstate the failed primary when it
comes back up.

In addition, you can configure FSFO conditions that the Broker will watch for, and, if it sees one
of them happening, FSFO will initiate an immediate abort of the primary and a failover as long as

www.dataguardbook.com
www.dataguardbook.com

338 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 8: Switchover and Failover 339

the requirements for the failover have been met. These are set in the Broker using the ENABLE
command. You can configure five specific conditions:

 ■ "Datafile Offline" A primary data file is offline due to a write error.

 ■ "Corrupted Controlfile" The primary control file is corrupted.

 ■ "Corrupted Dictionary" A critical dictionary object in the primary database is
corrupted.

 ■ "Inaccessible Logfile" The LGWR is unable to write to any member of an online
redo log group due to an I/O error.

 ■ "Stuck Archiver" A primary ARCH process is unable to archive an online redo log
because the archive log destination is full or unavailable.

The Broker is very specific about the condition tag: you must enter them as above or the
command will throw an error. The good news is that if the particular condition is already set, no
error is returned. You can also instruct the Broker to fire off a failover if a specific ORA error is
generated by the primary database. These conditions would be set as follows:

ENABLE FAST_START FAILOVER CONDITION "Corrupted Controlfile";
ENABLE FAST_START FAILOVER CONDITION 27102;

Three of the conditions are enabled by default in a FSFO configuration, as shown in the follow
excerpt from a SHOW FAST_START FAILOVER command:

Configurable Failover Conditions
 Health Conditions:
 Corrupted Controlfile YES
 Corrupted Dictionary YES
 Inaccessible Logfile NO
 Stuck Archiver NO
 Datafile Offline YES
 Oracle Error Conditions:
 (none)

Finally, you can code an application or script to initiate a failover if your monitoring tools
discover something that you know to be a problem, such as the clients not being able to connect
to the primary database, and failing over would allow them to connect to the DR site and continue
processing. Using the DBMS_DG.INITIATE_FS_FAILOVER package, your application can request
that a failover be initiated immediately:

DECLARE STATUS INTEGER;
STATUS := DBMS_DG.INITIATE_FS_FAILOVER (''Failover Requested'')

If STATUS is retuned as 0, then a failover will commence. Otherwise, one of six possible errors
will be returned and the failover will not happen. These are documented in the PL/SQL Packages
and Types Reference manual.

These user-defined conditions will cause the Broker to shut down the primary database
immediately and perform a failover without waiting for the threshold timer to expire. So you will
want to use these conditions carefully.

Chapter 8: Switchover and Failover 339

Enabling Fast-Start Failover
Now that you have decided where you are going to place the Observer and prepared the system
for it, and you understand when a failover will occur, you can start setting up FSFO. You must
meet several prerequisites before setting up FSFO, most of which we have been discussing
throughout this book:

 Use the Broker with all of its prerequisites. ■

 Enable Flashback Database on both the primary and the standby. ■

 Set up the configuration correctly for the protection mode. ■

Standby redo log files on both sides ■

Redo transport setup the same in both directions ■

 Install the Observer system and configure TNSNAMES. ■

If you have been following the setup and suggestions in this book, you will have already
configured your Data Guard implementation to meet all of the prerequisites, with the exception
of the Observer system.

To get started, the Broker needs to know which standby will become your FSFO target. In
addition, that database in your configuration needs to know that it is the primary that will become
the target after a failover. If you have only one standby database, then the Broker knows which
one to use (only one choice of course) and will set the properties accordingly. But if you have
more than one standby database, you must explicitly tell the Broker which one to use. The next
two commands will make that change and can be run in either case:

DGMGRL> EDIT DATABASE MATRIX
 SET PROPERTY FastStartFailoverTarget = 'MATRIX_DR0';
Property "faststartfailovertarget" updated
DGMGRL> EDIT DATABASE MATRIX_DR0
 SET PROPERTY FastStartFailoverTarget = 'MATRIX';
Property "faststartfailovertarget" updated
DGMGRL>

Now that the Broker knows which two parties are involved in the setup, it also needs to know
how long the Observer should wait (its countdown timer) before starting the failover, just in case
the primary is not really down. This is referred to as the Fast-Start Failover threshold and is a
configuration level property, as discussed in Chapter 5.

In general, if you are not using RAC, you can set any value down to 6 seconds (the default is 30)
depending on your network’s latency and reliability. But if your primary database is a RAC, you
need to take into account the cluster reconfiguration and miscount time. When the Observer

FSFO and Protection Modes
In Oracle Database 10g, where FSFO was introduced, you had to be running in Maximum
Availability mode to enable FSFO. In 11g, both Maximum Availability and Maximum
Performance modes are supported. You cannot enable FSFO using Maximum Protection mode.

340 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 8: Switchover and Failover 341

loses its connection to the primary RAC instance to which it was attached, it will try to get
reattached to a surviving instance. But that instance may be busy recovering the failed instance
and will not answer right away. If its counter expires before a surviving instance can reply, the
Observer will start a failover and the primary will hang and eventually abort. A good rule of
thumb for setting the threshold counter is the time it takes your RAC primary to evict a node plus
20 seconds. For more information and current thinking on setting your threshold, refer to the
MAA Fast-Start Failover paper.3

DGMGRL> EDIT CONFIGURATION SET PROPERTY FastStartFailoverThreshold = 45;
Property "faststartfailoverthreshold" updated
DGMGRL>

Earlier we talked about the standby database responding to the ‘Are you ready to failover?’
query from the Observer, and we said that the standby database would failover if the standby was
synchronized as much as required at the time. This required state is determined purely from the
standpoint of data loss.

If you are running in Maximum Availability mode, the required maximum amount of data loss
is zero. In a zero data loss protection mode, no data loss can be incurred by FSFO, so the standby
would reply that it was not able to failover if it was not 100-percent synchronized with the primary
at the time the Observer lost its connection to the primary database. If a data loss would occur, the
failover is aborted and nothing happens until the primary database comes back and processing
continues, or until you choose to manually failover and accept the data loss.

If, on the other hand, you are running in Maximum Performance mode, data loss will occur at
any failover. The question is, how much? As we have said many times in this book, you will lose
data when you failover in Maximum Performance mode. So FSFO needs to know how much data
loss is acceptable. To that end, you must take into account one other property in Maximum
Performance mode, FastStartFailoverLagLimit. This is pretty much the only place where
you can actually control how much data you will lose if you failover. If the amount of data you
will lose is greater than the lag limit you set, FSFO will not failover and you must use the manual
procedure:

DGMGRL> EDIT CONFIGURATION SET PROPERTY FastStartFailoverLagLimit = 60;
Property "faststartfailoverlaglimit" updated
DGMGRL>

Here, since we set the lag to 60 seconds, when the Observer asks the question, Are you ready?, the
standby will look at the lag limit and determine whether more than 60 seconds’ worth of redo
would be lost if a failover occurred at the moment. If less than 60 seconds’ worth of data will be
lost, the failover proceeds. If more redo would be lost than the lag limit, the failover will not occur
and nothing happens until the primary database either comes back and processing continues or
you choose to failover manually, suffering the larger data loss.

If you are running in Maximum Availability mode, the property will be set but ignored during
the failover. You can set three other FSFO properties—two configuration-level properties and one
database-level property.

3 See www.oracle.com/technology/deploy/availability/pdf/MAA_WP_10gR2_FastStartFailoverBestPractices.pdf.

www.oracle.com/technology/deploy/availability/pdf/MAA_WP_10gR2_FastStartFailoverBestPractices.pdf.

Chapter 8: Switchover and Failover 341

The FastStartFailoverPmyShutdown property allows you to tell the Broker whether or
not it should shut the primary down if the database is in the hung state and a failover could
have happened. If this property is set to TRUE (the default), whenever the primary hangs due to
a lost connection to the Observer and the standby at the same time, the Broker will abort the
database after the FastStartFailoverThreshold has expired. When set to FALSE (which was
the way it worked in early releases of 10g), the Broker will not abort the old primary when it is
hung, allowing readers who are already attached to continue to read the data. New users and
writers will be hung as all redo generation is stalled. Remember, this property will be ignored when
FSFO executes a failover because of a user-defined event, as discussed in the previous section.

Whenever FSFO has executed a failover due to a crash or similar event, it will attempt to
reinstate the failed primary automatically when it is reachable again. When the failed primary
is restarted after the failure, it will mount but not be allowed to open until it can make
contact with the Observer. Once that connection is made, the primary will be reinstated
and converted into the appropriate standby using the method discussed earlier. You can
instruct the Broker not to reinstate the failed primary automatically by setting the property
FastStartFailoverAutoReinstate to FALSE. However, just like the primary shutdown
property, this property is ignored if the reason for the failover was due to a user-defined event
or a data file offline error. The Broker will never try an automatic reinstatement in these cases,
and you must remedy the problem and perform a manual reinstate using the DGMGRL
REINSTATE DATABASE command.

Finally, if you would like the Observer to use its own connection identifier other than
the DGConnectIdentifier you entered for the databases when you created the Broker
configuration (you might have a different network route you want the Observer to use for
example), you can set the ObserverConnectIdentifier for each of the two databases in
the FSFO configuration.

Even though we have not started the Observer, we can go ahead and enable FSFO at this point
and it will become active when the Observer is started. But if you have not set up everything
correctly, you will get the following:

DGMGRL> ENABLE FAST_START FAILOVER;
Error: ORA-16651: requirements not met for enabling fast-start failover

A quick oerr ORA 16651 will give you a nice list of what you need to check. Fix the
problem and try again:

DGMGRL> ENABLE FAST_START FAILOVER;
Enabled.
DGMGRL> SHOW FAST_START FAILOVER;
Fast-Start Failover: ENABLED
 Threshold: 45 seconds
 Target: matrix_dr0
 Observer: (none)
 Lag Limit: 60 seconds (not in use)
 Shutdown Primary: TRUE
 Auto-reinstate: TRUE
Configurable Failover Conditions

342 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 8: Switchover and Failover 343

 Health Conditions:
 Corrupted Controlfile YES
 Corrupted Dictionary YES
 Inaccessible Logfile NO
 Stuck Archiver NO
 Datafile Offline YES
 Oracle Error Conditions:
 (none)
DGMGRL>

Now you can see exactly what you have configured. The only thing left to do is to start the
Observer on its system. When the Observer starts, it will open a file called FSFO.dat in the
current directory by default, where it will store its configuration information about the FSFO setup
it is controlling. Since it is possible to have more than one Observer on the same system
controlling multiple FSFO configurations, it is a good idea to qualify where this file should go and
what name it should use. This is so the multiple Observers do not get into a fight about who owns
FSFO.dat and there is no chance that an Observer might get the wrong configuration file. This is
done by placing the FILE qualifier onto the START command:

[Matrix] dgmgrl sys/oracle@matrix_dr0
DGMGRL for Linux: Version 11.1.0.6.0 – Production
Copyright (c) 2000, 2005, Oracle. All rights reserved.
Welcome to DGMGRL, type "help" for information.
Connected.
DGMGRL> START OBSERVER FILE=<Your Path>/Matrix.dat;
Observer started

The Observer will stay in this window until you stop it from another DGMGRL session with
STOP OBSERVER, and it will output what it is doing directly into the window. We’ll leave it like
that so we can cut and paste the output for examples here, but you should redirect the DGMGRL
output to a log file for future reference by using the -logfile qualifier when you log in to
DGMGRL on the Observer system:

dgmgrl -logfile <Your Path>/Matrix.log sys/oracle@matrix_dr0

When you start the Observer from Grid Control, it will place the data file for each Observer in
the Oracle Home dbs directory with a filename of afo#####.dat, where the ##### is a unique
number and the log files in the rdbms/log directory with a name of dgmgrl#####.log. And
remember that Grid Control will automatically attempt to restart the Observer if it fails and will
restart on another system if the first system itself fails.

A SHOW CONFIGURATION VERBOSE command will show the Observer running, and you are
ready for automatic failover:

DGMGRL> SHOW CONFIGURATION VERBOSE;
Configuration
 Name: matrix
 Enabled: YES
 Protection Mode: MaxAvailability
 Databases:
 matrix - Primary database
 matrix_dr0 - Physical standby database
 - Fast-Start Failover target

Chapter 8: Switchover and Failover 343

Fast-Start Failover: ENABLED
 Threshold: 45 seconds
 Target: matrix_dr0
 Observer: stadu67
 Lag Limit: 60 seconds (not in use)
 Shutdown Primary: TRUE
 Auto-reinstate: TRUE
Current status for "matrix":
SUCCESS

The simplest way to test FSFO is to perform a SHUTDOWN ABORT on the primary database.
When the primary goes down, the Observer will detect the crash and start its countdown. After
the countdown expires, it will initiate the failover. In the Observer window, you can see what the
Observer is doing:

DGMGRL> START OBSERVER;
Observer started
16:58:50.43 Friday, January 23, 2009
Initiating Fast-Start Failover to database "matrix_dr0"...
Performing failover NOW, please wait...
Failover succeeded, new primary is "matrix_dr0"
17:01:32.76 Friday, January 23, 2009

Production is now running on our standby database, Matrix_DR0, and all is well, with the
exception of our failed primary database:

DGMGRL> SHOW CONFIGURATION VERBOSE;
Configuration
 Name: matrix
 Enabled: YES
 Protection Mode: MaxAvailability
 Databases:
 matrix_dr0 - Primary database
 matrix - Physical standby database (disabled)
 - Fast-Start Failover target
Fast-Start Failover: ENABLED
 Threshold: 45 seconds
 Target: matrix
 Observer: stadu67
 Lag Limit: 60 seconds (not in use)
 Shutdown Primary: TRUE
 Auto-reinstate: TRUE
Current status for "matrix":
Warning: ORA-16608: one or more databases have warnings

The ORA-16608 is issued because Matrix is down. All we have to do to get our original
primary database back into the fold and protecting our new primary is to start it up:

SQL> STARTUP

ORACLE instance started.

344 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 8: Switchover and Failover 345

Total System Global Area 535662592 bytes

Fixed Size 1301112 bytes

Variable Size 394265992 bytes

Database Buffers 134217728 bytes

Redo Buffers 5877760 bytes

Database mounted.

ORA-16649: possible failover to another database prevents this database being opened

As you can see, the Broker prevented the old primary from coming all the way up because it
was told a failover had occurred. In the Observer window, you will see where the Observer starts
the reinstatement process:

17:07:40.89 Friday, January 23, 2009
Initiating reinstatement for database "matrix"...
Reinstating database "matrix", please wait...
Operation requires shutdown of instance "Matrix" on database "matrix"
Shutting down instance "Matrix"...
ORA-01109: database not open
Database dismounted.
ORACLE instance shut down.
Operation requires startup of instance "Matrix" on database "matrix"
Starting instance "Matrix"...
ORACLE instance started.
Database mounted.
Continuing to reinstate database "matrix" ...
Reinstatement of database "matrix" succeeded
17:09:16.32 Friday, January 23, 2009

We did not have to do any of the reinstatement steps we went through earlier in this chapter.
They were all done for us, and we are now back up on both sides, fully protected and ready for
the next failure:

DGMGRL> SHOW CONFIGURATION VERBOSE;
Configuration
 Name: matrix
 Enabled: YES
 Protection Mode: MaxAvailability
 Databases:
 matrix_dr0 - Primary database
 matrix - Physical standby database
 - Fast-Start Failover target
Fast-Start Failover: ENABLED
 Threshold: 45 seconds
 Target: matrix
 Observer: stadu67
 Lag Limit: 60 seconds (not in use)
 Shutdown Primary: TRUE
 Auto-reinstate: TRUE
Current status for "matrix":
SUCCESS

Chapter 8: Switchover and Failover 345

Life is good. So is sleep! But wait, don’t go to sleep just yet. Wouldn’t you like to see how easy
it is to enable FSFO with Grid Control? It will do all of the work we just put you through, including
setting up all the prerequisites. We’ve reset the configuration to its original state, including disabling
Flashback Database. On the Data Guard home page, you start the Fast-Start Failover Wizard by
clicking the Disabled link next to the FSFO name, as shown in Figure 8-7.

This will take you to the first page, where you will configure the Observer and make any
changes to the FSFO settings, as shown in Figures 8-8 and 8-9.

If you had more than one standby database, the wizard would have asked you to make a
selection for the FSFO target database. Since you have only the one, it is chosen by default. At the
bottom of the page, you will see the Threshold or countdown timer that the Observer will use
when a disconnect occurs between it and the primary database. And since you are in Maximum
Performance mode, you will also see the Lag Limit or your acceptable data loss limit.

FIGURE 8-8. Configure the Observer hosts

FIGURE 8-7. Using Grid Control to configure FSFO

346 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 8: Switchover and Failover 347

At the bottom of this page (shown in Figure 8-9), you can set the two Database Level
properties that control automatic reinstatement and automatic primary shutdown.

Clicking Configure Observer (Figure 8-8) will open a page (Figure 8-10) where you can enter
two host names that Grid Control is aware of. Remember that the Observer host has to have the
Oracle Database Client Kit for the version you are running and the Enterprise Manager Agent
installed at a minimum.

You can either directly enter the host names here or use the Search function (the little flashlight)
to search for the appropriate hosts. Once you return to the configuration page and click Continue,
you will be taken to the Flashback Database configuration page. If Flashback Database was already
enabled on both the primary and the FSFO target databases, this page would be skipped. Since you
turned Flashback Database off, you have to enable it here.

Figure 8-11 shows the page where you can change the flash recovery area size and the
Flashback Database retention time. For purposes of reinstatement, after a failover the default of

FIGURE 8-9. Configure the FSFO parameters

FIGURE 8-10. Enter the Observer hosts

Chapter 8: Switchover and Failover 347

60 minutes is sufficient. You can lengthen this if you plan on using Flashback Database for more
than just failed primary reinstatement.

Next you are asked to confirm the FSFO operation, which is very important here, since
enabling Flashback Database on our primary will require a restart. If you answer Yes, the process
starts. When everything is complete, you are returned to the Data Guard home page, where you
can see that FSFO is enabled, which database is the target, and where the Observer is currently
running. Figure 8-12 shows the current status.

And that is it! It’s much simpler than all those commands in SQL*Plus and DGMGRL that
we had to enter. Plus you get the extra benefit of having Grid Control manage your Observer,
restarting the Observer if it fails and failing it over to another system if the Observer system fails.
This is something you would have to script yourself if you do not use Grid Control to set up FSFO.

FIGURE 8-11. Configure Flashback Database

FIGURE 8-12. Fast-Start Failover enabled

348 Oracle Data Guard 11g Handbook

A Final Word on Multiple Standbys
We have discussed the topic of the THROUGH ALL SWITCHOVER when using the managed recovery
command because it can change the way things operate. To recap, it has been deprecated and was
removed (mostly) from the documentation since 10g Release 2. Using it when you start the Redo
Apply process will instruct the MRP to process and keep right on working through any EOR it finds
in the redo. If you do not use it, the MRP will stop whenever it finds an EOR in the redo. The
qualifier was primarily designed for use with other standby databases so that when you performed
a switchover or a failover to your target physical standby database those other physical standby
databases would keep right on applying.

The problem was, when it was used on the target of a physical standby switchover in 10g, the
COMMIT TO SWITCHOVER TO PRIMARY command would hang and ultimately fail, confusing
everybody and causing panic. You had to remember to cancel it manually before you started the
switchover on the physical standby so the command would work correctly. That problem has
been corrected in 11g, where the switchover command, as we have shown, will stop the MRP if
required and finish the switchover.

Confusion has also arisen from the fact that the Broker continues to use the qualifier throughout
10g Release 2 and 11g. But the Broker is smart enough always to cancel the MRP and restart it
without THROUGH ALL SWITCHOVER before beginning any switchover processing on the target
standby, so it never has the hanging problem.

So, where does that leave us, and should we use THROUGH ALL SWITCHOVER or not? If you
are using the Broker this is a moot point, because it’s all done for you. If you are using SQL*Plus,
since the functionality is still there, it is fine to use THROUGH ALL SWITCHOVER, especially if you
have multiple physical standby databases. In 11g, you can use THROUGH ALL SWITCHOVER even
on your target physical standby, since the switchover command will do the right thing. In 10g,
you should not use THROUGH ALL SWITCHOVER on the physical standby you usually switchover
to unless you change your procedures always to cancel the MRP and restart it without the qualifier
before starting any switchover.

So where does that leave us? The reinstatement of a failed primary database. Again, this is
necessary only if you are not using the Broker, as it will just do the right thing for you. When you
converted your failed primary back into a physical standby after the failover, it had to process
through all the redo it was missing since the standby was failed over, including the archive log
with the EOR (TEOR actually) in it. If you do not start the MRP with THROUGH ALL SWITCHOVER,
it will stop immediately as that log is always the first one it receives. Again, if you are using 11g,
just go ahead and start the MRP with the qualifier and the MRP won’t stop. If you are using 10g,
this is a judgment call. If you use THROUGH ALL SWITCHOVER you will have to remember to
cancel and restart without the qualifier before you start the next switchover process.

Conclusion
As we said in the beginning of this chapter, you have been learning how to configure Data Guard
to suit your requirements throughout this book. But knowing how to failover is what this chapter
was really all about. And that is truly the prime directive of Data Guard: Protect my data and
make it available when production fails. This really is your failover strategy.

Be aware that if you do not trust your failover strategy, it will fail you when you need it most,
because you will not have the confidence to use it. You must trust your Data Guard failover
strategy 100 percent and have no qualms about using it, even if you do not use Fast-Start Failover.

Chapter
9

Active Data Guard

349

350 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 9: Active Data Guard 351

n Chapter 2 we discussed the configuration and implementation of physical
standby databases. The physical standby database itself is not new to Oracle. In
fact, Oracle Database 7.3 was the first version that officially supported standby
databases. In Oracle Database 7.3, however, all redo log application had to be
performed manually. In Oracle Database 8i, the concept of shipping and apply of

redo logs was introduced. At the same time, the standby database could be opened in a read-only
mode once the application of the logs was stopped. In Oracle Database 9i, both the Data Guard
Broker and the concept of protection modes to prevent data variances between the primary and
standby were introduced. In Oracle Database 9i Release 2, logical standby databases were
introduced. With Oracle Database 10g, we saw the addition of real-time apply for redo data on
physical and logical standby databases, and the list goes on and on. Many of the other new
features in Oracle Database 10g supporting Data Guard’s physical standby architecture have
paved the way for the implementation of Active Data Guard in Oracle Database 11g.

This chapter focuses on four variations to the typical physical Data Guard configuration:

 Physical standby—open read-only ■

 Snapshot standby—QA and test ■

 Real Application Testing (RAT) ■

 Active Data Guard ■

This chapter will also discuss how you can leverage each of these configurations in the real
world to maximize investment in standby and disaster recovery (DR) technologies. In addition, we
will include the scripts necessary to extend each of the environments beyond the basic physical
Data Guard setup. The implementation and configuration scripts are all based on using Data
Guard Broker. For more information on the Broker, refer to Chapter 5. Oracle Enterprise Manager
Grid Control can also be used for the configuration of read-only, read-write, and snapshot standby
databases using a physical standby. Grid Control and its use were discussed in Chapter 6 so you
can contrast the differences between using the GUI over the command line interface (CLI) versus
Data Guard Broker. Two other key areas, script-based monitoring and troubleshooting, are
covered in Chapters 7 and 13, respectively.

Physical Standby—Open Read-Only
The read-only physical standby database is the simplest extension to the basic physical standby
database. In this configuration, applications generally considered to be reporting applications
could move the query load they would otherwise put on the primary database to the physical
standby database. Moving these read-only operations to the standby database offers a number of
advantages that make effective use of the hardware environment in the physical standby that
would otherwise remain functionally idle.

Beyond those applications that are exclusively read-only are applications in which a section
or module might be read-only. Those modules could be well suited for read-only access to a
physical standby database.

 I

Chapter 9: Active Data Guard 351

While the physical standby is open in read-only mode, the following operations are permitted
against it:

 Select statements ■

 Complex queries ■

 Calling of stored procedures ■

 Use of database links ■

 Use of stored procedures to call remote stored procedures via database links ■

 Use of ■ SET ROLE

 Use of ■ ALTER SESSION and ALTER SYSTEM

While the physical standby is open in read-only mode, the following operations are
disallowed against it:

 Any Data Manipulation Language (DML) except for select statements ■

 Any Data Definition Language (DDL) ■

 Access of local sequences ■

 DMLs on local temporary tables ■

The primary difference between traditional read-only physical standby databases and Active
Data Guard is this: Active Data Guard permits both read-only services and disaster recovery while
the standby database is open for operation. This provides for an immediate failover or switchover,
without your having to shut down the standby and put it back in managed recovery mode so it
can catch up with the recent redo generated by the primary. Most important, you have a real-time
reporting database that provides the utmost return on investment while offloading all read-only
reporting requirements from the production database.

Why Read-Only?
We will cover the typical scenarios for which a read-only physical standby would make sense.
First and foremost, read-only databases are associated with reporting applications, and as you
might suspect, the read-only physical standby is also a prime player in supporting reporting
applications. For those who have been involved in performance tuning for any length of time, you
know the impact that poorly tuned queries can have on an operational transactional database.
These queries are often the direct result of reports built too rapidly to meet business needs without
time to tune them adequately, or, even worse, they are the result of ad hoc queries being
performed by power users against the production database. The ability to offload and redirect
these reporting and ad hoc queries to the read-only physical standby database releases the
resources on the primary database that would otherwise be consumed.

Reporting is not the only reason you might open a physical standby in read-only mode.
Another application of the read-only physical standby database is in the document retrieval area.
Medical facilities, police departments, and other businesses that place high demands on the rapid
retrieval of large volumes of documents of varying types, while at the same time creating large
volumes of new documents, can leverage both the flexibility and scalability that read-only
physical standby databases offer.

352 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 9: Active Data Guard 353

Even though we’re discussing opening a physical standby database in read-only mode, you
might have valid reasons for opening the physical standby temporarily in read-write mode, and
then returning it to either read-only, or simply a physical standby in managed recovery mode.
A physical standby database can be temporarily opened in read-write mode for development,
quality assurance (QA) testing, or to resolve break-fix issues, and then reverted to its true physical
standby state. This is accomplished through the use of Flashback Database to return the database
to a previous point in time. When the database is flashed back, Data Guard automatically
synchronizes the standby database with the primary database without the need to re-create the
physical standby from a backup copy of the primary database.

The Downside of Read-Only or Read-Write Mode
In Oracle Database 10g, when the physical standby is opened in read-only or read-write mode,
the time it takes to recover from a failure of the primary database and subsequent failover to the
standby is lengthened. Once the physical standby has been opened in read-only or read-write
mode, it does not apply redo received from the primary database, and hence the primary and
standby become inconsistent with one another. In addition, once the physical standby has been
opened for either mode, the database must be shut down and restarted following a failover.
Because the application of redo is paused while the physical standby is open, the accumulated
redo and archive logs must be applied before the physical standby can assume its role as the
primary database after a failover. To make matters worse, in Oracle Database 10g, redo is not
shipped to a standby that has been opened in a read-write mode. The shutdown and restart, and
application of archived redo logs extends the length of time for the failover or switchover to occur
in an open physical standby read-only or read-write configuration.

If the physical standby database has not been opened in either read-only or read-write mode
since it was last started, no restart of the database is required prior to the failover or switchover
occurring in Oracle 10g.

In addition to the lengthened failover and switchover times, queries that are executed against
a read-only physical standby are running against stale data immediately. In some applications this
is acceptable, but just as often, a current and consistent image of the data is a much preferred
view against which queries can be executed.

As will become evident in this chapter, Oracle Database 11g Data Guard has enabled Active
Data Guard to accomplish this goal: Provide a read-only physical standby database that can
concurrently serve as disaster recovery without a restart being required.

The following steps are required to enable a physical standby database in read-only mode:

 If the physical standby is currently shut down, use this: ■

SQL> STARTUP;

 If the physical standby is currently in managed recovery mode applying redo, use this: ■

 1. Cancel the Redo Apply:

 SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

 2. Open the database for read-only access:

 SQL> ALTER DATABASE OPEN;

 To return the database from read-only to applying redo, restart the standby database in ■
the MOUNT mode and use this command:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE
 2> DISCONNECT FROM SESSION;

Chapter 9: Active Data Guard 353

 If you want to enable real-time apply of redo, use this: ■

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE
 2> USING CURRENT LOGFILE DISCONNECT;

In review, there is no real difference between the implementation of a physical standby that
has been opened read-only in Oracle Database 10g or Oracle Database 11g in a basic read-only
configuration. The most important concept to remember is that no redo will be applied to the
physical standby while the instance is open in read-only mode, and all accumulated redo stored
in the archive logs on the standby server will have to be applied to the standby database before it
can assume the role of the primary instance during a failover or switchover event.

Snapshot Standby for QA and Test Environments
What differentiates a snapshot standby from the physical standby in read-only mode? The answer
is simple: the physical standby becomes fully updatable. Oracle introduced a twist in Oracle
Database 10g Data Guard that provided similar functionality, albeit with many more steps and
hence more complexity, when opening a physical standby in read-write mode. For comparative
purposes, we’ll discuss both the physical standby database open in read-write mode and the true
snapshot standby that is new to Oracle Database 11g.

Redo is not shipped from the primary database to the physical standby database while it is
being used in read-write mode in Oracle Database 10g and, if this is your only standby database,
the primary database is unprotected. For this reason, if you plan on opening a physical standby
database as a read-write clone of the primary database for testing or other operations, it is highly
recommended that a second physical standby database be in place to maintain protection for the
primary database.

In Oracle Database 11g, though, redo continues to ship from the primary to the snapshot
standby, but no redo is applied and your recovery time objective (RTO) will be longer if you have
to failover during the snapshot period.

Read-Write Standby in Oracle Database 10g
To create a physical standby and open it as a read-write clone of the primary database, you’ll
need to perform the following steps:

 1. Prepare the physical standby to enable a guaranteed restore point. Because Flashback
Database requires that the flashback logs reside in the flash recovery area (FRA) we need
to set up a flash recovery are if we do not have one:

SQL> ALTER SYSTEM SET DB_RECOVERY_FILE_DEST_SIZE=20G;
SQL> ALTER SYSTEM SET DB_RECOVERY_FILE_DEST='+FLASH';

NOTE
Although we have set up our flash recovery area in Automatic Storage
Management (ASM), you can also set up your flashback recovery area
in a normal disk directory. In that case, you would use something like
this: DB_RECOVERY_FILE_DEST= '/arch/oradata'

354 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 9: Active Data Guard 355

 2. Create a guaranteed restore point and cancel redo apply:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;
SQL> CREATE RESTORE POINT before_open_standby GUARANTEE FLASHBACK
DATABASE;

Creating an easy-to-remember name such as before_open_standby automatically
associates it with an SCN or timestamp. When you later need to flash back the database
to restore it to a previous point in time as part of synchronizing it with the primary
database and restarting the redo apply, having a simple name to reference during the
flashback process makes it much easier.

 3. Prepare the primary database to be split from the physical standby by archiving the
current log file. It’s necessary for the SCN of the restore point to be archived on the
physical standby database. To accomplish this, you must switch logs on the primary
database:

SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;

If you’re using standby redo logs, this step must be accomplished to guarantee that
the standby database can be flashed back successfully to the restore point.

 4. On the primary database, defer all log archive destinations that are pointing to the
physical standby database that will be opened, and switch logs once more to stop redo
transport. If it is a single instance, only one instance will have to be modified; if it is a
Real Application Clusters (RAC) cluster, all instances of the cluster will need to defer the
archival of their redo to the physical standby. On the primary database, and on all nodes
of a RAC cluster, do this:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=DEFER;
SQL> ALTER SYSTEM SWITCH LOGFILE;

 5. Now it is time to activate the physical standby database. On the physical standby
database, perform the following steps:

SQL> ALTER DATABASE ACTIVATE STANDBY DATABASE;

 6. Skip the next statement if the physical standby has not been opened read-only since it
was last started:

SQL>STARTUP MOUNT FORCE;

 7. The last step is to change the protection mode and open the database for read-write access:

SQL> ALTER DATABASE SET STANDBY DATABASE TO MAXIMIZE PERFORMANCE;
SQL> ALTER DATABASE OPEN;

The physical standby database is now fully available for update operations. Once again, note
that if this is your only disaster protection source for providing failover protection, while the
physical standby is open in read-write mode, no redo is being shipped and it is falling behind the
primary database. All of the redo that was not shipped would be lost if you had to failover to this
standby before you could synchronize with the primary again. The missing redo in the form of
archive logs must be sent and applied to the physical standby before a switchover can be
performed in addition to the following steps to bring the physical standby back from its read-write
mode to a physical standby in managed recovery mode.

While the physical standby database is open in read-write mode, it can be used for testing,
benchmarking, reporting, or any other activity completely separate from the primary database.

Chapter 9: Active Data Guard 355

In the steps that follow, we will revert the database back to its original form as a physical standby
database in managed recovery mode. Remember that once this reversion has occurred, any
changes that have occurred while the physical standby database was open in read-write mode
will be lost.

To revert the physical standby database back to its original state, it must first be returned to
the point before the standby was activated. We will leverage the guaranteed restore point we set
earlier along with Flashback Database. To complete this next phase we must perform the
following steps:

SQL> STARTUP MOUNT FORCE;
SQL> FLASHBACK DATABASE TO RESTORE POINT before_open_standby;
SQL> ALTER DATABASE CONVERT TO PHYSICAL STANDBY;
SQL> STARTUP MOUNT FORCE;

 1. At this point, your standby database is back to its former role of physical standby but at
the point where it became a snapshot standby. Your next steps will depend largely on
how far the standby is behind the primary database in terms of redo.

 2. If you have activated the physical standby for a short period of time, the physical standby
has not fallen too far behind the primary database. In this case, you can allow the
physical standby database to use archive gap resolution to fetch any missing archived
redo logs and allow Redo Apply to apply the logs. To complete this process, perform the
following step:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE
 USING CURRENT LOGFILE DISCONNECT;

However, if the activated physical standby has fallen sufficiently behind the primary database,
simply allowing gap resolution to occur is not a viable alternative. It would result in too many
archive logs being requested for gap resolution. It could also be that all of the necessary archive
logs are not available on disk anymore at the primary database. In this scenario, it becomes
necessary to take an incremental backup of the primary database and apply that to the physical
standby database using RMAN to resynchronize the standby database with the primary.

NOTE
This procedure can also be used if the apply process was unable
to resolve an archive log gap due to corruption of the archive log
or a large gap in the redo between the primary and the standby. If
this is the case, make sure that Redo Apply has been stopped first
by executing the ALTER DATABASE RECOVER MANAGED STANDBY
DATABASE CANCEL; command.

To complete this procedure, use the following steps:

 1. Identify the current SCN on the physical standby database before starting the incremental
backup, as the backup must be created from this SCN forward. On the physical standby
database, execute the following command:

SQL>SELECT CURRENT_SCN FROM V$DATABASE;

 2. Record the SCN returned for the next step.

356 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 9: Active Data Guard 357

 3. The incremental backup must be taken to disk on the primary database. Using the SCN
from the query, connect to the primary database and create an incremental RMAN
backup as follows:

RMAN> BACKUP INCREMENTAL FROM SCN <SCN from above query>
 DATABASE FORMAT '/tmp/ForStandby_%U' tag 'FORSTDBYSYNCH';

Note that independent incremental RMAN backups are not considered valid backups. Even
though default destinations are defined for RMAN backups, backup sets produced by this
command are written to the /dbs location by default notwithstanding the existence of a
flash recovery area or another destination having been defined as we have with the FORMAT
qualifier. The incremental backup will not be catalogued on the primary database, and you
must manually catalog it on the physical standby after it is moved to a disk location there.

 4. When the incremental backup completes, manually transfer all the backup sets to the
physical standby database. Pay particular attention to the fact that more than one backup
set may be associated with the incremental backup and all pieces of the incremental
backup must be moved to the physical standby database before you catalog them. As an
example, to scp the backup sets from the primary database named Matrix to the physical
standby database named Matrix_DR0, you would execute the following command:

$scp /$ORACLE_HOME/dbs/FORSTDBYSYNCH_* MATRIX_DR0:/tmp

 5. After moving the incremental backup pieces to the physical standby database, the backup
pieces must be cataloged in RMAN. Then you can recover the standby database with
the cataloged incremental backup pieces. Here’s how to perform these steps from the
physical standby database:

$rman target /
RMAN> CATALOG START WITH '/tmp/FORSTDBYSYNCH';
RMAN> RECOVER DATABASE NOREDO;

 6. Before the physical standby database can by returned to its original state, a few more
steps remain. You must create a standby control file backup on the primary database and
restore it on the physical standby database. Connect to the Primary database and execute
these commands

RMAN> BACKUP CURRENT CONTROLFILE FOR STANDBY
 FORMAT '/tmp/FORSTDBYCTRL.bak';
$scp /tmp/FORSTDBYCTRL.bak MATRIX_DR0:/tmp

 7. Back on the physical standby database, do this:

RMAN> SHUTDOWN;
RMAN> STARTUP MOUNT;

 8. If the primary and standby datafile directories are not identical, you need to complete this
intermediate step and on the physical standby database, connect to RMAN and catalog
the standby datafiles, and switch the database to use the just-cataloged datafiles:

RMAN> CATALOG START WITH '+DATA/MATRIX_DR0/DATAFILE/';
RMAN> SWITCH DATABASE TO COPY;

 9. The same situation exists with the redo log directories that existed with the datafile
directories. Again, this is an intermediate step, and if the directories are the same, it
can be skipped. Otherwise, use asmcmd if it is an ASM-managed database, or use an
OS utility to remove all online and standby redo logs from the standby directories.

Chapter 9: Active Data Guard 357

In addition, make sure that the LOG_FILE_NAME_CONVERT parameter has been set to
convert the directory paths from Matrix to Matrix_DR0. As an example, you would
include the following in your parameter file:

LOG_FILE_NAME_CONVERT='/MATRIX/','MATRIX_DR0/'.

 10. You also need to clear all of the redo log groups on the standby:

SQL> ALTER DATABASE CLEAR LOGFILE GROUP1;
SQL> ALTER DATABASE CLEAR LOGFILE GROUP2;
…

 11. When you have successfully cleared all standby redo log groups, re-enable Flashback
Database on the physical standby database:

SQL> ALTER DATABASE FLASHBACK OFF;
SQL> ALTER DATABASE FLASHBACK ON;

 12. Finally, still on the physical standby, restart the managed recovery process:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE
 USING CURRENT LOGFILE DISCONNECT;

So why, you might ask, have we taken you through this painful and lengthy process to return
a physical standby to its original state in managed recovery? As was alluded to earlier, in Oracle
Database 10g Data Guard, the process of opening a physical standby database in read-write
mode and returning to managed recovery mode required more steps and was a more complex
process than what is required in Oracle Database 11g Data Guard. And since no redo is shipped
from the primary database to a physical standby that has been opened read-write in 10g, you
need to know how to get it synchronized again with the primary in the best possible way.

In Oracle Database 11g Data Guard, Oracle introduced a new feature that eliminates this
painful procedure. The new feature is known as snapshot standby. Lest we digress, we’ll discuss
what many of you will find to be a favorite feature and one that will greatly increase the flexibility
of your database infrastructure.

Snapshot Standbys in Oracle Database 11g
In the larger scheme of things, how does the Oracle Database 11g snapshot standby database
differ from the Oracle Database 10g “open read-write standby” we discussed for QA and test?
Operationally, there are no differences, as both are read-write and are fully updatable while they
are open.

What you will find, though, is that the process of moving the database to fully updatable and
back again takes fewer steps, is simpler, and, most important, has a significantly lower degree of
risk to the physical standby database and to the protection of your primary database than the
previous version. Setting up the snapshot standby can be accomplished in a number of ways,
including the Data Guard Broker CLI, Enterprise Manager 10.2.0.5 , or through SQL*Plus. The
Data Guard Broker provides a convenient interface to convert your physical standby to a
snapshot standby and back again, so we’ll discuss how to implement the snapshot standby using
the Data Guard Broker first.

The following examples of enabling snapshot standbys assume you have either built a test
environment that includes the sample database or the environment in which you are working
includes the sample database. If this is not the case, create appropriate test tables prior to
beginning this exercise.

358 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 9: Active Data Guard 359

Some basic configuration needs to be completed up front and will stay in place in your Data
Guard environment going forward. First, make sure the Data Guard Broker is configured and
enabled correctly, as discussed in Chapter 5. Four key items are required in configuring the Data
Guard Broker, depending on your environment:

	 ■ Set the DG_BROKER_START initialization parameter.

	 ■ Create the Data Guard Broker service for the listener.

	 ■ Create the Broker configuration.

	 ■ Enable the Broker configuration.

Just as with the Oracle Database 10g snapshot standby, we need to enable Flashback Database
on the physical standby database if it is not already enabled. To determine whether Flashback
Database is enabled on the physical standby database, query V$DATABASE as follows:

[oracle@matrix_dr0 app]$ sqlplus / as sysdba
SQL*Plus: Release 11.1.0.6.0 - Production on Wed Oct 29 09:58:29 2008
Copyright (c) 1982, 2007, Oracle. All rights reserved
Connected to:
Oracle Database 11g Enterprise Edition Release 11.1.0.6.0 – Production
With the Partitioning, OLAP, Data Mining and Real Application Testing options
SQL> SELECT FLASHBACK_ON FROM V$DATABASE;
FLASHBACK_ON

NO

You do not need to enable Flashback Database explicitly to use a snapshot standby database
as long as the physical standby is not open in read-only mode. Snapshot standby uses a
guaranteed restore point (GRP) that can be set even if Flashback Database is not enabled as long
as you are in the MOUNT state. But, if Flashback Database is not enabled (FLASHBACK_ON =
NO), and you want to enable it, you can use a combination of the Data Guard Broker command
line and SQL*Plus.

 1. Stop the application of redo by disabling the managed recovery process (MRP) as follows:

[oracle@matrix_dr0 ~]$dgmgrl
DGMGRL> CONNECT sys/oracle
Connected.
DGMGRL> EDIT DATABASE 'MATRIX_DR0'SET STATE='APPLY-OFF';
Succeeded.
DGMGRL> EXIT
[oracle@matrix_dr0 ~]

 2. Next, enable Flashback Database on the physical standby database through SQL*Plus
while the database is in a MOUNT state. If your physical standby is open read-only at this
time, you need to shut it down and bring it back to the MOUNT state as follows:

[oracle@matrix_dr0 ~]$sqlplus / as sysdba
SQL> SHUTDOWN IMMEDIATE
Database closed.
Database dismounted.
ORACLE instance shut down.

Chapter 9: Active Data Guard 359

SQL>STARTUP MOUNT
ORACLE instance started.
Total System Global Area 422670336 bytes
Fixed Size 1300352 bytes
Variable Size 276826240 bytes
Database Buffers 138412032 bytes
Redo Buffers 6131712 bytes
Database mounted.

 3. Once back in the MOUNT state, enable Flashback Database:

SQL> ALTER DATABASE FLASHBACK ON;
Database altered.

 4. Now that Flashback Database is enabled, you can again enable the application of redo
to the physical standby database in preparation for converting it to fully updatable. Since
you are using the Broker, use DGMGRL:

[oracle@matrix_dr0 ~]$dgmgrl
DGMGRL> CONNECT sys/oracle
Connected.
DGMGRL> EDIT DATABASE 'MATRIX_DR0'SET STATE='APPLY-ON';
Succeeded.

 5. You are now ready to do the actual conversion to a snapshot standby. All you have to do
is enter the following command to DGMGRL using the physical standby database name:

DGMGRL> CONVERT DATABASE 'MATRIX_DR0' TO SNAPSHOT STANDBY;
Converting database "MATRIX_DR0" to a Snapshot Standby database, please
wait.
Database "MATRIX_DR0" converted successfully

 6. After the conversion completes, like all other work you do as a DBA, you need to
verify the proper completion of the conversion. This is accomplished with the SHOW
CONFIGURATION command as follows:

DGMGRL> SHOW CONFIGURATION
Configuration
 Name: DGConfig1
 Enabled: YES
 Protection Mode: MaxPerformance
 Databases:
 MATRIX - Primary database
 MATRIX_DR0 - Snapshot standby database
Fast-Start Failover: DISABLED
Current status for "DGConfig1":
SUCCESS
DGMGRL>

 7. You need to do some more verification—in this case to assure yourself that redo is
actually being sent to the standby from the primary database. You can accomplish this by
querying V$MANAGED_STANDBY on the snapshot standby database and noting the value
in the BLOCK# column:

SQL> SELECT STATUS, SEQUENCE#, BLOCK#
 FROM V$MANAGED_STANDBY

360 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 9: Active Data Guard 361

 WHERE CLIENT_PROCESS='LGWR';
STATUS SEQUENCE# BLOCK#
---------- ---------- -------
IDLE 83 2183
SQL>

 8. On the primary database, connect via SQL*Plus and insert a row into the hr.regions
table as follows:

SQL> INSERT INTO HR.REGIONS
 2 VALUES (1, 'TEXAS');
1 row created.
SQL> COMMIT;
Commit complete.
SQL>

 9. Recheck V$MANAGED_STANDBY as you did earlier on the snapshot standby to verify that
redo from the primary database is being applied. You should see that the BLOCK# has
changed in the query results:

SQL> SELECT STATUS, SEQUENCE#, BLOCK#
 2 FROM V$MANAGED_STANDBY
 3 WHERE CLIENT_PROCESS='LGWR';
STATUS SEQUENCE# BLOCK#
---------- ---------- -------
IDLE 83 2786
SQL>

 10. This shows you that the redo is still coming in from the primary database and you are still
protected. One thing to note from this simple example is that the insert to the primary
database will not appear in the snapshot standby until it is converted back into a physical
standby and the redo has been applied. You can go to the snapshot standby database and
insert a row into the same table as you just did on the primary, hr.regions, as follows:

SQL> INSERT INTO HR.REGIONS
 2 VALUES (10, 'TEXAS');
1 row created.
SQL> COMMIT;
Commit complete.
SQL>

In this case, you have the record in the snapshot standby with different values for the first
column. This second update will be removed from the snapshot standby when you convert it back
into a physical standby database.

You can now proceed with testing, benchmarking, break-fix work, QA, and so on, on the
physical standby, as it has been converted to a fully updatable snapshot standby. All statements
executed on the primary database that would have been applied to the physical standby during
normal physical standby mode operations will continually be shipped but not applied.

Now, assuming you have completed the work you intended, you want to return the snapshot
standby database to its original mode as a physical standby database. We mentioned earlier that
returning an Oracle Database 11g snapshot standby database to a physical standby was a much
simpler process. Just how much simpler is it? Let’s return the snapshot standby you just converted
to a physical standby now.

Chapter 9: Active Data Guard 361

 1. Connect to the Data Guard Broker to begin the process:

[oracle@matrix_dr0 app]$ dgmgrl
DGMGRL for Linux: Version 11.1.0.6.0 - Production
Copyright (c) 2000, 2005, Oracle. All rights reserved.
Welcome to DGMGRL, type "help" for information.
DGMGRL> CONNECT sys/oracle
Connected.
DGMGRL> CONVERT DATABASE 'MATRIX_DR0' TO PHYSICAL STANDBY;
Converting database "MATRIX_DR0" to a Physical Standby database, please
wait.
Operation requires shutdown of instance "MATRIX_DR0" on database
"MATRIX_DR0"
Shutting down instance "MATRIX_DR0"…
Database closed.
Database dismounted.
ORACLE instance shut down.
Operation requires startup of instance "MATRIX_DR0" on database
"MATRIX_DR0"
Starting instance "MATRIX_DR0"…
ORACLE instance started.
Database mounted.
Continuing to convert database "MATRIX_DR0"…
Operation requires shutdown of instance "MATRIX_DR0" on database
"MATRIX_DR0"
Shutting down instance "MATRIX_DR0"…
ORA-01109: database not open
Database dismounted.
ORACLE instance shut down.
Operation requires startup of instance "MATRIX_DR0" on database
"MATRIX_DR0"
Starting instance "MATRIX_DR0"…
ORACLE instance started.
Database mounted.
Database "MATRIX_DR0" converted successfully
DGMGRL>

 2. Believe it or not, that is almost all there is to returning the snapshot standby to a physical
standby. You again want to perform some verification and validation to assure that
everything is as it should be, and the last step is to return the physical standby to managed
recovery mode, which you’ll do right after a quick SHOW CONFIGURATION:

DGMGRL> SHOW CONFIGURATION
Configuration
 Name: DGConfig1
 Enabled: YES
 Protection Mode: MaxPerformance
 Databases:
 MATRIX - Primary database
 MATRIX_DR0 - Physical standby database
Fast-Start Failover: DISABLED
Current status for "DGConfig1":
SUCCESS
DGMGRL>

362 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 9: Active Data Guard 363

You are done. The Broker will have restarted the Redo Apply process and the physical
standby database will be working on catching up with the primary. If the primary database has
not yet reconnected to the standby after the conversion, you can connect as SYSDBA to your
primary database and switch log files, although this is not necessary if you are running in
Maximum Availabilty:

SQL> ALTER SYSTEM SWITCH LOGFILE;
System altered.
SQL>

This will reconnect the LogWriter Network Service (LNS) process to its RFS process on the
standby. Now you want to have a look at what happened to your data in the Regions table, so
back on the physical standby database, use DGMGRL and stop the managed recovery process:

DGMGRL> EDIT DATABASE 'MATRIX_DR0'SET STATE='APPLY-OFF';
Succeeded.

Using SQL*Plus, open the physical standby in read-only mode:

SQL> ALTER DATABASE OPEN READ ONLY;
Database altered.
SQL>

You can query any table you changed while the database was a snapshot standby, and the
changes made on the snapshot standby will be gone, such as your change to the hr.regions
table (10, 'TEXAS'). However, changes made on the primary database, such as the row you
entered for hr.regions with the values (1, 'TEXAS') will still be there:

SQL> SELECT * FROM HR.REGIONS;
 REGION_ID REGION_NAME
---------- -------------------------
 1 TEXAS
SQL>

You are almost finished! Simply shut down the physical standby database and restart it in
MOUNT mode. This will take the physical standby out of read-only mode and prepare it for
receiving redo from the primary database:

SQL> SHUTDOWN
Database closed.
Database dismounted.
ORACLE instance shut down.
SQL> STARTUP MOUNT
ORACLE instance started.
Total System Global Area 422670336 bytes
Fixed Size 1300352 bytes
Variable Size 343935104 bytes
Database Buffers 71303168 bytes
Redo Buffers 6131712 bytes
Database mounted.
SQL>

Chapter 9: Active Data Guard 363

Finally, put the physical standby back into managed recovery mode and you’re really done!

[oracle@matrix_dr0 ~]$dgmgrl
DGMGRL>connect sys/oracle
Connected.
DGMGRL> EDIT DATABASE 'MATRIX_DR0'SET STATE='APPLY-ON';
Succeeded.
DGMGRL>EXIT
[oracle@matrix_dr0 ~]

You have two, just two, real steps that you must complete to go from the physical standby
database to a fully updatable snapshot standby database and return again to your physical
standby database:

 1. Convert the physical standby database to a snapshot standby database.

 2. Convert the snapshot standby database to a physical standby database.

When we look back at the requirements to accomplish the same fully updatable or open
read-write standby database in Oracle Database 10g, the number of steps (15 in total), the level of
complexity, and the opportunity for error is significantly higher. This one feature enables testing
and QA against real-world environments in an extremely effective manner.

To complete the story, of course you can do this operation with SQL*Plus if you are not using
the Broker; it involves a few more steps to issue the commands that the Broker issues for you:

 1. Shut down any auxiliary RAC instances of the standby.

 2. Put the database in the MOUNT state.

 3. Execute ALTER DATABASE CONVERT TO SNAPSHOT STANDBY;.

To go back to a physical standby, do the same thing:

 1. Shut down any auxiliary RAC instances of the standby.

 2. Put the database in the MOUNT state.

 3. Execute ALTER DATABASE CONVERT TO PHYSICAL STANDBY;.

 4. Restart the standby database.

Restart Redo Apply. This involves not many more steps, but since the Broker does it all for
you, why not take advantage of it? Performing this conversion is also possible in Grid Control
10.2.0.5, which added a new Convert button, as shown in Figure 9-1.

FIGURE 9-1. Grid Control snapshot convert

364 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 9: Active Data Guard 365

Select a physical standby database and click the Convert button, and you will be asked to
confirm; then the conversion will take place and the Role column will change to snapshot
standby when the Data Guard home page returns.

One final note about snapshot standby databases: They are part of your normal Oracle
Enterprise license that you already have with your Data Guard configuration and hence do not
cost extra to use.

Real Application Testing
This chapter has continued to build on the basic physical standby database in both Oracle
Database 10g and Oracle Database 11g. From this point forward, however, the database features
we’ll discuss are all new to Oracle Database 11g. This section introduces two new features:

	 ■ Database Replay Enables the capture of actual production workloads and the constant,
dependable, and steadfast execution of a workload in a mirror environment, which, for
our purposes, is an Oracle Database 11g snapshot standby.

	 ■ SQL Performance Analyzer Provides a granular view of the impact of changes in an
environment to a SQL statement’s execution plan by running the statements sequentially
before and after the changes have been made. In addition to simply executing the
statements pre- and post-changes, it provides an assessment based on the workload
in both states and generates recommendations to tune the statements with supporting
execution plan details.

Snapshot standby databases can be created and opened from a physical standby for read-
write testing in one step. And the snapshot standby can be returned to a physical standby in a
single step. This is an obvious enabler of proper testing at all levels of the system development life
cycle (SDLC), in addition to providing a nearly immediate platform for break-fix testing of
production anomalies. As we continue to build on the flexibility of Oracle Database 11g, Real
Application Testing (RAT), coupled with a snapshot standby, takes this to a completely new level.

We’ll start by discussing Database Replay in detail and cover why you might want to capture
a production workload and then execute it in a snapshot standby. Remember that we are
capturing the operational workload from the running production environment, and our goal is to
determine how it responds to changes in environment. The question, then, is what environmental
changes would give us adequate concern to validate the performance of our production
workload? Here are some examples:

	 ■ Database upgrades, patches, parameter changes

	 ■ Configuration changes, such as single instance to RAC, ASM, and so on

	 ■ Physical changes, such as storage, network, interconnect, bonding/teaming

	 ■ Operating system changes, such as hardware migrations, patches, upgrades, and
parameter changes

These are examples of triggers that would cause a prudent IT staff to perform regression testing
before implementing changes into an operational production environment. In addition to these
changes for Database Replay, some general candidates are triggers for SQL Performance Analyzer:

Chapter 9: Active Data Guard 365

	 ■ Schema changes, including the addition, removal, or change of an index, partition, or
materialized view

	 ■ Changes in how optimizer statistics are gathered, the direct application of other SQL
performance tuning actions such as creating SQL profiles, histograms, and so on

One of the primary goals in RAT is to perform our testing in an environment that mirrors
production when we replay our captured workload to assure we are minimizing risk for our
actual migration of the changes. Our first step then is to convert the physical standby database to
a snapshot standby before we capture our workload using the procedures from the preceding
section.

Database Replay
Once the physical standby has been converted to a snapshot standby, we can begin the steps to
complete the process of capturing the production workload with Database Replay.

NOTE
Before you start the Database Replay process, Oracle (and your
authors) recommend taking a backup of your primary Oracle
Database as a best practice.

Four main components make up Database Replay:

	 ■ Workload capture Workload capture uses binary files on the file system called capture
files. Once workload capture is enabled, all client or external changes received by the
Oracle Database are tracked and written to the capture files on the file system. The
location of the capture files, start, and stop times of capture are all controlled by the user.

	 ■ Workload processing This process is typically executed on the snapshot standby or test
server. Before the captured workload can be replayed in the test environment, it must be
converted to replay files and the metadata needed for replaying the workload in the test
environment. There is no limit to the number of times the converted files can be replayed
on test systems. The converted files can also be copied to another test system if necessary
and run there if it supports Database Replay.

	 ■ Workload replay To state the obvious, because we are replaying a captured workload
that includes DML and queries, the test database must have data that is identical to
the source database on which the workload capture was performed if results are to be
reliable. Since we’re assuming a snapshot standby is being used, we’re ready now for the
replay component of the Database Replay workflow. The workload replay uses a replay
client program that processes the replay files and submits calls to the database with the
exact same timing and concurrency as in the workload capture system. A calibration
tool is provided to assist you in determining how many replay clients you will need to
emulate the workload from the original capture system. It’s possible that you will need
more than one client system, but the calibration tool will help you determine this.

	 ■ Analysis and reporting The purpose of regression testing is to determine the fitness of
changes for migration into a production environment, which means analysis of the tests,
and reports of that analysis must be produced. Fortunately, Database Replay natively

366 Oracle Data Guard 11g Handbook Chapter 9: Active Data Guard 367

provides extensive reports from simple error listings encountered during the test run
to differences in rows returned by DML statements. In addition, you can access AWR
reports for detailed comparative analysis between the capture and replay systems.

What about testing? Everybody performs testing—at least they should! But it requires time,
effort, and extra storage to populate the test environments frequently. And since workloads
usually do not mimic production, they rarely catch production problems. Even simple tests like
checking a new index can be very time consuming. The following table contains some of the
things you can test with Database Replay and a snapshot standby.

Production Setup Test on Snapshot Standby

Non-ASM storage ASM storage

No flash recovery area Uses flash recovery area

Flashback Database not enabled Flashback Database enabled

Lower O/S version Higher O/S version

Old hardware (disks/system) New hardware (disks/system)

Simple indexes Complex/more indexes

Parameters Changed parameters

No partitioning New partitioning

No compression Compression enabled

Let’s look at a simple example of capturing a workload on the primary database and replaying
it several times on our snapshot standby.

Database Replay is much easier to use in Database Control, so if you do not have Database
Control configured, it would be prudent to configure it now. To do so, execute the following on
the primary database to create the Database Control metadata or start it if already configured:

[Matrix] emca -config dbcontrol db -repos recreate
[Matrix] emctl start dbconsole

To get ready for Database Replay, create a directory in which the capture information will be
placed and gather up your testing material, scripts, and other data. You need to convert your
physical standby to a snapshot standby before you start your workload generation to maintain the
same starting point as the capture on the primary database:

DGMGRL> convert database MATRIX_DR0 to snapshot standby;
Converting database "MATRIX_DR0" to a Snapshot Standby database, please
wait...
Database "MATRIX_DR0" converted successfully

Remember that this requires extra flash recovery area space as flashback logs are not recycled
when a GRP is in effect, which is what converting to a snapshot creates for you.

Chapter 9: Active Data Guard 367

Next, configure Database Control on the snapshot standby. You won’t be able to use the
metadata for Database Control from the primary because these are now two separate databases.
This step can be done in parallel with the capture on the primary database.

[Matrix_DR0] emca -config dbcontrol db -repos recreate

While that is running, you can start your capture. The general steps to capture a workload are
listed here. Use Database Control on the primary and do the following:

 1. Log in to Database Control on your primary database.

 2. Click the Software and Support link at the top.

 3. Under Real Application Testing, select Database Replay.

 4. On the Capture Workload task line, click the Go to Task icon.

 5. Read and acknowledge the prerequisites and click Next.

 6. On the next page, choose whether to restart the primary or not and create the directory
object for your Replay Directory. You should test the file system by clicking the button
provided to make sure you got it right. Note that each workload capture that you perform
requires its own directory. When the test is successful, click OK.

 7. Once the directory object is created, click Next.

 8. Set a schedule for your capture (Start and Stop) and submit your capture job. We choose
not to set a schedule so that we can run a specific workload and then stop the capture
ourselves.

 9. Database Replay will now capture your current workload. In our case, we ran a set of
programs to simulate a workload:

[Matrix] wcr_demo_workload.csh
...
[7] + Done wcr_demo -d 40 -c salmon -t 0.00001 -u 2000
[6] + Done wcr_demo -d 30 -c orange -t 0.00001 -u 2000
[5] + Done wcr_demo -c yellow -d 10 -t 0.00001 -u 2000
[4] + Done wcr_demo -u 3000 -t 0.01 -c black
[3] + Done wcr_demo -u 3000 -t 0.01 -c blue
[2] + Done wcr_demo -u 3000 -t 0.01 -c green
[1] + Done wcr_demo -u 3000 -t 0.01 -c red

 10. If you did not set a scheduled time to end the capture, then when the programs complete,
return to Database Control and stop the capture, as in our case.

 11. When Database Replay asks if you want to export the AWR data, click Yes.

At this point, you are done with your primary database. In the capture directory are all the
files needed to rerun the workload. But they must first be processed by Database Replay before
they can be used to replay the workload. You can do this preprocessing on the primary system or
you can copy the captured workload files to the standby and process them there, which is what

368 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 9: Active Data Guard 369

we did. Once the files are on the standby system, log in to Database Control on your standby
database (which should be created by now) and navigate to the Database Replay page.

 1. Select the Preprocess Captured Workload task.

 2. Create the capture directory object to point to the copied capture files. You cannot use
the directory object you created during the capture process since it will not exist on
the snapshot standby. Remember that redo (with that DDL in it) is being shipped to the
standby but not applied.

 3. Click PreProcess Workload.

 4. Configure the job settings as required and verify the replay version. Once complete, click
Next.

 5. Set the schedule (Run Immediate is the default), click Next, and click Submit the Job.

When the preprocess job is complete, you are ready to start replaying your workload. You will
first want to run the replay once without any changes to obtain a baseline set of metrics. After
that, make many runs of the replay with your changes and compare the results of the various runs.
We will run the baseline first and then add several indexes to the snapshot standby to change the
workload execution statistics and do it all again.

Before you start, create a guaranteed restore point in the snapshot standby and restart the
standby. This will give you a rewind point that you can return to so that each replay runs on
exactly the same database contents and structure. Restarting the database sets the System Global
Area (SGA) back to a clean starting point as well:

SQL> create restore point beforereplay
 guarantee flashback database;
SQL> shutdown immediate
SQL> startup

NOTE
If you are not running in Maximum Availability mode, you need to
return to the primary and switch logs at this point to make sure that
the primary starts sending redo again to keep you protected.

Now, in Database Control, navigate to the Database Replay page, select the Replay Workload
task, and click the Go to Task icon. Then do the following:

 1. Create a directory object to point to the capture files.

 2. Click Set Up Replay.

 3. Ensure the prerequisites have been met.

 4. On the Restore Database Requirement, we are using a snapshot standby and Flashback
Database so we do not need to restore the database.

 5. Resolve any references to external systems and click Continue. Determine how many
clients you need. Database Replay provides a multithreaded replay client program called
wrc that will handle the clients for you. When run with the mode=calibrate option, wrc

Chapter 9: Active Data Guard 369

will tell you the minimum number of clients to run so that it can start the appropriate
number of user threads.

[Matrix_DR0] wrc mode=calibrate REPLAYDIR=/scratch/oracle/Replay/Capture
Workload Replay Client: Release 11.1.0.6.0 – Production
Copyright (c) 1982, 2007, Oracle. All rights reserved.
Report for Workload in: /scratch/oracle/Replay/Capture

Recommendation:
Consider using at least 1 clients divided among 1 CPU(s).
Workload Characteristics:
- max concurrency: 7 sessions
- total number of sessions: 11

On the next screen, choose your replay options and then start up the
clients using the Database Replay program wrc:[Matrix_DR0] wrc
REPLAYDIR=/path USERID=xxx PASSWORD=xxx

 6. When replay sees the clients, it will list them in the table at the bottom. When they are all
accounted for, you can continue by clicking Next.

 7. Click Submit on the next page to start the replay and wait until the replay is completed.

 8. Once the replay is complete, using the links on the next page you will create and save the
Workload Report and the AWR report for your baseline run.

That was your baseline run. Now the fun starts. You are going to rewind the snapshot standby
and do it all over again after making some changes that you want to test:

 1. Flashback the snapshot standby to the restore point:

SQL> shutdown immediate
SQL> startup mount
SQL> flashback database to restore point beforereplay;
SQL> alter database open resetlogs;
SQL> shutdown immediate
SQL> startup

 2. The second restart is not technically necessary, but we want to ensure that we start with
the database in the same state as the baseline run.

 3. Now make your changes to the database. We’ll set up some new indexes:

SQL> create index wcr_grid_xcoor_ycoor on wcr_grid(xcoor, ycoor);
SQL> create index wcr_grid_pixid_xcoor_ycoor
 on wcr_grid(pixid,xcoor, ycoor);
SQL> create index wcr_grid_pixid_xcoor on wcr_grid(pixid, xcoor);
SQL> create index wcr_grid_pixid_ycoor on wcr_grid(pixid, ycoor);
SQL> create index wcr_grid_pixid_xcoor_color
 on wcr_grid(pixid, xcoor, color);
SQL> create index wcr_grid_pixid_ycoor_color
 on wcr_grid(pixid, ycoor, color);
SQL> create index wcr_grid_pixid_color on wcr_grid(pixid, color);
SQL> create index wcr_grid_xcoor_color on wcr_grid(xcoor, color);
SQL> create index wcr_grid_ycoor_color on wcr_grid(ycoor, color);

370 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 9: Active Data Guard 371

 4. Rerun the entire replay using the same steps used for the baseline run.

 5. Save the reports, and run the AWR Differences report between the new run and the
baseline run.

 6. Compare the results of each of your secondary runs to the baseline.

You can continue in the preceding loop as long as you have the disk for your flashback logs.
When you are satisfied with the results of your testing, convert your snapshot standby back into
a physical standby and let it resynchronize with the primary by applying all the redo that has
accumulated at the standby during your testing runs.

 1. Drop the replay restore point:

SQL> drop restore point beforereplay;

 2. Convert the snapshot to a physical standby database:

DGMGRL> convert database MATRIX_DR0 to physical standby;

Redo Apply automatically begins applying the redo that came in while it was in
snapshot standby mode and the primary continues to send the current redo.

For more details on this example of using RAT Database Replay, refer to the Oracle
OpenWorld 2008 Presentation entitled “Beat-up Your Oracle Data Guard Standby with Oracle
Real Application Testing—It’s Payback Time!”1

SQL Performance Analyzer
With Database Replay, we’ve explored the basic steps to approach full-blown regression testing on
your physical standby database using a snapshot standby. Being able to predict the results of
environmental changes on the application SQL before it is introduced into production means less
work for DBAs in tracking down problem SQL and an environment that can reliably tune the SQL
before migrating it back into production. The combination of Database Replay and SQL Performance
Analyzer, and the ability of the Oracle Database to capture SQL and save it into SQL tuning sets,
make this not only feasible, but also pretty straightforward.

A goal in RAT is to identify those SQL statements with degraded performance resulting from
the environmental and/or database changes that have been introduced. SQL Performance Analyzer
can both predict and prevent SQL execution performance problems as a result of these changes.

SQL Performance Analyzer is tightly integrated with SQL tuning sets, SQL Tuning Advisor, and
SQL Plan Management functionality. When Database Replay is running in its Client Replay mode,
SQL Performance Analyzer is capturing detailed statistics and plan information for every DML
statement and query executed against the test environment sequentially before and after the
changes occur. From these statistics and plan information, SQL Performance Analyzer generates
a report that outlines where performance in the workload has improved as a result of the changes,
in addition to which SQL statements have degraded in performance as a result of the changes.
This completely automated process of analyzing the performance of the SQL statements and
comparing the before and after execution plans takes what was an extremely time-consuming and
manual process to a level of refinement: you can simply review the generated reports to identify
the degraded SQL.

1 See www.oracle.com/technology/deploy/availability/pdf/oracle-openworld-2008/298770.pdf

www.oracle.com/technology/deploy/availability/pdf/oracle-openworld-2008/298770.pdf

Chapter 9: Active Data Guard 371

Once the degraded SQL has been identified, it can be isolated and captured into a SQL
tuning set for additional focused performance tuning.

Use of the SQL Performance Analyzer encompasses five main steps:

 1. Capture the SQL workload you want to analyze with SQL Performance Analyzer. This
would normally be done on the production database, using AWR to extract the SQL from
the cursor cache into a SQL tuning set. The SQL tuning set is then transferred to the test
system where SQL Performance Analyzer can analyze the extracted SQL.

 2. Using SQL Performance Analyzer, measure your workload’s performance prior to any
changes being made by executing the SQL Performance Analyzer against the SQL tuning set.

 3. Apply the planned changes to the test environment.

 4. Repeat step 2, this time with the changes in place.

 5. Compare the performance of the SQL tuning sets, identifying those that have improved,
degraded, or stayed the same.

The SQL statements of particular interest to us comes out of step 5—those which have
degraded in performance since we measured them in step 2. As mentioned earlier, SQL Tuning
Advisor is tightly integrated with SQL Performance Analyzer. At this point you can leverage SQL
Tuning Advisor to correct the degraded SQL statements while they are in the test environment and
create new plans for them. These plans are then seeded in to SQL Plan Management baselines
and exported back into production.

NOTE
For more information on Real Application Testing, read the Oracle
white paper “Oracle Database 11g: Real Application Testing
Overview.”2

Active Data Guard
So far, we’ve covered the physical standby database variations related to opening the physical
standby in read-only, read-write, or as a snapshot standby. Although each of these variants, once
opened, offers significant differences, they all have one thing in common: there is an accepted
impact to the recovery time objective (RTO) and potentially to the recovery point objective (RPO).
In the case of the read-only physical standby, the application of redo is paused, which means all
accumulated redo must be applied to the physical standby when it is returned to managed
recovery mode. In the case of Oracle Database 10g, when the physical standby has been opened
read-write, the number of steps to return the physical standby to managed recovery mode is
actually fairly lengthy, and in some cases involves creating an RMAN incremental backup if the
amount of time since the physical standby was opened read-write has been lengthy, or archive
logs needed to resynchronize the physical standby are missing. As shown earlier in this chapter,
returning to a physical standby from a snapshot standby is simply a matter of a single command:

DGMGRL> CONVERT DATABASE 'MATRIX_DR0' TO PHYSICAL STANDBY;

2 See www.oracle.com/technology/products/manageability/database/pdf/wp07/owp_real_application_testing_11g
.pdf

www.oracle.com/technology/products/manageability/database/pdf/wp07/owp_real_application_testing_11g.pdf
www.oracle.com/technology/products/manageability/database/pdf/wp07/owp_real_application_testing_11g.pdf

372 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 9: Active Data Guard 373

In the example we showed earlier, we performed some verification and validation, but
following the execution of this command, the snapshot standby was returned to its original state
as a physical standby. One thing you should have noted, though, is that during the conversion
process, the instance was stopped and restarted. In other words, a delay impacts RTO and RPO.
This leads us to our fourth and final configuration in this chapter, Active Data Guard.

First, Oracle Database 11g Active Data Guard enables read-only access to the physical
standby while applying redo to the physical standby in real time. Active Data Guard continues to
apply redo from the production primary database while allowing you to open a physical standby
in read-only mode for reporting any combination of simple or complex queries, sorts, and/or
web-based access. Because redo is being applied to the read-only physical standby, all queries
execute in real time and return result sets that are current and in sync with the production primary
database. Because of this synchronization with the production primary database, any operation
requiring read-only, real-time access to production data can be executed against the Active Data
Guard database. Opening an Oracle Database 11g physical standby using the Active Data Guard
option enables this read-only, real-time access with absolutely no impact on RTO or RPO, as the
Active Data Guard physical standby remains in managed recovery mode the entire time it is open
for read-only access.

One of the uses for physical standby databases for many years has been to shift the load of
RMAN backups from the production server to the physical standby. What has not been possible
until Oracle Database 11g Active Data Guard is the ability to use block change tracking as well.
With the use of block change tracking to record only those blocks that have been modified, it is
now possible to perform fast incremental backups from the physical standby with Active Data
Guard enabled. This can increase the performance of backups on the physical standby by a factor
of as much as 20 times over using a physical standby without Active Data Guard.

The primary focus of Active Data Guard is to support read-only environments, so let’s look at
the various architectures for Active Data Guard.

In its simplest form, a single instance primary and a single instance physical standby are
required to enable the Active Data Guard option for a read-only environment. In this architecture,
updates are made on the primary and redo is applied to the Active Data Guard standby in real
time, giving a guaranteed read-consistent view of the data at all times, while being open and
available for read-only operations, as shown in Figure 9-2.

Active Data Guard standby also supports Oracle RAC on the primary and/or standby
databases, which leads us to our next architecture: Oracle Database 11g RAC on the primary

FIGURE 9-2. Basic Active Data Guard configuration

Production
Database

Physical Standby
Database

Continuous Redo
Shipment and Apply

Fast
Incremental

Backups

Real-Time
Query

Chapter 9: Active Data Guard 373

database and a single-instance physical Data Guard active standby database. This configuration is
virtually identical to the basic RAC to single-instance physical standby architectures used in many
disaster recovery plans.

We start to see the real opportunity of the Active Data Guard architecture in its flexibility and
scalability. This brings us to what is likely to be a new concept within the context of Data Guard,
Active Data Guard reader farms. Active Data Guard reader farms are multiple instances all
operating as Active Data Guard physical standby databases. Active Data Guard supports multiple
physical standby databases (up to nine), so our example of a single-instance primary database and
a single-instance physical standby database can easily be modified to a single-instance primary
database and multiple single-instance physical standby databases. Prior to Oracle Database 11g
and Active Data Guard, this was a recommended approach when the conventional path for
opening a physical standby read-only was taken and the application of redo had to be paused,
leaving you with an extended failover time. Using Active Data Guard reader farms, the same
architecture of a single-instance primary database, and multiple physical standby active data
guard databases, you literally have the best of all worlds, as shown in Figure 9-3.

The third architecture is an extension of the Active Data Guard reader farms, as shown in
Figure 9-4. If the physical standby is on RAC, then leveraging the full power of the RAC for
read-only operations and scalability is as simple as adding instances as needed.

TIP
Active Data Guard is a separately licensed option for Oracle
Enterprise Edition. An Active Data Guard license is required to use
either the Real-Time Query or the RMAN block-change tracking on a
standby database.

FIGURE 9-3. Reader farm multiple databases

Production
Database Standby

Databases

Single Node

Active Data Guard
Reader Farm

Queries

Updates

Queries

Queries

Queries

Queries

374 Oracle Data Guard 11g Handbook Chapter 9: Active Data Guard 375

Configuring Active Data Guard
For the purposes of our discussion, you’ll need a Data Guard physical standby database that
meets prerequisites prior to enabling Active Data Guard. For assistance with configuring a Data
Guard physical standby database, refer to Chapter 2.

TIP
The compatible parameter must be set to at least 11.0.0 in either
the initialization parameter file or the spfile on both the primary and
physical standby databases. The physical standby database must apply
some redo after the compatible parameter was set to 11.0.0 or higher.

The actual process of enabling Active Data Guard is simple: Open the physical standby
database in read-only mode and start Redo Apply. The Data Guard physical standby should be in
one of two states prior to enabling Active Data Guard:

	 ■ The standby database is mounted and Redo Apply is running.

	 ■ The standby database has been shut down cleanly and Redo Apply was stopped.

In the first scenario, proceed as follows using SQL*Plus or Data Guard Broker if you prefer.
Using SQL*Plus alone, do this:

 1. Stop Redo Apply:

SQL> RECOVER MANAGED STANDBY DATABASE CANCEL;

 2. Open the database read-only:

SQL> ALTER DATABASE OPEN READ ONLY;

 3. Restart Redo Apply:

SQL> RECOVER MANAGED STANDBY DATABASE DISCONNECT USING CURRENT LOGFILE;

FIGURE 9-4. Active Data Guard RAC reader farm

Production
Database

Standby
Databases

Database Using
Oracle RAC

Active Data Guard Reader Farm

Updates Queries Queries Queries Queries Queries

Chapter 9: Active Data Guard 375

Using Data Guard Broker, do this:

 1. Stop Redo Apply:

DGMGRL> EDIT DATABASE 'MATRIX_DR0' SET STATE='APPLY=OFF'

 2. Using SQL*Plus, open the database read-only:

SQL> ALTER DATABASE OPEN READ ONLY;

 3. Restart Redo Apply:

DGMGRL> EDIT DATABASE 'MATRIX_DR0; SET STATE='APPLY-ON'

In the second scenario, where the physical standby and Redo Apply are already shut down,
proceed as follows.

Using SQL*Plus alone, do this:

 1. Start the physical standby in read-only mode.

SQL> STARTUP

 2. Start Redo Apply.

SQL> RECOVER MANAGED STANDBY DATABASE DISCONNECT USING CURRENT LOGFILE;

Using Data Guard Broker, do this:

 1. Connect to the database using DGMGRL and start it in read-only mode:

DGMGRL> STARTUP

 2. Unless the default for Redo Apply has been changed, issuing this startup command also
starts Redo Apply. If the default behavior has been changed, start Redo Apply like so:

DGMGRL> EDIT DATABASE 'MATRIX_DR0' SET STATE='APPLY-ON'

If you are interested in how easy it can be to open a physical standby in Active Data Guard
mode, you should try Grid Control 10.2.0.5. After clicking the Disabled link under the Real-Time
Query heading on the Data Guard home page (Figure 9-1), check the Enable Real-Time Query
checkbox on the next page and select Apply On (Figure 9-5). Grid Control does the rest for you!

FIGURE 9-5. Enabling Active Data Guard Real-Time Query with Grid Control

376 Oracle Data Guard 11g Handbook

Conclusion
Oracle Database 11g Active Data Guard introduced a new paradigm in the read-only options
when using Data Guard physical standby databases. The ability to open the physical standby
read-only and still apply redo assures that RTO and RPO objectives can be met, because the
standby is 100-percent available for failover or switchover as necessary. Beyond the read-only
availability to applications, the application of Active Data Guard to RMAN fast incremental
backups by enabling block change tracking on the Active Data Guard standby is another
significant performance enhancer, expediting backup times by a factor of as much as 20 times,
based on Oracle’s testing.

For more information on Active Data Guard, refer to the MAA white paper “Oracle Active
Data Guard: Oracle Data Guard 11g Release 1: Oracle Best Practices for High Availability”
(includes best practices for Redo Apply).3

3 See www.oracle.com/technology/deploy/availability/pdf/maa_wp_11gr1_activedataguard.pdf

www.oracle.com/technology/deploy/availability/pdf/maa_wp_11gr1_activedataguard.pdf

Chapter
10

Automating Site and
Client Failover

377

378 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 10: Automating Site and Client Failover 379

hapter 8 discussed database failover using both a physical and logical standby.
You learned that database failover can be achieved simply by entering a couple of
commands and can take mere seconds to complete. You might believe that your
understanding of database failover is so complete that you would be willing to
give yourself a mental checkmark, thinking that in the event of a disaster, you can

failover quickly and save the day. Well, we are here to say, Not so fast! You’re really only
halfway to a complete understanding of database failover. What good is database failover if your
application can’t connect to it?

In this chapter, we will dig deep into the details of failover configurations. You’ll learn how to
configure your client applications and databases so your connections seamlessly and transparently
reconnect to the new primary database in the event of failure.

The process of configuring client failover can be divided into three broad categories:

 Service relocation ■ The database service used by the primary application to connect to
the database should be active only on the primary database. If a failover or switchover
occurs, this service should be automatically migrated to the new primary database.

 Client notification ■ Once the failover has completed and the service is available on the
new primary database, the application should be notified that a failover has occurred
and that connections should be migrated to the new primary database.

 ■ Efficient reconnection The new and previous sessions should quickly be able to locate
the new primary database and not get stalled waiting for timeouts on unavailable hosts or
networks.

After reading this chapter, you should truly be able to save the day in the event of a failover
and give yourself that mental checkmark.

Defining the Problem
Client failovers typically fall into one of two categories: complete site failover or partial site failover.
Let’s begin by examining these two categories at a high level. Once you understand the differences,
we will begin digging deep into the details that enable clients to failover automatically and
seamlessly.

Complete Site Failover
Users that experience a complete site failover category typically have a disaster recovery data
center that, in addition to hosting the standby database, also has a complete set of redundant
middle tiers or application servers. Put simply, every application component on the primary site is
duplicated exactly at the standby site. In addition to redundant application components, each site
typically has a network load balancer or traffic manager that sends incoming requests to the
application servers on that site. The traffic manager is usually active only within the primary site.
Client connections originate from outside the two data centers and attempt to connect to the
application using a single address that resolves to the active traffic manager.

When a complete site failover is performed, the standby database is transitioned to a primary
database and the application servers/middle tiers are started. Once the application components have
been started, the address of the traffic manager from the failed site is enabled and started on the new

C

Chapter 10: Automating Site and Client Failover 379

site. If a single address floats between the traffic managers in the event of a failover, or a virtual IP
address, then client connections can immediately resume. If each traffic manager has its own IP
address, then the administrator must update the domain name system (DNS) so that the hostname
used for client connections correctly maps to the IP address of the new active traffic manager.

Partial Site Failover
Partial site failover differs from a complete site failover in that the application servers to which
clients are connected remain active while a Data Guard failover transitions the standby database
to a primary database. Say, for example, that with clients connected through the application
servers, a failure event occurs and takes down all the hosts that make up the primary database
cluster. The DBA quickly performs a Data Guard failover to either a local or remote standby so
that the application can resume processing. In this scenario, connections from the failed primary
cluster must be cleaned up and new connections to the new primary cluster established once it is
available for processing.

Partial site failover can also be useful in configurations that are set up for a complete site
failover. When performing a failover to a secondary site in a complete site configuration, it can
take some time to start up the new application servers. To avoid this lengthy startup time, you
may find it beneficial to direct the primary site’s application servers to the secondary site. This
can be feasible if the outage that triggered the failover involves only the database and the network
latency between the sites is such that the application servers on the primary site can access the
new primary on the secondary site.

The Nitty Gritty
You know that the client failover consists of three main components: service relocation, client
notification, and client reconnection. You can certainly take these three concepts and go directly to
the “Implementing Client Failover” section later in this chapter and get straight to work. However, if
you like to feed your inner geek, if you like to lift the hood and see the inner workings, this section
is for you. Here we provide the details on how various Oracle technologies and features that have
been developed over the years work and how putting the individual technologies together can
create a comprehensive client failover solution. While it is not necessary that you have a deep and
complete understanding of each feature to understand how to implement the client failover
solution, knowing this information does help you understand why certain things work the way they
do. In addition, when it comes to troubleshooting an issue, the extra knowledge is a good thing to
have in your back pocket.

This section also covers the process flow for each piece, and for that we need an example
Oracle Net alias as shown here:

SALES =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = MATRIX1)(PORT = 1521))
 (ADDRESS = (PROTOCOL = TCP)(HOST = MATRIX2)(PORT = 1521))
 (ADDRESS = (PROTOCOL = TCP)(HOST = MATRIX_DR01)(PORT = 1521))
 (ADDRESS = (PROTOCOL = TCP)(HOST = MATRIX_DR02)(PORT = 1521))
 (LOAD_BALANCE = yes)
)

380 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 10: Automating Site and Client Failover 381

 (CONNECT_DATA=
 (SERVICE_NAME=SALES)
)
)

TIP
In this example, Oracle Net aliases can also be coded into Java
Database Connectivity (JDBC) thin applications as a URL and achieve
the same functionality as Oracle Call Interface (OCI) clients.

Using this example’s connect descriptor, the following sections will illustrate how new and
existing connections will be properly routed only to the primary database.

Connection Load Balancing and Connect Time Failover
As the size of database clusters grow, it becomes more and more important for connections to be
evenly distributed across nodes and instances as they are being created. This is true when a large
number of connections are created in a short period of time or for connections that are created in
a trickle. Oracle’s basic mechanisms for evenly distributing connections are called client-side and
server-side load balancing. The following sections focus mainly on client-side load balancing and
connect-time failover, as they have the most impact on a client failover solution. The functionality
described here works with both OCI and Oracle JDBC clients.

Client-side Load Balancing/Connect-time Failover
The ADDRESS_LIST in our example Oracle Net alias (or URL if you are using JDBC thin client) has
four address entries, each of which represents an Oracle listener running on a specific host and port.
When a connection is started, the process chooses an initial address from the ADDRESS_LIST to
attempt the connection. If LOAD_BALANCE = YES is included within the ADDRESS_LIST, the
address to which the connect is made is chosen at random. This is called client-side load balancing.
If the connection to the initial address does not succeed, Oracle Net will go back to the ADDRESS_
LIST and randomly choose a new address. This continues until the connection attempt succeeds.

NOTE
Client-side load balancing is implicitly enabled if a DESCRIPTION_
LIST is included in the Oracle Net alias.

If LOAD_BALANCE is set to NO, or is not included in the Oracle Net alias, then connection
attempts will always grab the first address from ADDRESS_LIST. If the connection to the initial
address does not succeed, Oracle Net will go back to the ADDRESS_LIST and choose the next
address. With client-side load balancing turned off, the addresses are attempted sequentially.

In addition to providing load balancing across different addresses (or nodes) with an
ADDRESS_LIST, you can also load balance connections across DESCRIPTIONS within a
DESCRIPTION_LIST. Consider the following example:

SALES =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (LOAD_BALANCE= YES

Chapter 10: Automating Site and Client Failover 381

 (ADDRESS = (PROTOCOL = TCP)(HOST = MATRIX1)(PORT = 1521))
 (ADDRESS = (PROTOCOL = TCP)(HOST = MATRIX2)(PORT = 1521)))
 (ADDRESS_LIST =
 (LOAD_BALANCE= YES
 (ADDRESS = (PROTOCOL = TCP)(HOST = MATRIX_DR01)(PORT = 1521))
 (ADDRESS = (PROTOCOL = TCP)(HOST = MATRIX_DR02)(PORT = 1521)))
 (CONNECT_DATA=
 (SERVICE_NAME=SALES)
)
)

In this example, when a connection attempt is made, a random address from the first ADDRESS_
LIST is obtained for the connection attempt. If that connection attempt fails, another address
from the top ADDRESS_LIST is randomly selected. If all addresses from the first ADDRESS_LIST
fail, you move to the second ADDRESS_LIST and begin pulling addresses from that list in a
random order.

You must consider a few implications when building your Oracle Net alias to handle site
failover and choosing between load balancing against addresses in an ADDRESS_LIST or against
ADDRESS_LIST within a description. In our example, SALES Oracle Net alias, imagine that
MATRIX1 and MATRIX2 are the two nodes in our primary cluster and MATRIX_DR01 and
MATRIX_DR02 are the two nodes within our standby cluster. If the entire primary site cluster is
completely unavailable, then any new connection attempt using the alias with two addresses in
the ADDRESS_LIST will try the two primary hosts first before trying the two standby hosts, which
could take a considerable amount of time. (We will discuss how to mitigate this in the next
section, “Outbound Connect Timeout.”)

If you use the Oracle Net alias with a single ADDRESS_LIST, then you at least have a fair
chance a choosing a standby host within the first two attempts.

One more important item to consider is centered on database services. In our CONNECT_
DESCRIPTOR we are connecting to a service called sales. If this service is available on the
primary database as well as a mounted standby database, and the connection attempt happens to
pull a standby host from the ADDRESS_LIST, then the connection attempt will fail with the
“ORA-01033: ORACLE initialization or shutdown in progress” error. If the standby database
happens to be opened read-only, then, worse yet, the connection to the standby will succeed.
We resolve this issue by assuring that the database service the application uses to connect to the
database is available only on the primary database and not the standby database. That way, if a
connection connects to a standby host connection, it will find the service unavailable and go
back to the ADDRESS_LIST and attempt a different host until it finds the service on a primary
host. The process of ensuring that the service is active only on the primary database occurs using
a trigger that is fired at instance startup. The trigger checks the database role, and if the role is
PRIMARY, then the service is started. Otherwise, the service is not started. Later in the chapter,
we will provide an example trigger that you can use to automate the relocation of the database
service during a Data Guard switchover or failover.

Outbound Connect Timeout
As mentioned, it is quite possible that new connection attempts (or those being failed over) might
attempt to connect to a host that is unavailable. If the host is completely down or the network to
the host is unavailable, the connection attempt will wait for Transmission Control Protocol (TCP)
to timeout. If the client host has a TCP timeout of 10 minutes, it could take up to 30 minutes

382 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 10: Automating Site and Client Failover 383

before the connection attempt chooses a new primary host. This behavior can be mitigated by the
use of the outbound connect timeout.

For OCI clients, outbound connect timeout is set in the sqlnet.ora using the following parameter:

SQLNET.OUTBOUND_CONNECT_TIMEOUT

This parameter is set to the number of seconds that you want Oracle Net to wait for a host to
respond in a connection attempt. If no response is seen in that amount of time, Oracle Net will go
back to the ADDRESS_LIST and attempt to find a new host. Setting the parameter to a value of
3 seconds, a recommended value, would allow a connection attempt to traverse an ADDRESS_LIST
quickly until it finds a new primary host. As the parameter is set in the sqlnet.ora, any connection
attempt using an Oracle Net alias that uses that sqlnet.ora will inherit the outbound connect timeout.

For Oracle JDBC clients, similar behavior can be achieved by setting a data source property
called SQLnetDef.TCP_CONNTIMEOUT_STR. While technically this data source property can be set
in milliseconds, we still recommend 3 seconds as a reasonable setting.

Transparent Application Failover
So far, we have discussed client-side load balancing and connect-time failover, and hopefully
you have a good understanding of how new connections can failover to different addresses within
an Oracle Net alias. But how do sessions that are already connected to the database get failed
over? That is what Transparent Application Failover (TAF) is specifically designed for. With TAF,
when an existing session detects an error that would result in a disconnect, Oracle Net will
automatically begin attempting to reconnect that session to another instance. This reconnection
attempt can be configured to go specifically to a particular instance by using a designated Oracle
Net alias, or you can simply use the connect time failover discussed earlier to find an available
instance. In addition to failing over the session, TAF can also be configured to failover any
running select statements that the session was performing. While TAF cannot failover inserts,
updates, or deletes, an application can be configured to use OCI callbacks to capture those
statements and replay them once the new session has been created.

In this section, we will discuss how to configure the different TAF options and how TAF plays a
role in a client failover solution. If you want more information on how to write callbacks to failover
various session state information or transaction statements, consult the Oracle documentation.

NOTE
Transparent Application Failover is supported for all OCI and JDBC
thick clients. Currently JDBC thin clients are not supported for use
with TAF.

Configuring TAF
The first step in configuring TAF is to have a properly defined Oracle Net alias. When a TAF
failover begins, we use client-side load balancing and connect-time failover to go back to the
ADDRESS_LIST and grab a host to perform the reconnect. This means that we should start with
an Oracle Net alias that has at least two or more addresses in an ADDRESS_LIST. But as with
every rule, there is an exception. It is possible to have an Oracle Net alias that contains a single
address in the ADDRESS_LIST and use the BACKUP attribute to point to another Oracle Net alias
to use for TAF failover purposes. While using the BACKUP attribute does have it advantages, it
does not handle all cases, so we won’t discuss its usage further.

Chapter 10: Automating Site and Client Failover 383

Once we have a properly formed Oracle Net alias, we need to decide how we want to
configure our TAF attributes. TAF attributes include those described in the following sections.

TYPE The TYPE attribute describes the type of failover. Possible values are

 SESSION ■ This specifies that when a failover occurs, TAF should create the session and
perform no other action.

 SELECT ■ This specifies that when performing a failover, in addition to creating the
session, TAF should also restart any select statements that were running at the time of
the failover. When the select states are executed, Oracle Net will return only rows not
previously returned to the user prior to failover.

 ■ NONE Do not perform a TAF failover.

METHOD The METHOD attribute determines when the session is created. Possible values are

 BASIC ■ This establishes the session at the time of the failover.

 PRECONNECT ■ When the initial connection to the database is made, this creates the
failover session using the Oracle Net alias designed by the BACKUP attribute.

RETRIES The RETRIES attribute specifies the number of times Oracle Net will go back to the
ADDRESS_LIST and attempt to connect to the surviving instance.

DELAY The DELAY attribute specifies the number of seconds to wait between each retry.

The values to which you set the various TAF attributes are dictated by your application and
business needs. For instance, having TAF precreate the failover session using the PRECONNECT
attribute can speed up failover, since it does not have to create the session at failover time, but
was mainly designed for active/passive cluster configurations. In addition, the DELAY and
RETRIES attributes should be set so that TAF continues to retry long enough for a Data Guard
failover or switchover to complete in your environment.

Setting the various TAF attributes can be at the client level within the Oracle Net alias the
client uses to connect to the database, or at the server level, where they are associated with the
database service used to connect. A client configuration within an Oracle Net alias would look
something like the following:

SALES =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (LOAD_BALANCE= YES
 (ADDRESS = (PROTOCOL = TCP)(HOST = MATRIX1)(PORT = 1521))
 (ADDRESS = (PROTOCOL = TCP)(HOST = MATRIX2)(PORT = 1521))
 (ADDRESS = (PROTOCOL = TCP)(HOST = MATRIX_DR01)(PORT = 1521))
 (ADDRESS = (PROTOCOL = TCP)(HOST = MATRIX_DR02)(PORT = 1521)))
 (CONNECT_DATA=
 (SERVICE_NAME=SALES)
 (FAILOVER_MODE=(TYPE=SELECT)(METHOD=BASIC)(RETRIES=20)(DELAY=15)
)
)

384 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 10: Automating Site and Client Failover 385

This configuration instructs TAF to create the session at failover time and to re-execute any selects
that were running when the failover occurred. In addition, if the first attempt at creating the
session fails, TAF should wait 15 seconds before trying again for a total of 20 attempts.

When configuring TAF settings within an Oracle Net alias, any connection made using that
alias inherits the TAF attributes. If you have multiple, or even thousands, of clients on individual
hosts, you would need to configure TAF for each individual client. An option to this cumbersome
approach is to use what is called server-side TAF. With server-side TAF, the TAF attributes are
associated with the service on the database. Any client that connects to the database using the
service that has the TAF attributes defined will automatically inherit them. In our example Oracle
Net alias in the beginning of this section, the client will be connecting to the database using the
service SALES. This is a database service that is created and started by including it in the
SERVICE_NAMES init.ora parameter, by using SRVCTL in a Real Application Clusters (RAC), or by
using the DBMS_SERVICE PL/SQL package. Regardless of which method was used to create or start
the service, you use the DBMS_SERVICE PL/SQL to configure the TAF attributes. For example, on
the database, execute the following:

exec DBMS_SERVICE.MODIFY_SERVICE(
 service_name => 'SALES',
 failover_method => 'BASIC',
 failover_type => 'SELECT',
 failover_retries => 20,
 failover_delay => 15);

No matter how you configure TAF, either at the client level or on the server side, you can
verify your sessions current TAF setting by querying the V$SESSION view. For each session,
V$SESSION will display the failover type, failover method, and if that session has ever been failed
over in the past. Here’s a simple SQL example to verify your current TAF settings:

SQL> SELECT SERVICE, FAILOVER_TYPE, FAILOVER_METHOD,
 FAILED_OVER FROM V$SESSION;

Fast Application Notification
You have learned how new connections can perform failover between addresses in an ADDRESS_
LIST and how existing connections can automatically perform failover between instances. But
there’s still more to learn. Imagine that you are using our example Oracle Net alias after configuring
the server-side TAF for the sales service and have created numerous connections across a two-
instance RAC cluster. Because this is a Data Guard book, you have dutifully created a two-node
standby cluster, which is humming along quite nicely. All of a sudden, disaster strikes and both hosts
in your primary cluster go down hard. Within minutes, you failover and transition your standby
database to a primary. But for some reason, your existing application connections are just sitting
there. Why isn’t TAF kicking in and failing over the sessions to your new primary? Well, no one told
your application connections that the primary hosts are gone and that you performed a failover.

The application connections have to wait for TCP to tell them that the primary hosts are no
longer responding and that they should give up. With some operating systems running with
default values, a TCP timeout could take up to 2 hours! The solution is Oracle Fast Application
Notification (FAN).

FAN can solve difficult TCP timeout issues by quickly notifying applications whenever a
resource or component becomes unavailable. In addition to telling applications when resources

Chapter 10: Automating Site and Client Failover 385

have become unavailable, FAN also notifies the application when it should reconnect as new
resources come online.

FAN comes in two basic flavors, with each geared specifically toward a distinct client base.
FAN Oracle Notification Service (ONS) is designed for both JDBC thick and thin clients, while
FAN OCI is used for all OCI-based clients. Each type of FAN implementation uses a different
mechanism to notify clients, covered in the following sections along with client requirements.

FAN ONS
FAN ONS is for both Oracle JDBC thick and thin drivers. FAN ONS delivers messages to the client
application by using ONS daemons that are running on the database or cluster hosts. When you
perform an Oracle Clusterware installation, you will see that the ONS daemons are automatically
created and started for you. With the ONS daemons in place, you need to configure your JDBC
application to subscribe to the available daemons upon application startup. Whenever a resource
within the cluster changes state, Oracle Clusterware will publish a message to the ONS daemons,
which is then consumed by the JDBC application. Depending on the type and contents of the
message, the JDBC application will respond appropriately.

In order for JDBC clients to subscribe to ONS daemons and receive FAN events, they must
first be configured for Fast Connection Failover (FCF). To configure for FCF, all JDBC applications
must meet the following requirements:

 The JDBC application must do the following: ■

Use the Oracle JDBC driver. ■

Have the implicit connection cache enabled. ■

Connect to the database using services. ■

 ONS daemons must be running on the database hosts. ■

 The Java Virtual Machine (JVM) in which your JDBC instance is running must have ■
oracle.ons.oraclehome set to point to your ORACLE_HOME.

FAN OCI
FAN OCI is designed for, as you can probably guess, OCI clients. FAN OCI is different from FAN
ONS in that it does not use ONS daemons to subscribe to and consume messages; instead, it has
the database deliver messages directly to the OCI client. When an OCI client that is configured
for FAN OCI connects to the database, an entry is placed in the reg$ view that describes the
application and how it can be contacted. As the state of resources (such as services, instances, or
databases) changes, a FAN OCI message is placed into the database alert queue. Once the
message is queued, a database process will wake up and send the message to all OCI clients that
are registered in the reg$ view. The OCI application then takes the correct actions depending on
the FAN message.

For FAN OCI clients to receive the FAN message, they must meet the following requirements:

 The ■ OCI_EVENTS must be enabled at the environment creation time on the client, as
shown here:

(OCIEnvCreate(...))

 The OCI application must be linked with the client or operating system thread library. ■

386 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 10: Automating Site and Client Failover 387

 The database service used by the application to connect to the database must have the ■
AQ_HA_NOTIFICATIONS set to TRUE. Here’s an example:

exec DBMS_SERVICE.MODIFY_SERVICE(
 service_name => 'SALES',
 failover_method => 'BASIC',
 failover_type => 'SELECT',
 failover_retries => 20,
 failover_delay => 15,
 aq_ha_notifications => true);

Note that in order to generate FAN OCI messages during a Data Guard failover, the failover
must have been performed using the Data Guard Broker. The Data Guard Broker failover could
have been executed by either the Enterprise Manager GUI or the DGMGRL command-line utility
and can be a manual failover or a Fast-Start Failover. It is also important to note that due to
FAN OCI’s reliance on the SYS-owned reg$ table, logical standby databases do not support FAN
OCI messaging.

The DB_ROLE_CHANGE System Event
The process of performing a Data Guard failover is easy and straightforward. However, as you
know, there is a lot more to performing a site failover than just reconfiguring the database.
Oftentimes, a litany of application-related components must be either started or reconfigured so
that they can correctly connect to the new primary database. Automation is the key to making
this process as fast as possible and avoiding any mistakes. For that, we have the DB_ROLE_CHANGE
system event.

The DB_ROLE_CHANGE system event is fired each time the role of the database is changed.
For example, when either a physical or logical standby database is converted to a primary, the

What if My Client Doesn’t Meet the Requirements for FAN?
Not all applications are able to receive FAN events. For example, some application servers
might use the Oracle JDBC driver but do not use the Oracle implicit connection cache. Or
a third-party OCI application might not have been compiled with OCI_EVENTS mode
enabled. How do applications that cannot support FAN achieve timely failovers? The
answer is a combination of TCP timeouts and application retry logic.

On the host where the application is executed, you must configure the operating system
TCP parameters for efficient timeouts. The OS TCP timeouts should be set to the amount of
time it takes for the database layer to failover and the application services to be started. As
different operating systems have different default values and different TCP implementations, it
is best to consult your operating system manuals for how to configure TCP timeout properly.

In addition to configuring OS TCP timeouts, you must also configure for application
retries. For example, when a session from the connection pool receives any exception that
results in a disconnect (such as an ORA-3113 error), the application should automatically
attempt to reconnect that session. The reconnection attempts should be configured so that
they will continue for the length of time that it takes to failover the database layer and bring
the application services online.

Chapter 10: Automating Site and Client Failover 387

DB_ROLE_CHANGE system event is fired. The system event also fires whenever a primary is
converted to either a physical or logical standby.

We can use this system event to write a trigger that can perform any number of functions at
failover time. The next example creates a trigger that fires at failover and uses the DBMS_
SCHEDULER to call an external script:

CREATE OR REPLACE TRIGGER failover_actions AFTER DB_ROLE_CHANGE ON DATABASE
 BEGIN
 dbms_scheduler.create_job(
 job_name=>'publish_events',
 job_type=>'executable',
 job_action=>'/u01/oracle/failover_actions.sh',
 enabled=>TRUE
);
 END;

This script can contain any actions that you want performed at failover, such as starting
application middle tiers, starting message queues, and so on.

Implementing Client Failover
This is where the rubber meets the road. Whether you came directly here from the beginning of
the chapter or you took the leisurely stroll through the “Nitty Gritty” section, it is now time to get
your hands dirty. In this section, we will address configuration details for a complete site failover
as well as a partial failover. Each section will cover how to configure client-side components as
well as database components.

Complete Site Failover Configuration
Application deployments that need to configure for a complete site failover have completely
redundant application components between the primary and standby data centers. Typically
within each site is a network load balancer or traffic manager, which accepts incoming client
requests. This traffic manager then distributes the requests to various application servers on that
site. When a site failover occurs, the standby on the secondary site is transitioned to a primary
database and the secondary site application servers are started.

Once all the application components have been made available, one of the following two
events typically occurs:

 The virtual IP address that the client used to connect to the traffic manager is removed ■
from the primary site traffic manager (if it is still available) and started on the secondary
site traffic manager.

 The secondary site traffic manager is started with an IP address that is different from the ■
primary site traffic manager and the DNS entries for the hostname used in the connection
by the clients are remapped to this new IP address.

Configuring Clients
The configuration for clients in respect to Oracle Net aliases or a JDBC thin URL is generally
unnecessary in a complete site failover case, as they usually reference a single hostname that is

388 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 10: Automating Site and Client Failover 389

mapped to a virtual IP address. Clients could also be configured so that the administrator changes
the DNS name mapping to the new IP address after the failover completes.

If the DNS name mapping is changed, then the client may have to flush the DNS name cache on
the local machine. For example, the following procedure could occur with the DNS name change:

 1. Update the master DNS server to associate the second traffic manager IP address with the
hostname that the client used to connect to the database.

 2. Slave DNS servers are notified via the DNS NOTIFY announcement.

 3. Clear any caching DNS servers using a command similar to the following:

rndc flush

 4. Clear any local DNS caching on the client host. In Linux, you can execute the nscd
command, and in the Windows environment, you can execute the ipconfig command
with the /flushdns option:

Linux: /etc/init.d/nscd restart
Microsoft Windows: ipconfig /flushdns

Configuring the Database
Normally we recommend that the database service that the client uses to connect to the database
be started and available only on the database that has the primary role. This is to prevent client
connections from attempting to connect to the standby database. For the complete site failover
scenario, this is not a concern, as the traffic managers are responsible for funneling connections
to the correct application servers on the correct site.

One database configuration that can aid in the complete site failover is the creation of a
trigger around the DB_ROLE_CHANGE system event. This trigger can be used to automate tasks that
need to be performed once the database failover has completed. For example, the database
trigger can call an external script that in turns starts the application servers or perhaps message
queues. In some cases, the script can be used to configure traffic managers or DNS servers. For an
example of this trigger, see the earlier section, “The DB_ROLE_CHANGE System Event.”

Partial Site Failover
With partial site failover, the database is failed over but the original application server
connections are maintained. Solving the partial site failover scenario is difficult because you must
assure that application connections do not connect to the wrong resources, do not get stuck
waiting on long timeouts, and when they do reconnect, they do not get stuck waiting on
resources or hosts that are no longer available. To meet these objectives, we will have to deploy
the technologies and features discussed in the “Nitty Gritty” section earlier in this chapter.

Due to our experiences working with users, we will explain how to achieve seamless partial
site failover in a phased approach. Experience has shown that users situations are typically one of
three types:

 While the database can failover in less than 30 seconds, the decision to perform a ■
database failover takes hours. Once the database has failed over, the application servers
are restarted and the only the application servers are connected to the new primary
without any configuration changes.

Chapter 10: Automating Site and Client Failover 389

 Database failover is automated and can occur in less than 30 seconds and so should the ■
application. However, the client application does not support FAN events.

 Database failover is automated and occurs in less than 30 seconds. The application ■
supports FAN and failover should be automatic and efficient.

As you can guess, the configuration for the third type is far more complex than for the first.
We will attack this section in a tiered approach, starting with, as you might guess, the first type.
Each section is dependent on the steps undertaken in the preceding section.

First: The Basics
The basic configuration will allow applications to be restarted after a failover has occurred and
will have the application connections correctly find the new primary. The application connections
should quickly bypass any old primary hosts, which may be unavailable or may have lost network
connectivity.

Client-side Configuration
 1. The client configuration should include a connect descriptor that includes all potential

primary hosts in an ADDRESS_LIST and should have connect time failover enabled. In
addition, this connect descriptor should be connecting to the database using a database
service in the CONNECT_DATA portion instead of a SID entry. Here’s an example:

SALES =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = MATRIX1)(PORT = 1521))
 (ADDRESS = (PROTOCOL = TCP)(HOST = MATRIX2)(PORT = 1521))
 (ADDRESS = (PROTOCOL = TCP)(HOST = MATRIX_DR01)(PORT = 1521))
 (ADDRESS = (PROTOCOL = TCP)(HOST = MATRIX_DR02)(PORT = 1521))
 (LOAD_BALANCE = yes)
)
 (CONNECT_DATA=
 (SERVICE_NAME=SALES)
)
)

 2. When the application connections are being made, if they should happen to attempt to
connect to an old primary host that is unavailable, the connection attempt to that host
should last no longer than 3 seconds. This allows for connection attempts to get through
the ADDRESS_LIST quickly until a new primary host is found. For an OCI client, set the
following in the sqlnet.ora file:

SQLNET.OUTBOUND_CONNECT_TIMEOUT=3

For JDBC thick and thin clients, configure the following property on the DataSource
(what a JDBC application uses to define the connection to the database):

SQLnetDef.TCP_CONNTIMEOUT_STR=3000

390 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 10: Automating Site and Client Failover 391

Database Configuration
 1. On the primary database, create the database service that the application will use to

connect to the database. The service can be created using the DBMS_SERVICE PL/SQL
package or via the srvctl Clusterware utility:

exec DBMS_SERVICE.CREATE_SERVICE (
 service_name => 'sales',
 network_name => 'sales');

Note that you should not include the service name in the SERVICE_NAMES parameter.
Instead, you should allow the trigger described in the next step to manage the starting
and stopping of the service.

 2. For reasons listed in the “Nitty Gritty” section, you want only the service running on the
primary database. To automate the starting and stopping of the service, deploy an on
database startup trigger:

CREATE OR REPLACE TRIGGER manage_service
 after startup on database
DECLARE
role VARCHAR(30);
BEGIN
SELECT DATABASE_ROLE INTO role FROM V$DATABASE;
IF role = 'PRIMARY' THEN
 DBMS_SERVICE.START_SERVICE('SALES');
END IF;
 END;

Note that if you are using a logical standby, you should also create the same trigger around
the DB_ROLE_CHANGE system event. A logical standby applies changes while it is open.
At failover time, the logical is converted to a primary without the need to restart the
instance, which means the after startup on database trigger will not fire. Since
the DB_ROLE_CHANGE trigger will fire at failover time for a logical, you can use it to start
the service at failover time and depend on the after startup on database trigger to
start it upon subsequent restarts.

Second: Stepping It Up a Notch
The next step up in a client failover configuration is to have the database and client connections
failover automatically. New and existing connections should be correctly routed to the new primary
database. This configuration also accounts for applications that cannot make use of FAN messaging.
As mentioned earlier, the steps for this configuration build upon the preceding example.

Client-side Configuration
 1. Since the client application needs to failover its connection automatically and the

application doesn’t meet the requirements for FAN messaging, you must configure the
client operating system TCP timeouts. The TCP timeouts should be set to the amount
of time it takes for the database layer to failover and the application services to be
started. As different operating systems have different default values and different TCP
implementations, it is best to consult your operating system manuals for how to configure

Chapter 10: Automating Site and Client Failover 391

TCP timeout properly. Failing to configure these timeouts will result in your applications
hanging for the timeout period before they will failover.

 2. Once the existing application connections receive an exception, the application should
be coded to automatically retry. For OCI applications (and JDBC thick applications), you
can use TAF to automate this retry. For applications that cannot make use of TAF (JDBC
thin applications), retry logic should be built into the application. For example, when
a session from the connection pool receives any exception that results in a disconnect
(such as an ORA-3113 error), the application should automatically attempt to reconnect
that session. The reconnection attempts should be configured so that they will continue
for the length of time that it takes to failover the database layer and bring the application
services online.

Database Configuration To automate the reconnection of existing sessions for OCI
applications, server-side TAF should be configured on the database for the service that the
application uses to connect to the database. Here’s an example:

exec DBMS_SERVICE.MODIFY_SERVICE(
 service_name => 'SALES',
 failover_method => 'BASIC',
 failover_type => 'SELECT',
 failover_retries => 180,
 failover_delay => 1);

Third: Ultimate Client Failover
In this client failover configuration, the database and the application connections are failed over
automatically. When the failover has completed, the application should be notified via FAN
messages that the old primary is unavailable and the application should connect to the new
primary database.

Client-side Configuration
For OCI applications, the following requirements must be met in order to receive FAN OCI
messages:

 1. Enable the OCI_EVENTS at the environment creation time on the client as follows:

(OCIEnvCreate(...))

 2. OCI application must be linked with the client thread or operating system library.

JDBC applications should be configured for Fast Connection Failover. In addition, JDBC
applications should meet the FCF requirements that were discussed in the “Nitty Gritty” section:

 1. The client application must use an implicit JDBC connection cache on its data source by
setting the DataSource property FastConnectionFailoverEnabled to True. Here’s an
example:

OracleDataSource ods = new OracleDataSource()
...

392 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 10: Automating Site and Client Failover 393

ods.setUser("hr");
ods.setPassword("hr");
ods.setConnectionCachingEnabled(True);
ods.setFastConnectionFailoverEnabled(True);
ods.setConnectionCacheName("MyCache");
ods.setConnectionCacheProperties(cp);

 2. Configure the JDBC application to subscribe to remote ONS daemons that exist on the
primary and standby hosts. If the primary and standby have Oracle Clusterware installed,
these ONS daemons should already exist. If the primary and standby hosts are not part
of a cluster, the ONS daemons on each host need to be created. To create and start the
ONS daemons, use an ONS configuration file to configure ONS. This file should exist in
the $ORACLE_HOME/opmn/conf directory after installation of the Oracle software stack.
It should be configured similar to the following:

localport=6100
remoteport=4200
loglevel=3
nodes=halinux03:6200,halinux04:6200

In this example, the nodes parameter points to the primary and standby hosts followed
by the remote port for the ONS daemon running on that port. Once the configuration file
has been created, you can start the ONS daemon on the middle tier or client nodes by
issuing the following command:

$onsctl start

 3. After the ONS daemons have been created and started, configure the JDBC application to
remotely subscribe to those daemons:

ods.setONSConfiguration("halinux03:6200,halinux04:6200");

Database Configuration The good news for those of you with OCI applications is that you are
pretty much done at this point. When the OCI application connects to the database, all necessary
information to construct the FAN message as well as how to contact the client is placed into the
reg$ table. When a Data Guard failover is performed using the Data Guard Broker, the FAN OCI
event is automatically created and sent to the application.

For those of you with JDBC applications, you have some work to finish. Currently, FAN ONS
is designed to work within a cluster. The Oracle Clusterware processes are primarily designed to
publish FAN events. In other words, one cluster cannot send FAN events for other clusters and
their resources. However, when we perform a failover to a secondary cluster due to complete loss
of the primary cluster, that is exactly what we need to do. To resolve this dilemma, we must
configure an external ONS publisher and call that publisher when a failover occurs. With the
help of a configuration file, this publisher will create events that tell the application that the old
primary database is down and where the new primary database resides. Configuring for this
external ONS publisher is the final step for those with JDBC applications.

To configure the ONS publisher, do the following:

 1. In the $ORACLE_HOME/dbs directory on each node that has the potential to be a
primary, create a file named cfo{$ORACLE_SID}.ora. The configuration file will be used

Chapter 10: Automating Site and Client Failover 393

by the ONS publisher to construct the ONS events prior to sending it to the application.
To show how to configure the contents of this file, assume the following values for the
Data Guard configuration:

Database Host Instance Name DB_UNIQUE_NAME

Primary hasun01 Matrix1 Matrix

Primary hasun02 Matrix2 Matrix

Standby hasun42 Matrix_DR0 Matrix_DR0

The following example show the FAN ONS configuration file configured using the values
shown in the table:

Matrix peer=Matrix_DR0
Matrix_DR0 peer=Matrix
Matrix service=SALES location=hasun01,Matrix1:hasun02,Matrix2
Matrix_DR0 service=SALES location=hasun42,Matrix_DR0

 2. When calling an external program from the database, you need to pass the program the
appropriate environment variables such as ORACLE_HOME, ORACLE_SID, and so on. It is
often easier to do this by building a wrapper script around the external program that you
are calling and set the variables in the wrapper script. When calling the ONS publisher,
you would use a wrapper script similar to the following:

#!/bin/ksh
export TZ=PST8PDT
export ORACLE_SID=sales
export ORACLE_HOME=/u01/app/oracle/product/10.2.0
export LD_LIBRARY_PATH=/u01/app/oracle/product/10.2.0/lib
export PATH=/u01/app/oracle/product/10.2.0/bin:$PATH
/u01/app/oracle/product/10.2.0/bin/cfo r

In this wrapper script’s last line, the ONS publisher is called with the r option, which
indicates that it should be executed and the events published. Note that when configuring
the publisher on a RAC, the ORA_CRS_HOME variable must be set so that the publisher will
use the ONS daemons in the Oracle CRS home instead of the ONS daemons in the Oracle
database home.

 3. Now you are ready to configure the database to call the ONS publisher whenever a
failover has occurred. Use the DB_ROLE_CHANGE system event to fire this trigger. On the
primary database, create the role-change trigger that will generate the redo that will
update the standby. In the following example, a trigger called ons_publish is provided
to send events when a database role changes:

CREATE OR REPLACE TRIGGER ons_publish
AFTER DB_ROLE_CHANGE ON
 DATABASE
BEGIN
 dbms_scheduler.create_job(
 job_name=>'publish_events',

394 Oracle Data Guard 11g Handbook

 job_type=>'executable',
 job_action=>'/u01/oracle/product/10.2.0/db_1/bin/cfo.sh',
 enabled=>TRUE
);
END;

Once the trigger DDL has been recovered on the standby, your clients are fully prepared
for automatic and seamless reconnection in the event of a failover.

Conclusion
As you have seen, failing over your database with Oracle Data Guard can be done easily and
quickly. It’s also important to devote considerable effort to assuring that your application
connections, both new and existing, can also failover easily and quickly. Configuring for proper
application failover can greatly reduce your overall downtime and help you meet even the most
stringent service level agreements. Hopefully, this chapter has helped you understand the various
Oracle technologies associated with application failover as well as how to configure them to craft
a complete solution.

Chapter
11

Minimizing Planned
Downtime Using Data

Guard Switchover

395

396 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 11: Minimizing Planned Downtime Using Data Guard Switchover 397

his chapter discusses how Data Guard can be leveraged in cases of planned
migrations. The first part of this chapter covers use case examples of migration to a
new system configuration using Data Guard switchover. The second part covers
database rolling upgrades. The preceding chapters of this book have already
covered the mechanics of Data Guard configuration and switchover, so we draw

on those parts of the book to help explain the concepts presented here.

Overview of Planned Migration
As explained in earlier chapters, you can leverage Data Guard to provide high availability for
planned as well as unplanned outages. However, Data Guard can also be used in planned
migration strategies such as the following:

 ■ Data Center migration Create a standby at the new data center and then switchover.

	 ■ Migrating to Automatic Storage Management (ASM) and/or Real Application Clusters
(RAC) Create an ASM standby from a non-ASM primary and then switchover. A similar
scenario can be leveraged for migration to RAC.

	 ■ Refreshing technology stack Create a standby database on new servers and/or storage
and then switchover.

	 ■ Implementing database changes in a rolling fashion—for example, Automatic Segment
Space Management (ASSM), initrans, and blocksize Build a logical standby
database, implement the required database changes, and then switchover.

	 ■ Upgrading database release Use a transient logical standby database for rolling
database upgrades. This is the focus of the second section of this chapter.

	 ■ Migrating to a different OS/platform Use a physical standby for platform migrations.
Currently this is supported only with the following: Windows to Linux, 32-bit to 64-
bit, Hewlett Packard Unix (HP-UX) to a reduced instruction set computer (RISC). (See
MetaLink Note 413484.1 for more details.)

NOTe
The standby and primary servers of a Data Guard environment do
not have to match from a configuration perspective—for example,
the size of the servers, number of CPUs, or number of RAC nodes.
However, the OS, platform, and database software version need to be
same. As we discussed earlier in this book, there are some exceptions
to this rule. Although the configuration between the primary and
standby systems can differ, it is important to keep in mind that the
standby should have enough overall capacity to handle the production
workload in the case of a switchover or failover.

 t

Chapter 11: Minimizing Planned Downtime Using Data Guard Switchover 397

Leveraging Data Guard Switchover
for Planned Migration
Leveraging Data Guard in planned migration scenarios lets you not only switchover to the new
configuration with very little downtime, but also lets you streamline failback in case of an
emergency. This section addresses a couple of planned migration scenarios, such as data center
moves, technology stack changes, or migration to ASM/RAC. Let’s take a deeper look at two real-
world use cases for a planned migration that leverages Data Guard.

Case 1–New Data Center
In the first case, customer ABC wants to move to a new data center as well as to a new product
stack. The source system is a two-node RAC configuration using third-party Clusterware. The
target system is a four-node stack, with Oracle Clusterware, ASM, and RAC. In addition, this
customer wants to enable some key new features such as flashback logging. This customer also
has a downtime limitation of 6 hours.

Using AWR reports, iostats, and vmstat reports from the current production configuration,
the customer designs the target environment to meet the needs of the expected production
workload and SLA, including storage, memory, and CPU. After the new data center is built, the
Data Guard standby is put in place using Maximum Performance (LGWR ASYNC). This customer
also wants to capitalize on the standby resources by running Active Data Guard on the standby
site to offload batch reporting. (Active Data Guard was discussed in Chapter 9.)

Once the standby is built, it is initially relegated to disaster recovery (DR) duties. On designated
weekends, a switchover to the standby site is performed, so that maintenance can be performed on
the primary (such as upgrading the hardware, enabling flashback database, or patching the O/S and
Clusterware), and so that the standby database can take on weekend batch work. This has the side
benefit of validating the capability and configuration of the standby Data Guard environment. After
the weekend maintenance is completed, a switchback to the original primary site is performed. As
more confidence is gained in the standby site configuration, the workload and duration of standby
site usage increases—that is, it goes from weekend duties to weeklong activities. After several
months of switchover and switchback as well as testing heavier workloads on the standby, the
customer decides to migrate the production environment permanently to the standby (the new
primary), and the old primary is relegated to standby duties. Once the predefined burn-in time for
the new primary production site is met, the standby database site (old primary) is rebuilt to resemble
the new production site.

By configuring and using a Data Guard standby database in this migration scenario, this
customer saved millions of dollars in outage prevention and also leveraged the Data Guard
resources to offload work from the primary database.

Case 2–Move to ASM
In this use case, customer XYZ has a 5-TB database across seven Veritas file systems and wants to
migrate to ASM. This needs to be performed with minimum downtime. A fallback plan must also
be in place in case of emergency. In addition, due to budgetary constraints, the customer does not
have extra server hardware for configuring a remote Data Guard environment, so the migration to
ASM will be done in place—that is, Data Guard will be configured on the same server as the
production database, with the Data Guard physical standby residing in ASM. In this case, the
physical standby is configured as Maximum Availability.

398 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 11: Minimizing Planned Downtime Using Data Guard Switchover 399

An RMAN duplicate using the FROM ACTIVE DATABASE feature is used to instantiate the
physical standby database. Also, the Real Application Testing (RAT) tool is used to capture/replay
the database transaction load. Once the physical standby has caught up with the production
database, a restore point is created and the ASM-based physical standby is restarted as a snapshot
standby. RAT Capture is used to capture a workload and RAT Database Replay is then used to
replay the transaction workload on the ASM based standby database (snapshot standby). AWR
reports are captured to analyze the performance of the ASM-based configuration.

The read-write database is subsequently converted back to the physical standby role with
SQL*Plus or the Broker, which uses the Flashback Database feature and the guaranteed restore
point (GRP). Once it is verified that the ASM-based database can sustain the production
workload, a brief, planned outage is scheduled to perform a Data Guard switchover to the
ASM-based configuration. This switchover takes only a couple of minutes to complete.

The Veritas file system–based database is kept online as a standby database, but is eventually
torn down once the customer is confident that the ASM-based configuration is performing as
expected.

Performing a Database Rolling
Upgrade Using Data Guard
One of the key use cases of planned migration is deployment of Data Guard for rolling upgrades.
Performing rolling upgrades using standby databases allows you to upgrade the database
infrastructure with very little downtime.

Performing an upgrade, say from Oracle Database 10.2 to 11.1, in a non–Data Guard
environment would require hours of downtime. Performing a rolling upgrade using Data Guard
provides a mechanism to upgrade the database infrastructure without incurring large outages on
the production servers.

The database upgrade includes two stages: updating the binary files and updating the database
objects. The binary files upgrade is picked up with the new installation of the Oracle Database
software. For the upgrade of database objects, once the physical standby has caught up to the new
primary, it will be automatically upgraded (by virtue of Redo Apply).

By using the standby database, application downtime primarily due to PL/SQL recompilation
is eliminated. In addition, the following intensive efforts are offloaded to the standby site:

	 ■ Validation of the new software release

	 ■ The database upgrade process

	 ■ Any unexpected upgrade problems

	 ■ Any preliminary performance troubleshooting

A rolling upgrade can be performed using SQL Apply or the transient logical standby method.
The general, high-level steps are similar for both methods, and the differences are primarily in the
state of the standby database after the completion of the upgrade. With the SQL Apply method,
the upgrade concludes with one site continuing to be a logical standby database, while in the
transient logical standby method, one site will revert back to being a physical standby after the
upgrade. However, in both cases, the upgrade incurs very little downtime. The overall downtime
is generally the time it takes to perform a switchover.

Chapter 11: Minimizing Planned Downtime Using Data Guard Switchover 399

In the next section, we will examine the steps for deploying both methods. In our sample
cases, we will perform a rolling upgrade from Oracle Database 11.1.0.6 to 11.1.0.7.

Leveraging Rolling Upgrades Using SQL Apply
The steps outlined in this section assume that a logical standby already exists and is currently
being used to provide a reporting database solution for the primary database. In addition, we also
assume that unsupported database data types (for the logical standby database) are already
processed and handled accordingly. (Chapter 4 discusses how to handle unsupported logical
standby data types.)

The following high-level steps describe a rolling upgrade using a logical standby database:

 1. Prep the environment in order to establish a logical standby configuration. Ensure that
flashback logging is enabled on the primary and standby. If it is not enabled, it will
require a small outage (database shutdown and startup mount) to enable it:

SHUTDOWN IMMEDIATE <- Note, for Oracle RAC environments this needs to
be performed on all instances
STARTUP MOUNT
ALTER DATABASE FLASHBACK ON
ALTER DATABASE OPEN

 2. Data Guard Broker configurations are not supported in this rolling upgrade methodology.
If the Broker is being used, the Broker must be disabled on both the primary and standby
databases:

ALTER SYSTEM SET DG_BROKER_START=FALSE SCOPE=BOTH;

The Data Guard Broker can be re-enabled after the completion of the rolling upgrade.

 3. The Data Guard protection mode must be set to either Maximum Availability or
Maximum Performance:

SELECT PROTECTION_MODE FROM V$DATABASE;

 4. To ensure that the primary database can proceed while the logical standby database is
being upgraded, the LOG_ARCHIVE_DEST_n init.ora parameter pointing to the logical
standby database destination must be set to OPTIONAL if it was set to MANDATORY.

 5. The COMPATIBLE init.ora parameter must match the software release prior to the
upgrade—for example, if upgrading from 11.1.0.6 to 11.1.0.7, set the COMPATIBLE
parameter to 11.1.0.6. Note that once the COMPATIBLE parameter is updated to the
target database release, you cannot downgrade to an earlier release. For this reason,
it is recommended that you thoroughly test (burn-in) on the current version before
advancing the COMPATIBLE value. Once you are satisfied with the upgraded version, the
COMPATIBLE value can be increased.

 6. You can optionally create an archived redo log repository with the same database release
(the target release) and COMPATIBLE setting as the primary database so that redo is still
received while applying the patch or upgrading the database. Creating a repository
ensures that you can meet the recovery point objective (RPO) if the primary site fails
during the upgrade of the logical. Oracle MetaLink Note 434164.11 covers this topic.

1 See MetaLink Note 434164.1: “Data Guard Archived Redo Log Repository Example”

400 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 11: Minimizing Planned Downtime Using Data Guard Switchover 401

 7. Install an upgraded ORACLE_HOME, which is separate from the current ORACLE_HOME.
For RAC configurations, this needs to be performed on each node of the cluster. This install
can be done using the Oracle home cloning utility and then patching this ORACLE_HOME
location accordingly. The cloning process is described as below. First, establish the new
ORACLE_HOME:

cp –pr /u01/app/oracle/product/11.1.0.6 /u01/app/oracle/
product/11.1.0.7

Use the Oracle-provided cloning utility to update the Oracle Software Inventory with
the new ORACLE_HOME location:

/u01/app/oracle/product/11.1.0.7/clone/bin/clone.pl
ORACLE_HOME=/u01/app/oracle/product/11.1.0.7 ORACLE_HOME_NAME=11gR1d07 '-
O"CLUSTER_NODES={node1,node2}"' '-O"LOCAL_NODE=node1"'

 8. As root user, run /u01/app/oracle/product/11.1.0.7/root.sh.

 9. Now upgrade the new ORACLE_HOME to 11.1.0.7 using Oracle Universal Installer to
apply the patchset.

 10. As part of the pre-upgrade process, stop redo transport to the standby:

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=DEFER SCOPE=MEMORY

 11. Perform pre-upgrade steps on the logical standby:

It is also recommended that you create a GRP on the logical standby. This GRP will
be used in case issues with the upgrade process are encountered and fallback recovery is
needed.

CREATE RESTORE POINT SQLAPPLY_PRE_UPGRADE GUARANTEE FLASHBACK DATABASE;

 12. Upgrade the ORACLE_HOME software on the logical standby system. Note that if the
standby database is configured in a RAC environment, then the Oracle Clusterware
has to be at the highest version—in this example, 11.1.0.7. Ensure that the Oracle
Clusterware is at the highest and same release across all nodes of the cluster before
starting the database rolling upgrade. If the Oracle Clusterware needs to be upgraded,
it can be upgraded in a rolling upgrade fashion as well. During the Clusterware rolling
upgrade, the ASM and standby instance on the node being upgraded will need to be
down.

Once the Clusterware is upgraded to 11.1.0.7, you can optionally (though highly
recommended) upgrade ASM to 11.1.0.7 as well. ASM is also rolling upgradeable in
Oracle Database 11g—that is, rolling upgrade can be used to upgrade from 11.1.0.6 to
11.1.0.7.

 13. The upgrade will be performed on the logical standby database; thus you will need to
stop SQL Apply:

ALTER DATABASE STOP LOGICAL STANDBY APPLY;

 14. Shut down the logical standby database.

 15. Set the ORACLE_HOME environment variable to the new software location, and start up the
logical standby using this new upgraded ORACLE_HOME.

 16. Execute the Database Upgrade Assistant (DBUA) utility from the new ORACLE_HOME. It
is highly recommended that you use the DBUA utility for all upgrade scenarios, such as
from 10gR2 to 11g upgrades, because it prevents errors and handles several post-upgrade

Chapter 11: Minimizing Planned Downtime Using Data Guard Switchover 401

tasks such as Clusterware OCR updates as well as oratab changes. For an Oracle
patchset apply, such as 11.1.0.7, use the Oracle Universal Installer.

 17. Update the OCR with the new ORACLE_HOME location for this logical standby database
srvctl modify database -d MATRIX-0 /u01/app/oracle/product/11.1.0.7.

 18. If an archived redo log repository was used (in step 6), you can use the RMAN CATALOG
command to catalog the archived redo log repository destination to avoid resending
those logs:

RMAN> CATALOG START WITH '+FRA/Matrix_DR1/ARCHIVELOG/';

 19. Restart the logical standby database:

STARTUP MOUNT;
ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;

 20. You can now restart the transport services for redo to the logical standby from the primary
database:

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE SCOPE=MEMORY

At this point, the primary is running the lower version of the software and the logical
standby is running the upgrade software version. To finish up the rolling upgrade process,
you should upgrade/patch the primary database. A switchover will be performed to
change the primary database role to the logical standby role, and will go through the
same upgrade process.

 21. On the current primary, before proceeding with the switchover, query the V$DATABASE
view for the SWITCHOVER_STATUS. If the status indicates TO STANDBY, then it is safe to
proceed. Otherwise, switchover with SESSION DISCONNECT:

SELECT SWITCHOVER_STATUS FROM V$DATABASE;
ALTER DATABASE COMMIT TO SWITCHOVER TO LOGICAL STANDBY;

 22. Similarly, on the logical standby, before proceeding with the switchover, query the
V$DATABASE view for the SWITCHOVER_STATUS. If the status indicates TO PRIMARY,
then it is safe to proceed. Otherwise switchover with SESSION DISCONNECT:

ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY;

 23. The former logical standby database is now the primary database and also running
the latest upgraded code. However, the new standby (former primary) cannot receive
or apply redo because it is running at a lower database version than the new primary
database; therefore, you must disable redo transmission on the new primary:

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=DEFER SCOPE=MEMORY;

 24. Repeat the upgrade process starting from step 7 for this new logical standby.

 25. Once you are satisfied with the new Oracle version, it is recommended that you set the
COMPATIBLE settings to the rolling upgraded versions. You can plan this change for a
later time since changing COMPATIBLE requires an outage.

 26. Optionally, for customers who want to return back to the original configuration (the
primary-logical configuration prior to starting the rolling upgrade), a switchover can be
performed.

402 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 11: Minimizing Planned Downtime Using Data Guard Switchover 403

 27. Drop the restore point created in step 9. If you forget to do this, your flash recovery area
will be consumed with flashback logs.

DROP RESTORE POINT SQLAPPLY_PRE_UPGRADE

 28. Enable Data Guard Broker if it was previously in place. This needs to performed on the
primary and standby databases:

ALTER SYSTEM SET DG_BROKER_START=TRUE SCOPE=BOTH;

Rolling Upgrades Using Transient Logical Standby
In this method, a rolling upgrade is performed using a physical standby database that is
temporarily converted to a logical standby. The logical standby database is upgraded, and when
the switchover has occurred, the logical standby is reverted back to being the physical standby.

The rolling database upgrade process using the transient logical standby is illustrated in
Figure 11-1.

This method is applicable in Oracle Database 10gR2 and 11gR1 standby database environments.
The notable difference between the Oracle Database 10gR2 and 11gR1 is that new syntax is
included to facilitate this conversion and many fewer steps are required to accomplish this in 11g.

FIGURe 11-1. Rolling database upgrade with transient logical standby

Synchronize

Preparation

Preparation

Keep Identity

SwitchoverFlashback

Convert
to Physical

Database to GSP

Switchover

New $ORACLE_HOME

LogMiner Build Upgrade

Matrix
(Prod)

MatrixDR
Logical

MatrixDR
Logical

MatrixDR
Physical

MatrixDR
Physical

MatrixDR
Physical

Matrix
(Prod)

Matrix
(Prod)

Matrix
(Prod)

Guaranteed
Restore Point

Guaranteed
Restore Point

1

5

6

7

4

3

8

2

9

Synchronize

Synchronize

Chapter 11: Minimizing Planned Downtime Using Data Guard Switchover 403

Some differences also exist between the Oracle Database 11g and 10gR2 process flow with
regard to RAC configurations: see Oracle MetaLink Note 300479.12 for more details.

Performing a rolling upgrade using a transient logical standby is similar to the standard SQL
Apply rolling upgrade process, described earlier, with the following differences:

	 ■ A GRP is created on the primary database for the purpose of flashing it back to become a
physical standby after the switchover.

	 ■ The conversion of a physical standby to a logical standby uses the new KEEP IDENTITY
clause to retain the same DB_NAME and DBID as that of its primary database.

	 ■ The ALTER DATABASE CONVERT TO PHYSICAL STANDBY statement is used to convert the
original primary from a logical standby to a physical standby.

	 ■ The original primary is actually upgraded by means of Redo Apply after it is
converted from a logical standby to a physical standby.

The high-level steps for this process are shown next:

 1. Prep the environment to establish a logical standby configuration. First, review for any
unsupported datatypes on the primary database. Unsupported datatypes will be skipped
on the logical standby. Chapter 4 covers the handling of unsupported data types with
logical standby databases.

 2. Ensure that enough SRLs are created on the standby site.

 3. Data Guard Broker configurations are not supported in this rolling upgrade methodology,
and thus the Broker must be disabled on both the primary and standby databases:

ALTER SYSTEM SET DG_BROKER_START=FALSE SCOPE=BOTH;

The Broker can be re-enabled after the completion of the rolling upgrade.

 4. The Data Guard protection mode must be set to either Maximum Availability or Maximum
Performance. Verify the protection mode using the following query:

SELECT PROTECTION_MODE FROM V$DATABASE

 5. To ensure that the primary database can proceed while the logical standby database is
being upgraded, set the LOG_ARCHIVE_DEST_n init.ora parameter pointing to the logical
standby database destination to OPTIONAL.

 6. Set the COMPATIBLE init.ora parameter to match the software release prior to the
upgrade. For example, if upgrading from 11.1.0.6 to 11.1.0.7, then set the COMPATIBLE
parameter to 11.1.0.6. Note that once you have updated the COMPATIBLE parameter to
the target database release, you cannot downgrade to an earlier release with FLASHBACK
DATABASE or the database downgrade procedure. The COMPATIBLE value can be
increased once you are comfortable with the upgrade.

 7. Set the LOG_FILE_NAME_CONVERT parameter to the appropriate location. It is a best
practice to set this parameter, regardless of whether the location structures between the two
sites are the same. Setting this parameter optimizes log clearing and switchover capabilities:

ALTER SYSTEM SET LOG_FILE_NAME_CONVERT= ' ',' ' SCOPE=SPFILE;

2 See MetaLink Note 300479.1: “10g Rolling Upgrades with Logical Standby”

404 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 11: Minimizing Planned Downtime Using Data Guard Switchover 405

 8. Ensure that flashback logging is enabled on the primary. If it is not enabled, it will require
a small outage (database shutdown and startup mount) to enable it.

SHUTDOWN IMMEDIATE <- For Oracle RAC, perform on all instances
STARTUP MOUNT
ALTER DATABASE FLASHBACK ON
ALTER DATABASE OPEN

 9. Install an upgraded ORACLE_HOME on each node. This can be done using an Oracle
home cloning utility and then patching this ORACLE_HOME location accordingly.
Establish the new ORACLE_HOME:

cp –pr /u01/app/oracle/product/11.1.0.6 /u01/app/oracle/
product/11.1.0.7

 Use the Oracle-provided cloning utility to update the Oracle Software Inventory with the
new ORACLE_HOME location:

/u01/app/oracle/product/11.1.0.7/clone/bin/clone.pl
ORACLE_HOME=/u01/app/oracle/product/11.1.0.7 ORACLE_HOME_NAME=11gR1d07 '-
O"CLUSTER_NODES={node1,node2}"' '-O"LOCAL_NODE=node1"'

 10. As root user, run /u01/app/oracle/product/11.1.0.7/root.sh.

 11. Now upgrade the new ORACLE_HOME to 11.1.0.7.

 12. Create a GRP on the primary:

CREATE RESTORE POINT JUSTB4_UPGRADE1 GUARANTEE FLASHBACK DATABASE

 13. Prepare to convert the existing physical standby to a logical standby. First, stop managed
recovery on the physical standby:

ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

 At this point redo is still being sent to the standby database, it is just not applied.

 14. Execute the following on the primary database:

EXECUTE DBMS_LOGSTDBY.BUILD;

This will build the LogMiner dictionary, which will be sent to the standby by the
standard Redo Transport mechanism.

 15. Back on the standby, make sure that it is mounted exclusive if in a RAC configuration,
and instruct the physical standby database to apply all redo up to but not including the
LogMiner dictionary using the ‘RECOVER TO LOGICAL STANDBY’ qualifier:

ALTER SYSTEM SET CLUSTER_DATABASE=FALSE SCOPE=SPFILE;
SHUTDOWN IMMEDIATE
STARTUP MOUNT
ALTER DATABASE RECOVER TO LOGICAL STANDBY KEEP IDENTITY
ALTER DATABASE OPEN;

The Oracle Database 11g SQL statement ALTER DATABASE RECOVER TO LOGICAL
STANDBY has a new clause, KEEP IDENTITY. This clause ensures that the logical standby
database retains its internal database ID (DBID), which is identical to the DBID of the
primary database.

At this point, the LogMiner dictionary created on the primary database has transmitted
via redo stream and applied to the standby database, and you now have an open logical
standby database.

Chapter 11: Minimizing Planned Downtime Using Data Guard Switchover 405

 16. Prevent any automatic archive log deletion and enable SQL Apply:

EXECUTE DBMS_LOGSTDBY.APPLY_SET('LOG_AUTO_DELETE', 'FALSE');
ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE

 17. Wait for this query to display “IDLE”:

SELECT SESSION_ID, STATE FROM V$LOGSTDBY_STATE;

To ensure you meet your RPO, it is advisable to have a second physical standby
database that will continue to operate using the original software version and receive the
current redo stream while the logical standby is being upgraded. However, you can
create an archived redo log repository with the same database release (the target release)
and COMPATIBLE setting as the primary database so that redo is still received while
applying the patch or upgrading the database. See Oracle MetaLink Note 434164.1.3
Creating a repository ensures that you can meet the RPO if the primary site fails during
the upgrade of the logical.

 18. Perform pre-upgrade steps on the primary:

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=DEFER SCOPE=MEMORY

 19. Perform pre-upgrade steps on the logical standby.

The upgrade will be performed on the logical standby database, so you will need to
stop SQL Apply. It is also recommended that you create another GRP on the logical
standby. This restore point will be used in case of issues in the upgrade process and a
fallback recovery is needed.

ALTER DATABASE STOP LOGICAL STANDBY APPLY;
CREATE RESTORE POINT PRE_UPGRADE_3 GUARANTEE FLASHBACK DATABASE;
SHUTDOWN IMMEDIATE

 20. Perform the upgrade on the logical standby. For upgrades, set the ORACLE_HOME
environment variable to the new software location. Note that DBUA should be used for
most upgrade scenarios, such as from 10gR2 to 11g upgrades. For an Oracle patchset
apply, such as 11.1.0.7, use the Oracle Universal Installer. In our example case, we will
need to use OUI for the 11.1.0.7 upgrade.

 21. Perform maintenance on unsupported data types.

 22. If an archived redo log repository was used, you can use the RMAN CATALOG command to
catalog the archived redo log repository logs to avoid resending those logs:

RMAN> CATALOG START WITH '+PSTBY/MATRIX_DR0/ARCHIVELOG/';

 23. Once the upgrade is completed, you can restart the redo transport to the logical standby
and also start up SQL Apply. On the primary:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE SCOPE=MEMORY;

On the logical standby:

SQL> STARTUP
SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;

3 See MetaLink Note 434164.1: “Data Guard Archived Redo Log Repository Example”

406 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 11: Minimizing Planned Downtime Using Data Guard Switchover 407

 24. As a protective measure, disable redo transmission on the logical standby so that it does
not try to send redo once it becomes the primary:

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=DEFER SCOPE=MEMORY;

 25. At this point, the primary is running the lower version of the software. To finish up the
rolling upgrade process, upgrade/patch the primary. This will require a switchover.
A switchover will be performed to move the primary database to the current logical
standby, and then go through the same process for current primary:

ALTER DATABASE COMMIT TO SWITCHOVER TO LOGICAL STANDBY;

Once this command has completed on the primary database, before you proceed
with the switchover, query the V$DATABASE view for the switchover_status. If the
status indicates TO PRIMARY, then it is safe to proceed. Finish the switchover on the
logical standby database:

ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY;

 26. The former primary database is now currently running as the transient logical standby.
The former standby database is now the primary database and is also running the latest
upgraded code. However, the new standby cannot receive or apply redo because it
is running at a lower database version than the new primary database. Therefore, you
must convert your original primary database back into a physical standby database. Shut
down and restart the new logical standby and then perform a Flashback Database to the
guaranteed restore point created in step 13:

SHUTDOWN IMMEDIATE;
STARTUP MOUNT;
FLASHBACK DATABASE TO RESTORE POINT JUSTB4_UPGRADE;

 27. Shut down the new logical standby, and using the new cloned ORACLE_HOME (from
step 9), start the standby in mount mode and convert it to a physical standby:

SHUTDOWN IMMEDIATE;
STARTUP MOUNT;
ALTER DATABASE CONVERT TO PHYSICAL;

As stated earlier, the database upgrade includes two components: updating the binary
files and updating the database objects. The binary upgrade was picked up with the
leverage of the new ORACLE_HOME. For the upgrade of database objects, once the
physical standby has caught up to the new primary, it will automatically be upgraded (by
virtue of Redo Apply).

 28. Note that the CONVERT TO PHYSICAL statement will implicitly dismount the database.
Therefore, you will need to restart the physical database again and put it into the MOUNT
state. Additionally, managed recovery will need to be started:

SHUTDOWN IMMEDIATE;
STARTUP MOUNT;
ALTER DATABASE RECOVER MANAGED STANDBY DATABASE
USING CURRENT LOGFILE DISCONNECT;;

 29. Once you are satisfied with the new Oracle version, it is recommended that you set the
COMPATIBLE settings to the rolling upgraded versions.

Chapter 11: Minimizing Planned Downtime Using Data Guard Switchover 407

 30. Optionally, for customers who want to return back to the original configuration (prior to
starting the rolling upgrade), a switchover can be performed.

Caveats and Restrictions
Some restrictions apply to using the transient logical standby rolling upgrade process:

	 ■ When you perform the initial switchover in the rolling upgrade process, you cannot use
the PREPARE TO SWITCHOVER operation because the primary and standby databases
are running different Oracle releases.

	 ■ In this transient logical standby configuration, no bystander logical standby databases can
exist. A bystander logical standby database is a logical standby database that exists in the
same Data Guard configuration as the physical standby that will become the transient
logical standby. If an existing logical standby database is in this configuration, it is highly
recommended that you use this for the rolling upgrade.

Note that for Oracle Database10g, if the primary database in a rolling upgrade configuration is a
RAC database, ensure that all but one instance are shut down. If you are running with COMPATIBLE
set to lower than 10.2.0.2, disable the threads before initiating a switchover. Do the same to the
logical standby database except for the instance where SQL Apply is running. Re-enable the threads
and start the instances after the switchover operation has completed successfully. Although the
instances are shut down, the role change will be automatically propagated to these instances when
they are restarted.

Options for using rolling upgrade when unsupported data types exist are as follows:

	 ■ Suspend or prohibit changes to the unsupported data type objects. Temporarily suspend
or prohibit changes to the unsupported tables for the period of time it takes to perform
the upgrade procedure.

	 ■ Use DBA_LOGSTDBY_EVENTS with Oracle Data Pump or with the Export/Import utility. If
you cannot prevent changes to unsupported tables during the upgrade, any unsupported
transactions that occur are recorded in the DBA_LOGSTDBY_EVENTS table on the
logical standby database. After the upgrade is completed, use Oracle Data Pump or the
Export/Import utility to import the changed tables to the upgraded databases. Review
section 12.4 in Oracle Data Guard Concepts and Administration for more information.

	 ■ Use Extended Datatype Support (EDS), which enables SQL Apply to replicate changes to
tables that contain some data types not natively supported from one database to another.
Beginning with Oracle Database 10g Release 10.2.0.4, SQL Apply supports the ability
for triggers to fire on the logical standby database, which provides the basis of EDS. For
an overview of EDS, see the MAA whitepaper “Extended Datatype Support: SQL Apply
and Streams.”4 For details and examples of using EDS to support data types that are not
natively supported by SQL Apply, see MetaLink Note 559353.1.5

4 See www.oracle.com/technology/deploy/availability/pdf/maa_edtsoverview.pdf.
5 MetaLink Note 559353.1: “Extended Datatype Support (EDS) for SQL Apply”

www.oracle.com/technology/deploy/availability/pdf/maa_edtsoverview.pdf.

408 Oracle Data Guard 11g Handbook

Conclusion
Performing software upgrades is not only a painstaking process, but it also creates large downtime
outages. Data Guard can be leveraged to minimize most of this downtime impact. This chapter
reviewed how a logical standby database can be leveraged to enable an upgrade of a database or
complete stack version. When the standby upgrade is deemed successful, a Data Guard switchover
is executed to transition the standby database to the production role running on the new release of
the software or stack. While the standby database operates in this production role, the database on
the original primary is converted back to a physical standby. This physical standby is then restarted
with a newer software stack version and the database is implicitly upgraded to new release via Redo
Apply. This method not only provides a low-impact environment to the user community, but this
configuration can also be used to validate the new software stack, minimizing unplanned outages.

Chapter
12

Backup and Recovery
Considerations

409

410 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 12: Backup and Recovery Considerations 411

ost database administrators will agree that protecting data is one of the most
important aspects of their job. As a DBA, you are responsible for the availability of the
databases in your environment, and a sound backup and recovery strategy is critical
to administering and managing those databases. The more time you spend planning
and testing your backup and recovery strategy, the easier it will be to respond in an

efficient and timely manner during a recovery situation. Operating system commands such as cp and
dd can be used to back up an Oracle database, but they are not database-aware commands.
Although many third-party tools are available for database backup and recovery, we will focus on the
usage of Oracle’s Recovery Manager (RMAN) utility to back up and recover your Oracle databases.

Several backup options are available for databases in a Data Guard environment. This
chapter will look at those options as well as factors that can influence your backup strategy
decisions. In addition, we will review some of the most common recovery scenarios that you can
use as a guide when testing your own strategies.

Improvements in Oracle Database 11g have focused on the integration of RMAN and Data
Guard, and we will briefly cover some of these features.

Here is a summary of the topics that will be covered in this chapter:

 RMAN Basics ■

 RMAN Integration with Data Guard ■

 RMAN Configuration ■

 Backup Strategies ■

 Backup Scenarios ■

 Recovery Strategies ■

 Recovery Scenarios ■

 Best Practices ■

RMAN Basics
RMAN provides several benefits when compared with user-managed backup and recovery. The
following highlights some of those benefits:

 Eliminates the need for complex backup scripts ■

 Minimizes human error by keeping track of all the backup information ■

 Performs error checking during backups and recoveries ■

 Supports high-speed incremental backups ■

 Supports compression of backup files ■

 Repairs corrupt data blocks without needing to restore a file from a backup (block media ■
recovery)

 Simulates restores as well as backups ■

 Simplifies the process of cloning a database ■

 Integrates with third-party media management tools ■

M

Chapter 12: Backup and Recovery Considerations 411

We assume that you are familiar with the RMAN utility, so we will not be covering details
about how to set up and configure RMAN. However, we will focus on components and
functionality that are necessary to back up and recover databases in a Data Guard environment.
As you read this chapter, you will find that the examples are based on backups and recoveries to
disk. We will highlight some of the nuances specific to using tape where necessary.

Following is a list of some RMAN terminology that will be used throughout this chapter:

 Target database ■ The database against which RMAN commands are run

 Catalog database ■ The database that houses the recovery catalog schema

 Auxiliary database ■ When cloning a database, represents the name of the actual clone
database

 Recovery catalog ■ The catalog that contains metadata information about the backups

 Backup piece ■ The file that contains the backup of a control file, archived logs, or a
datafile

 Backupset ■ One or more relevant backup pieces

 Image copy ■ The copy of a datafile, control file, or archive log that is similar to copies
made of files with the cp or dd operating system command

 Channel ■ The server session used to perform backups and recoveries; identifies a
specific device, disk, or tape to be used for a backup or recovery

RMAN Integration with Data Guard
Several improvements have been included in Oracle Database11g regarding backup and
recovery; however, our focus will be on features that improve the integration of RMAN with Data
Guard. You can now set persistent RMAN configurations for a primary or physical standby
database. This enables you to use backups made on one database for the restore and recovery of
another database in your Data Guard configuration. In addition, metadata on the primary and
standby databases can be managed from the same recovery catalog. We will discuss this in more
detail later in this chapter.

Block Change Tracking Support
Incremental backup performance has been improved over past releases by backing up only the
changed data blocks. You can now enable block change tracking support on a physical standby
database to quickly identify the blocks that changed since the last incremental backup. (Block
change tracking on a physical standby requires a license for Oracle Active Data Guard.)

SQL> alter database enable block change tracking
 2 using file '/media/orclvol3/oradata/matrix_dr0/chgtrack.log';
Database altered.
SQL> Select filename, status, bytes
 2 from v$block_change_tracking;
FILENAME STATUS BYTES
-- --------- ----------
/media/orclvol3/oradata/matrix_dr0/chgtrack.log ENABLED 11599872

412 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 12: Backup and Recovery Considerations 413

Contrary to what many DBAs think, the size of the block change tracking (BCT) file is not
related to the amount of updates performed on the database. The size of the BCT file depends on
the size of the database, the number of database files and redo threads, and information collected
for up to eight backups. Normally, the space required is about 1/30000 the size of the data blocks
to be tracked. So for a 1-terabyte database, you might need a BCT file of 34MB. However, to
avoid the overhead of allocating space as the database grows, the BCT file starts at 10MB and
increases in size by 10MB chunks. In addition, RMAN reserves 320KB of space in the BCT file for
each data file, so the BCT file would be 40MB.

Control File Management
Backups of the control files are interchangeable between a primary database and its physical
standby databases. You can restore a standby control file on a primary database and a primary
control file on a physical standby database. It is no longer necessary to back up a standby control
file on the primary database when creating a standby database using the new 11g DUPLICATE FOR
STANDBY FROM ACTIVE DATABASE method. Nor do you need to create a backup control file on
all your standby sites. RMAN will now automatically synchronize the control file information with
the standby databases when using an RMAN catalog. Depending on the role that the database is
playing according to the RMAN catalog, the current control file and/or standby control file backup
can be used to restore a control file with the RESTORE CONTROLFILE command.

Resynchronizing the RMAN Catalog
You can now resynchronize the RMAN catalog from a remote database using the RESYNC
CATALOG command with the CONNECT IDENTIFIER clause. Prior to doing the resync, you must
define the connect identifiers for the standby databases:

RMAN> CONFIGURE DB_UNIQUE_NAME MATRIX_DR0 CONNECT IDENTIFIER 'MATRIX_DR0';

The RESYNC CATALOG command can be used to resynchronize the catalog with a specific
standby’s site information. In addition, the ALL clause will synchronize all of the sites:

RMAN> RESYNC CATALOG FROM DB_UNIQUE_NAME ALL;

RMAN Configuration in Data Guard
The RMAN catalog contains backup and recovery information in one centralized location. The
recovery catalog consists of a set of tables, indexes, and packages that reside in a database
somewhere in your network. These tables store the information about RMAN backups that occur
for all the target databases. The server where the catalog resides should be separate from the
primary and standby sites so that in the event of a disaster at either the standby or primary site,
the ability to recover from the latest backups will not be impacted. An RMAN catalog is required
so that backups taken on one database server can be restored to another database server. Use of
the control file as the repository will not work because the primary database will have no
knowledge of backups that occur on the standby database.

RMAN uses the DB_UNIQUE_NAME parameter to distinguish one database site from another. As
of Oracle Database 11g, it is mandatory that the uniqueness of DB_UNIQUE_NAME be maintained
in a Data Guard configuration. Only the primary database must be explicitly registered using the
REGISTER DATABASE command. Physical standby databases are registered automatically in the

Chapter 12: Backup and Recovery Considerations 413

catalog when you use RMAN to connect to them as the TARGET while connected to the recovery
catalog. The recovery catalog tracks the files in the Data Guard environment by associating every
database file with a DB_UNIQUE_NAME. A backup remains associated with the database that
created it unless you use the following command to associate the backup with a different
database: use the CHANGE command with the RESET DB_UNIQUE_NAME option to alter the
association of files from one database to another within a Data Guard environment. This
command is useful when disk backups or archive logs are transferred and you want to use them
on the database to which they were transferred. You can also change the association of a file
from one database to another database without having to connect directly to either database
using the FOR DB_UNIQUE_NAME and RESET DB_UNIQUE_NAME options:

RMAN> CHANGEBACKUP TAG='STANDBY_BACKUP_LVL0'
 FOR DB_UNIQUE_NAME MATRIX_DR0 RESET DB_UNIQUE_NAME;

Use the CONFIGURE command to set the RMAN configurations. When the CONFIGURE
command is used with the FOR DB_UNIQUE_NAME option, it sets the RMAN site-specific
configuration for the database with the DB_UNIQUE_NAME you specify. If this is used with the
CONFIGURE, SHOW, and LIST commands, it is possible for you to view and modify persistent
RMAN configuration parameters without connecting to that database using the TARGET option. If
you use the DB_UNIQUE_NAME clause with the ALL option instead of the site_name option,
RMAN will connect to all databases registered in the catalog and will update their control files
with the new settings.

The following are examples of the use of the FOR DB_UNIQUE_NAME clause:

RMAN> show all for db_unique_name matrix_dr0;
starting full resync of recovery catalog
full resync complete
RMAN configuration parameters for database
 with db_unique_name MATRIX_DR0 are:
CONFIGURE RETENTION POLICY TO REDUNDANCY 3;
CONFIGURE BACKUP OPTIMIZATION OFF; # default
CONFIGURE DEFAULT DEVICE TYPE TO DISK;
CONFIGURE CONTROLFILE AUTOBACKUP ON;
CONFIGURE CONTROLFILE AUTOBACKUP FORMAT FOR DEVICE TYPE DISK TO 'cf%F';
CONFIGURE DEVICE TYPE DISK PARALLELISM 1 BACKUP TYPE TO BACKUPSET; # default
CONFIGURE DATAFILE BACKUP COPIES FOR DEVICE TYPE DISK TO 1; # default
CONFIGURE ARCHIVELOG BACKUP COPIES FOR DEVICE TYPE DISK TO 1; # default
CONFIGURE CHANNEL 1 DEVICE TYPE DISK FORMAT '/media/orclvol3/matrix_
dr0%t_%s_%p';
CONFIGURE MAXSETSIZE TO UNLIMITED; # default
CONFIGURE ENCRYPTION FOR DATABASE OFF; # default
CONFIGURE ENCRYPTION ALGORITHM 'AES128'; # default
CONFIGURE COMPRESSION ALGORITHM 'BZIP2'; # default
CONFIGURE ARCHIVELOG DELETION POLICY TO NONE; # default
CONFIGURE SNAPSHOT CONTROLFILE NAME TO '/u01/app/oracle/product/11.1.0/db_1/
dbs/sncfmatrix_dr0.ora';

RMAN> report schema for db_unique_name matrix;
Report of database schema for database with db_unique_name MATRIX
List of Permanent Datafiles
===========================

414 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 12: Backup and Recovery Considerations 415

File Size(MB) Tablespace RB segs Datafile Name
---- -------- -------------------- ------- ------------------------
1 610 SYSTEM YES
/media/orclvol1/oradata/matrix/system01.dbf
2 498 SYSAUX NO
/media/orclvol1/oradata/matrix/sysaux01.dbf
3 1024 UNDOTBS1 YES
/media/orclvol2/oradata/matrix/undotbs01.dbf
4 1024 USERS NO
/media/orclvol1/oradata/matrix/users01.dbf
5 20 ACTOR_D NO
/media/orclvol2/oradata/matrix/actor_d_01.dbf
6 20 ACTOR_I NO
/media/orclvol2/oradata/matrix/actor_i_01.dbf
List of Temporary Files
=======================
File Size(MB) Tablespace Maxsize(MB) Tempfile Name
---- -------- -------------------- ----------- --------------------
1 1024 TEMP 32767
/media/orclvol2/oradata/matrix/temp01.dbf

Certain configuration parameters will stay consistent, such as backup retention and default
destinations of disk and tape. You will need to connect to both the primary database and the
RMAN catalog. Configure the retention policy to keep the necessary backups to perform a
database recovery to any point in time within a specific period.

Following are some example RMAN configuration commands along with a description of
what they do. In these examples, we are taking our backups from the standby database, and as
such we need to maintain archive logs only at the primary until they have been applied (or
shipped) to the standby database.

Example Configuration for a Primary Database
Follow these steps to configure a primary database:

 1. Configure the retention policy for the database as n days:

RMAN> CONFIGURE RETENTION POLICY TO RECOVERY WINDOW OF 7 DAYS;

 2. Specify when archived logs can be deleted:

RMAN> CONFIGURE ARCHIVELOG DELETION POLICY TO SHIPPED TO ALL STANDBY;

Or use this:

RMAN> CONFIGURE ARCHIVELOG DELETION POLICY TO APPLIED ON ALL STANDBY;

 3. Configure the connect string for the primary database and all standby databases. This will
enable RMAN to connect remotely and perform resynchronizations. Note that this applies
even if the other database instance where the resynchronization occurs is on the local host.

RMAN> CONFIGURE DB_UNIQUE_NAME MATRIX CONNECT IDENTIFIER 'MATRIX';

Chapter 12: Backup and Recovery Considerations 415

 4. After connect identifiers are configured for all standby databases, you can verify the list of
standbys by using the LIST DB_UNIQUE_NAME OF DATABASE command.

Example Configuration for a Backup Standby Database
Follow these steps to configure a physical standby database where backups are taken:

 1. Issue the following commands after connecting to the physical standby database and the
recovery catalog. Enable automatic backups of the control file and server parameter file:

RMAN> CONFIGURE CONTROLFILE AUTOBACKUP ON;

 2. Skip backing up datafiles for which a valid backup already exists with the same checkpoint:

RMAN> CONFIGURE BACKUP OPTIMIZATION;

 3. Configure the tape channels to create backups as required by media management software:

RMAN> CONFIGURE CHANNEL DEVICE TYPE SBT PARMS '<channel parameters>';

 4. Specify when the archived logs can be deleted with the CONFIGURE ARCHIVELOG
DELETION POLICY command. Since the logs are backed up at the standby site, you
should specify the NONE option for the log deletion policy:

RMAN> CONFIGURE DELETION POLICY TO NONE;

This will enable automatic deletion of archived logs on the standby database (where
backups are being taken) that are outside of the retention period or that have already
been backed up to tape, if additional space is needed for new backups or archived logs.

Example Configuration for Other Physical Standby Databases
Follow these steps to configure another physical standby database where backups are not taken.

Issue the following command after connecting to each of the other physical standby databases
and the recovery catalog:

RMAN> CONFIGURE ARCHIVELOG DELETION POLICY TO APPLIED ON STANDBY;

Setting this configuration on each of the other physical standby databases (where backups are
not being taken) will enable automatic deletion of archived logs on this standby database that
have been applied to all other remote standby destinations. Archived logs are deleted if space in
the flash recovery area needs to be reclaimed for new files. Using this policy requires that the
database uses a Flash Recovery Area (FRA).

Refer to Note 305565.1 “Persistant Controlfile Configurations for RMAN in Oracle 9i and
Oracle 10g” for additional information.

Backup Strategies
Several backup strategies should be considered depending on your business’s recovery point
objective (RPO) and recovery time objective (RTO). (Refer to Chapter 2 for detailed information
on defining your business requirements.) These objectives, along with your budget, will drive

416 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 12: Backup and Recovery Considerations 417

your decisions in terms of infrastructure as well as strategy. Even with Data Guard configured and
in use, RMAN should be included as a part of your overall strategy. When you do have that
failure of the primary database and successfully failover to your standby database, you may still
have to use a backup to rebuild the old primary database, especially if you are not using
Flashback Database. And without Flashback Database, you may have to restore and recover your
entire Data Guard setup if you do not discover the user error before the Apply Delay you set has
expired. Of course, you could also experience that dreaded multiple failure and lose the primary
database and your standby databases and need to restore from backup to get back up and
running. Having a well-thought-out backup strategy will help in all of these cases.

The data change frequency and the amount of data included in your environment also factor
into how you set up your backup strategy. The following options can be evaluated to determine
whether they fit within your acceptable mean time to recover (MTTR).

Consider doing weekly full (level 0) and fast incremental backups when the frequency of data
changes is low to medium. During fast incremental backups, only the changed blocks are read
and written if you have enabled BCT. Archived logs kept on disk can be used to recover the
database to any point in the day.

If your tolerance for an outage is extremely low, you could take a full database image copy or
image copies of the most critical tablespaces followed by nightly incremental backups. The image
copy can be rolled forward with the most current incremental to produce a new disk full backup
on a daily basis. The time to recover is reduced because the image copy is updated with the latest
block changes, and fewer redo logs are required to bring the database back to the current state.
Archived logs are backed up and retained on disk as needed.

As mentioned earlier, RMAN database backups can be offloaded in a Data Guard environment
to the physical standby database. This will help alleviate the impact of the backups on the primary
database. You must use an RMAN catalog instead of the control file so that the primary database
will be aware of backups taken on the standby, and vice versa. You can perform a backup on a
physical standby database and restore it to the primary database, and vice versa. However, keep in
mind that backups of a logical standby database are not usable at the primary database and can
only be used to restore the logical standby.

Backups of physical standby control files and primary control files are interchangeable. This
means that you can offload control file backups in a Data Guard environment. RMAN will update
the filenames for database files during restore and recovery at the database.

NOTE
As of Oracle Database 11g you no longer need to make separate
control file backups on your primary and standby. However, in 10g,
you still have to take a special standby control file backup when using
RMAN to back up your physical standby.

In a Data Guard environment, the recovery catalog considers disk backups accessible only to
the database where the backups were taken. On the other hand, a tape backup created on one
database is accessible to all of the databases. Commands such as backup, restore, and crosscheck
work on any accessible backup. RMAN considers only image copies that are associated with the
database as eligible to be recovered. In addition, incremental backups on disk and tape are
eligible to roll forward image copies. In a database recovery, however, RMAN considers only the
disk backups associated with the database and all files on tape as eligible to be restored.

Chapter 12: Backup and Recovery Considerations 417

One last consideration is the backup and deletion of the archive logs. If you back up from the
standby, the archive logs will never be removed from the primary unless you set the correct
archive log deletion policy, as mentioned earlier. If you do not set the policy, you will have to set
up another backup on the primary to clean up the archive logs on the primary site.

Backup Scenarios
Several backup scenarios are applicable in a Data Guard environment: full backups, incremental
backups, backup copies, backups of the flash recovery area (FRA), and archive backups.

Backup Database Not Backed Up
DBAs can perform database backups using the BACKUP DATABASE NOT BACKED UP. When you
back up the database with BACKUP DATABASE NOT BACKED UP keywords, you are instructing
RMAN to back up datafile and archive logs that have not been previously backed up.

You can also specify the syntax with the SINCE TIME 'SYSDATE -1'; clause to back up files
not backed up since the specified time. The optional syntax, such as NOT BACKED UP 2 TIMES,
also comes in handy for the extra-cautious DBA. You can also include the archive log with the
PLUS ARCHIVELOG syntax. Putting it all together, you can perform backups on the primary database
like so:

RMAN> BACKUP NOT BACKED UP SINCE TIME 'SYSDATE -1' DATABASE PLUS ARCHIVELOG;

This particular backup strategy is recommended if you are making copies from the flash recovery
area to tape. If you perform backups to the flash recovery area and then back up the flash recovery
area to tape, you should consider using the BACKUP DATABASE NOT BACKED UP syntax.

Full Backups on Primary
When it comes to performing full backups on the primary database, we recommend one of the
three backup strategies: full level 0 backup, full level 0 compressed backup, and database
image copy backup with RMAN. To perform a complete level 0 backup, you would normally issue
the command BACKUP AS BACKUPSET INCREMENTAL LEVEL 0 FORMAT … (DATABASE).
The key difference in performing a compressed backup is to incorporate the key reserved word
COMPRESSED in the BACKUP DATABASE command.

Here’s a comprehensive backup script example that takes advantage of the compressed
option while backing up both database files and archive logs. In addition, the control file and
spfile are preserved as part of the backup strategy:

run
{
allocate channel d1 type disk;
allocate channel d2 type disk;
allocate channel d3 type disk;
allocate channel d4 type disk;
backup as compressed backupset incremental level ###_BACKUP_LEVEL_###
tag='###_ORACLE_SID_###_bkup_###_BACKUP_LEVEL_###z_###_DATE_###'
filesperset 1 format
'/apps/oracle/admin/###_ORACLE_SID_###/bkups/%d.%s.%p.%t.L###_BACKUP_

418 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 12: Backup and Recovery Considerations 419

LEVEL_###.DB' (database) ;
###_sqlspfile_### "create pfile=''/apps/oracle/admin/###_ORACLE_SID_###/bkups/
init_###_ORACLE_SID_###_###_DATE_###.ora''from spfile";
sql "alter system archive log current";
sql "alter system switch logfile";
sql "alter system switch logfile";
change archivelog all validate;
sql "alter database backup controlfile to trace";
sql "alter database backup controlfile to
''/apps/oracle/admin/###_ORACLE_SID_###/bkups/control01_###_ORACLE_
SID_###_###_DATE_###.ctl.bkup''";

backup as compressed backupset format
'/apps/oracle/admin/###_ORACLE_SID_###/bkups/%d.%s.%p.%t.A' skip
inaccessible (archivelog all not backed up 2 times);
backup tag='###_ORACLE_SID_###_CTL_###_DATE_###' format
'/apps/oracle/admin/###_ORACLE_SID_###/bkups/%d.%s.%p.%t.CTL'
(current controlfile);

delete noprompt archivelog until time 'sysdate -
###_NUMBER_OF_DAYS_TO_RETAIN_###'
backed up 2 times to device type disk;

release channel d1;
release channel d2;
release channel d3;
release channel d4;
}

Notice in this example that a pfile is created from the spfile as part of the backup strategy.
You can alternatively back up the spfile as well. Pay particular attention to the backup strategy
implemented to back up the control file. The control file is backed up three times:

 To trace to the UDUMP directory ■

 Using RMAN syntax to the backup destination ■

 Using SQL*Plus syntax to the file system backup destination ■

Most importantly, take note of the DELETE command for the archive logs. You do not want to
back up and delete input on all the archive logs. For databases participating in a Data Guard
configuration, RMAN will not delete archive logs on the primary database that have not been
shipped to the physical standby database. If you try to delete them, you will encounter the
RMAN-08137 error, as shown here:

RMAN-08137: WARNING: archive log not deleted as it is still needed

In our real-world example, we delete only the archive logs if they’ve been backed up twice
to disk and are older than two days. This archive log purge strategy happens to be one of several
practiced in the industry. You can change and adopt a strategy that works best for your
organization.

Chapter 12: Backup and Recovery Considerations 419

Backup as Copy
Backing up the database as image copies for performing rolling updates may be of particular
interest for DBAs with very large databases (VLDBs) and/or that have extremely short backup
windows. Companies in the past abandoned Oracle backup solutions to settle with hardware
vendor solutions that provide business continuity volumes (BCVs), such as the technologies
provided by EMC and Hitachi. This chapter does not cover the topic of BCVs, but a high-level
overview is provided in the appendix of this book.

Oracle database image copies can now provide equivalent technologies once offered only by
hardware vendors. Oracle provides a one-stop–shop solution with the concept of performing
baseline level 0 backups and updating the database with incremental level 1 backups to keep the
backup database in sync with the source database. Basically, you can justify the budget for
additional disk space for image copies since you are trading for the cost associated with the BCV
hardware and software.

Obviously, disk space requirements can decrease significantly if you are compressing your
backupsets. Even if you are not compressing your backupsets, the storage requirement for the
backup area may decrease if you have a lot of preallocated free space inside the database, since
RMAN does not back up blocks that have never been modified before. In the case of an image
copy, the size of the database backup area is directly proportional to the size of the database,
plus the number of days of incremental backups and the number of days of archive logs to keep
on disk. A simplified equation to determine the amount of space required is shown here:

Backup file system or FRA = Database size
+ number of incremental backups to retain
+ number of days of archive log backups to keep
+ control files to keep on disk

For some databases, the disk space requirements for the backup file system can be 1.25 to
1.5 times the size of the database itself.

To perform image copies of the database, you must leverage the key reserved words BACKUP
AS COPY. The following example provides a comprehensive syntax to perform an image copy of
the database, similar to how you copy database files using the cp command in UNIX:

RMAN> BACKUP AS COPY INCREMENTAL LEVEL 0 TAG='###_TAG_###'
FORMAT '/apps/oracle/admin/DB/bkups/%U' DATABASE;

RMAN copies three kinds of files: datafiles, archive log files, and control files. With the %U
format, datafiles are copied with the data-D-%d_id-%I_TS-%N_FNO-%f_%u format, archive
logs are copied with the arch-D_%d-id-%I_S-%e_T-%h_A-%a_%u format, and control files are
copied with the cf-D_%d-id-%I_%u format. The following list provides the explanation of the
above-mentioned RMAN format options:

 %c ■ specifies the copy number of the backup piece within a set of multiplexed backup
pieces. If you did not multiplex a backup (that is, with the COPIES parameter), this
variable is 1 for backupsets and 0 for proxy copies.

 %d ■ specifies the name of the database.

 %e ■ specifies the archived log sequence number.

 %N ■ specifies the tablespace name.

420 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 12: Backup and Recovery Considerations 421

 %h ■ specifies the archived redo log thread number.

 %f ■ specifies the absolute file number.

 %I ■ specifies the database ID (DBID).

 %u ■ specifies an eight-character name constituted by compressed representations of the
backupset or image copy number and the time the backupset or image copy was created.

The BACKUP AS COPY syntax at the database level is new to Oracle Database 10g. This syntax
replaces the previous COPY DATAFILE and COPY TABLESPACE commands. The BACKUP AS COPY
at the database level will make an image copy of the entire database in the location specified in
the FORMAT parameter. Instead of the file system destination, you may have an ASM diskgroup
destination such as the flash recovery area, +FLASH. You will notice that the TAG name plays an
integral role in applying incremental backups to baseline image copies. We recommend that you
define a customized TAG to refer symbolically to your backupset or database copy. The TAG can
be up to 30 characters in length.

Image Copy Rolled Forward
After you’ve created an image copy of our database, what’s next? The answer is simple. You need
to take incremental backups and apply them to your new image copy. Consider, for example, a
particular customer in the financial sector that chose to perform full level 0 backup to disk on a
monthly/quarterly basis. Your backup schedule looks like this:

 Sunday: Level 1 Merge with Level 0—now it is LEVEL 0 ■

 Monday: Level 1 Merge with Level 0—now it is LEVEL 0 ■

 Tuesday: Level 1 Merge with Level 0—now it is LEVEL 0 ■

 Wednesday: Level 1 Merge with Level 0—now it is LEVEL 0 ■

 Thursday: Level 1 Merge with Level 0—now it is LEVEL 0 ■

 Friday: Level 1 Merge with Level 0—now it is LEVEL 0 ■

 Saturday: Level 1 Merge with Level 0—now it is LEVEL 0 ■

At a specified weekend near the end or beginning of the quarter, full level 0 backups to disk
are performed. Daily incremental level 1 backups are performed and applied to the baseline
backup. This process is repeated until the next quarter, when level 0 images backups are
performed.

Even though quarterly full level 0 database copy backups are performed, conceptually, you
do not need to perform another full backup again, and the biggest benefit is that in the event of
catastrophic failure to the primary disks, you can switch the database to the image copy and start
the database. For multi-node RAC implementation, the target destination of your image copy must
be on a clustered file system or Automatic Storage Management (ASM). In the event that you lose
your primary database, you can switch to your copy (assuming that it is not a complete outage at
the Storage Area Network level or data center level), and start up the database. If your database
copy image location is not on a shared storage, you will not be able to bring the database in a
cluster mode. You will end up running the database in a single instance mode. This may be
acceptable for some companies as defined by the SLA to run in a reduced capacity. Once you fix
the database issue or corruption or whatever caused the initial outage, you can perform another

Chapter 12: Backup and Recovery Considerations 421

baseline level 0 image copy to the clustered file system or ASM and switch the database back to
run in the original configuration. In a granular level, if the loss on the primary database is a
tablespace or datafile, you can simply copy the affected datafiles from the copy using the RMAN
COPY command. In a nutshell, database image copies on the primary database can effectively
provide your first level of protection from possible database outages.

Of course, since you are using Data Guard, you would have failed over to your standby and
used the on-disk copy to re-create the old primary as a standby database if you did not have
Flashback Database enabled or that catastrophic failure occurred at the primary disk level.

As stated earlier, when it comes to performing database copies and applying level 1
incremental backups to the parent backup image, use of the RMAN TAG syntax plays an
important role and simplifies the architecture and maintenance. As you can see in the following
code example, the RECOVER COPY OF DATABASE syntax uses the TAG to identify the incremental
backup to apply to:

run
{
[…]
recover copy of database with tag '###_BASELINE_TAG_###';
BACKUP INCREMENTAL LEVEL ###_BACKUP_LEVEL_### tag='###_TAG_###'
FOR RECOVER OF COPY WITH TAG '###_BASELINE_TAG_###'
format '/apps/oracle/admin/###_ORACLE_SID_###/bkups/%d.%s.%p.%t.L1.4R.DB'
DATABASE;
[…]
}

On a nightly basis, incremental level 1 backups are performed with the FOR RECOVER OF
COPY WITH TAG syntax. This backs up only the blocks that have changed since the last
incremental backup.

TIP
Two kinds of backups can occur: differential incremental backups and
cumulative incremental backups. The differential incremental backup
backs up changed blocks since the last level 0 or level 1 backup. If
a level 1 backup exists, it will back up changes since the last level 1
backup. If a level 1 backup does not exist, it will look for a level 0
backup and back up changed blocks since the level 0 backup.
A cumulative incremental backup, on the other hand, backs up
changed blocks since the last level 0 backup.

Each night a level 1 backup from the previous night will be applied before another level 1
backup occurs. Here’s a sample output showing how the level 1 changed blocks from the
previous night are recovered on top of the parent backup:

Starting recover at 17-JAN-09
channel d1: starting incremental datafile backupset restore
channel d1: specifying datafile copies to recover
recovering datafile copy fno=00001
name=/apps/oracle/admin/MATRIX/bkups/data_D-MATRIX_I-3231931562_TS-SYSTEM_
FNO-1_2rk3in4b

422 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 12: Backup and Recovery Considerations 423

recovering datafile copy fno=00003
name=/apps/oracle/admin/MATRIX/bkups/data_D-MATRIX_I-3231931562_TS-SYSAUX_
FNO-3_2ok3in33
recovering datafile copy fno=00006
name=/apps/oracle/admin/MATRIX/bkups/data_D-MATRIX_I-3231931562_TS-DOCS_TBL_
FNO-6_28k3imhd
recovering datafile copy fno=00007
name=/apps/oracle/admin/MATRIX/bkups/data_D-MATRIX_I-3231931562_TS-DOCS_IDX_
FNO-7_29k3imkc
recovering datafile copy fno=00033
name=/apps/oracle/admin/MATRIX/bkups/data_D-MATRIX_I-3231931562_TS-TRACKING_
IDX_FNO-33_3ck3in7i
recovering datafile copy fno=00034
name=/apps/oracle/admin/MATRIX/bkups/data_D-MATRIX_I-3231931562_TS-EDI_TBL_
FNO-34_2kk3in1i
recovering datafile copy fno=00051
name=/apps/oracle/admin/MATRIX/bkups/data_D-MATRIX_I-3231931562_TS-user_ts_
FNO-51_27k3imac
recovering datafile copy fno=00052
name=/apps/oracle/admin/MATRIX/bkups/data_D-MATRIX_I-3231931562_TS-INDEX_TS_
FNO-52_3nk3in8h
channel d1: reading from backup piece
/apps/oracle/admin/MATRIX/bkups/MATRIX.250.1.676260017.L1.4R.DB
channel d2: starting incremental datafile backupset restore
channel d2: specifying datafile copies to recover
...
...
channel d4: reading from backup piece
/apps/oracle/admin/MATRIX/bkups/MATRIX.248.1.676260016.L1.4R.DB
channel d2: restored backup piece 1
piece handle=/apps/oracle/admin/MATRIX/bkups/MATRIX.247.1.676260016.L1.4R.DB
tag=MATRIX1_1_16JAN09_0200
channel d2: restore complete, elapsed time: 00:00:03
channel d3: restored backup piece 1
piece handle=/apps/oracle/admin/MATRIX/bkups/MATRIX.249.1.676260016.L1.4R.DB
tag=MATRIX1_1_16JAN09_0200
channel d3: restore complete, elapsed time: 00:00:04
channel d4: restored backup piece 1
piece handle=/apps/oracle/admin/MATRIX/bkups/MATRIX.248.1.676260016.L1.4R.DB
tag=MATRIX1_1_16JAN09_0200
channel d4: restore complete, elapsed time: 00:00:04
channel d1: restored backup piece 1
piece handle=/apps/oracle/admin/MATRIX/bkups/MATRIX.250.1.676260017.L1.4R.DB
tag=MATRIX1_1_16JAN09_0200
channel d1: restore complete, elapsed time: 00:00:05
Finished recover at 17-JAN-09

On a nightly basis, you should implement a scheduled job to update your image copy of the
database. You can perform a new image copy of the database and update your existing image
copy of the database by taking advantage of the rman2disk.ksh script provided at the Data Guard

Chapter 12: Backup and Recovery Considerations 423

Handbook website (www.dataguardbook.com/). This comprehensive script will perform level 0
backups, compressed backups, and database copies; perform level 1 backups; update level 0
image copies with incremental backups; back up archive logs; back up control files; back up the
spfile, and so on. Once you perform a level 0 baseline backup using the rman2disk.ksh script,
you can perform nightly updates with the following cron job:

0 1 * * * /apps/oracle/general/sh/rman2disk.ksh -d MATRIX -l 1
 -r merge > /tmp/rman2disk_MATRIX.merge.log 2>&1 &

NOTE
The rman2disk.ksh script is fully documented on the Data Guard
website and updated on an ongoing basis.

As a part of backup strategy, you should back up the baseline level 0 backup to tape. In
addition, you should plan to back up the level 1 incremental backup to tape.

Standby Database Creation
You can use a couple of methods to create the standby database using a backup of the primary
database. You can use the DUPLICATE command to clone the primary database as a standby
database or an image copy that you manage yourself. In both cases, the BACKUP VALIDATE
DATABASE command can be used to check the integrity of all data files.

Both the original DUPLICATE FOR STANDBY and the new Oracle Database 11g DUPLICATE
FOR STANDBY FROM ACTIVE DATABASE methods are described in Chapter 2 with examples.

RMAN> DUPLICATE TARGET DATABASE FOR STANDBY DORECOVER;

Alternatively, you can use image copies to create a standby database. One of the
requirements is that the primary database must be closed cleanly and then mounted. This
restriction may make the use of image copies for a standby creation less attractive when
compared to the use of a backupset. To use this method, you would shut down the primary
database and then restart it in mount mode. You can then create an image copy of all of the
datafiles and create a standby control file. After this is done, you can open the primary database
and archive the current log. This image copy can then be taken to the remote site and, after fixing
the parameters as usual, mounted using the standby control file.

NOTE
We added this example here for your information—but, to be honest,
with its downtime requirements, we recommend using one of the
DUPLICATE FOR STANDBY methods in RMAN.

Backups on a Standby Database
The following example shows all the current configuration settings on our standby database and
then the settings for taking a full backup:

RMAN> show all;
RMAN configuration parameters for database
 with db_unique_name MATRIX_DR0 are:
CONFIGURE RETENTION POLICY TO REDUNDANCY 3;

www.dataguardbook.com/

424 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 12: Backup and Recovery Considerations 425

CONFIGURE BACKUP OPTIMIZATION OFF; # default
CONFIGURE DEFAULT DEVICE TYPE TO DISK;
CONFIGURE CONTROLFILE AUTOBACKUP ON;
CONFIGURE CONTROLFILE AUTOBACKUP FORMAT FOR DEVICE TYPE DISK TO 'cf%F';
CONFIGURE DEVICE TYPE DISK PARALLELISM 1 BACKUP TYPE TO BACKUPSET; # default
CONFIGURE DATAFILE BACKUP COPIES FOR DEVICE TYPE DISK TO 1; # default
CONFIGURE ARCHIVELOG BACKUP COPIES FOR DEVICE TYPE DISK TO 1; # default
CONFIGURE CHANNEL 1 DEVICE TYPE DISK FORMAT
'/media/orclvol3/matrix_df%t_%s_%p';
CONFIGURE MAXSETSIZE TO UNLIMITED; # default
CONFIGURE ENCRYPTION FOR DATABASE OFF; # default
CONFIGURE ENCRYPTION ALGORITHM 'AES128'; # default
CONFIGURE COMPRESSION ALGORITHM 'BZIP2'; # default
CONFIGURE ARCHIVELOG DELETION POLICY TO NONE; # default
CONFIGURE SNAPSHOT CONTROLFILE NAME TO '/u01/app/oracle/product/11.1.0/db_1/
dbs/sncfmatrix_DR0.ora';

RMAN> backup incremental level 0 database TAG='standby_lvl0';

Starting backup at 05-JAN-09
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=142 device type=DISK
channel ORA_DISK_1: starting incremental level 0 datafile backup set
channel ORA_DISK_1: specifying datafile(s) in backup set
input datafile file number=00004
name=/media/orclvol1/oradata/matrix_dr0/users01.dbf
input datafile file number=00003
name=/media/orclvol2/oradata/matrix_dr0/undotbs01.dbf
channel ORA_DISK_1: starting piece 1 at 05-JAN-09
channel ORA_DISK_1: finished piece 1 at 05-JAN-09
piece handle=/media/orclvol3/matrix_df675356527_14_1 tag=STANDBY_LVL0
comment=NONE
channel ORA_DISK_1: backup set complete, elapsed time: 00:00:01
channel ORA_DISK_1: starting incremental level 0 datafile backup set
channel ORA_DISK_1: specifying datafile(s) in backup set
input datafile file number=00001
name=/media/orclvol1/oradata/matrix_dr0/system01.dbf
input datafile file number=00005
name=/media/orclvol2/oradata/matrix_dr0/actor_d_01.dbf
input datafile file number=00006
name=/media/orclvol2/oradata/matrix_dr0/actor_i_01.dbf
input datafile file number=00002
name=/media/orclvol1/oradata/matrix_dr0/sysaux01.dbf
channel ORA_DISK_1: starting piece 1 at 05-JAN-09
channel ORA_DISK_1: finished piece 1 at 05-JAN-09
piece handle=/media/orclvol3/matrix_df675356588_15_1 tag=STANDBY_LVL0
comment=NONE
channel ORA_DISK_1: backup set complete, elapsed time: 00:01:15
Finished backup at 05-JAN-09

Chapter 12: Backup and Recovery Considerations 425

Starting Control File and SPFILE Autobackup at 05-JAN-09
piece handle=/u01/app/oracle/product/11.1.0/db_1/dbs/cfc-2215364109-20090105-
00 comment=NONE
Finished Control File and SPFILE Autobackup at 05-JAN-09
RMAN>

Once the backup is complete, we can display the backups we have made by using the LIST
BACKUPSET SUMMARY command:

RMAN> list backupset summary;

List of Backups

===============

Key TY LV S Device Type Completion Time #Pieces #Copies Compressed Tag

------- -- -- - ----------- --------------- ------- ------- ---------- ------------------

382 B F A DISK 04-JAN-09 1 1 NO TAG20090104T150544

383 B F A DISK 04-JAN-09 1 1 NO TAG20090104T150911

384 B F A DISK 04-JAN-09 1 1 NO TAG20090104T150952

385 B F A DISK 04-JAN-09 1 1 NO TAG20090104T151104

648 B 0 A DISK 05-JAN-09 1 1 NO STANDBY_LVL0

649 B 0 A DISK 05-JAN-09 1 1 NO STANDBY_LVL0

663 B F A DISK 05-JAN-09 1 1 NO TAG20090105T150510

Then, using the LIST BACKUPSET command, we can see the details of a specific backup:

RMAN> list backupset 649;
List of Backup Sets
===================

BS Key Type LV Size Device Type Elapsed Time Completion Time
------- ---- -- ---------- ----------- ------------ ---------------
649 Incr 0 810.53M DISK 00:01:59 05-JAN-09
 BP Key: 652 Status: AVAILABLE Compressed: NO Tag: STANDBY_LVL0
 Piece Name: /media/orclvol3/matrix_df675356588_15_1
 List of Datafiles in backup set 649
 File LV Type Ckp SCN Ckp Time Name
 ---- -- ---- ---------- --------- ----
 1 0 Incr 708412 05-JAN-09
/media/orclvol1/oradata/matrix_dr0/system01.dbf
 2 0 Incr 708412 05-JAN-09
/media/orclvol1/oradata/matrix_dr0/sysaux01.dbf
 5 0 Incr 708412 05-JAN-09
/media/orclvol2/oradata/matrix_dr0/actor_d_01.dbf
 6 0 Incr 708412 05-JAN-09
/media/orclvol2/oradata/matrix_dr0/actor_i_01.dbf

RMAN>

426 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 12: Backup and Recovery Considerations 427

Archive Backups
Periodically, you will want to (or may have to) take backups of your archive log files so that you
have the information necessary to roll forward one of your restored backups from all these level 0
and level 1 backups you have been taking:

RMAN> backup archivelog from scn=708389 TAG='STANDBY_ARCHIVE';
Starting backup at 05-JAN-09
using channel ORA_DISK_1
channel ORA_DISK_1: starting archived log backup set
channel ORA_DISK_1: specifying archived log(s) in backup set
input archived log thread=1 sequence=48 RECID=26 STAMP=675356631
channel ORA_DISK_1: starting piece 1 at 05-JAN-09
channel ORA_DISK_1: finished piece 1 at 05-JAN-09
piece handle=/media/orclvol3/matrix_df675357372_17_1 tag=STANDBY_ARCHIVE
comment=NONE
channel ORA_DISK_1: backup set complete, elapsed time: 00:00:01
Finished backup at 05-JAN-09

Starting Control File and SPFILE Autobackup at 05-JAN-09
piece handle=/u01/app/oracle/product/11.1.0/db_1/dbs/cfc-2215364109-20090105-
01 comment=NONE
Finished Control File and SPFILE Autobackup at 05-JAN-09

In Oracle11g, the archived redo log failover feature will enable RMAN to complete a backup
even when some of the logs are missing or corrupt. If you have multiple archivelog destinations
configured and at least one archived log exists for a given sequence and thread in either of the
destinations, then RMAN will attempt to back it up. If RMAN encounters issues during the
backup, it will check the other archivelog destinations for that file.

General Recovery Strategies
It is important that you understand what your recovery options are under different scenarios. In
addition, you need to ensure that your backup strategy will support those recovery options.
Subsequently, you should test these scenarios as frequently as possible for different types of
failures, such as media failure, block corruption, user error, and disaster recovery. These failure
types along with other recovery concepts are discussed in detail in Chapter 3.

Media Failure
Media failures occur when the database cannot read from or write to a datafile. This could be the
result of hardware failures, or it could be a result of the file being accidentally deleted or
overwritten.

Block Corruption
Data block corruptions occur in files as a result of memory corruptions that are written to the files
as well as I/O errors on the underlying disks. You can verify data block corruption using the
following tools.

Chapter 12: Backup and Recovery Considerations 427

In RMAN, you can run the following command to check for physical and logical corruptions
in the database as well as archive logs:

RMAN> BACKUP VALIDATE DATABASE ARCHIVELOG ALL;
Starting backup at 14-JAN-09
starting full resync of recovery catalog
full resync complete
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=127 device type=DISK
channel ORA_DISK_1: starting archived log backup set
channel ORA_DISK_1: specifying archived log(s) in backup set
input archived log thread=1 sequence=19 RECID=2 STAMP=675075647
. . .
input archived log thread=1 sequence=54 RECID=73 STAMP=676072884
channel ORA_DISK_1: backup set complete, elapsed time: 00:00:45
List of Archived Logs
=====================
Thrd Seq Status Blocks Failing Blocks Examined Name
---- ------- ------ -------------- --------------- ---------------
1 19 OK 0 196894
/media/orclvol3/MATRIX/archivelog/2009_01_02/o1_mf_1_19_4owc0n2t_.arc
. . .
1 54 OK 0 196861
/media/orclvol3/MATRIX/archivelog/2009_01_13/o1_mf_1_54_4ptrvyh5_.arc
channel ORA_DISK_1: starting full datafile backup set
channel ORA_DISK_1: specifying datafile(s) in backup set
input datafile file number=00004
name=/media/orclvol1/oradata/matrix/users01.dbf
input datafile file number=00003
name=/media/orclvol2/oradata/matrix/undotbs01.dbf
channel ORA_DISK_1: backup set complete, elapsed time: 00:01:25
List of Datafiles
=================
File Status Marked Corrupt Empty Blocks Blocks Examined High SCN
---- ------ -------------- ------------ --------------- ----------
3 OK 0 86136 131072 1156673
 File Name: /media/orclvol2/oradata/matrix/undotbs01.dbf
 Block Type Blocks Failing Blocks Processed
 ---------- -------------- ----------------
 Data 0 0
 Index 0 0
 Other 0 44936

File Status Marked Corrupt Empty Blocks Blocks Examined High SCN
---- ------ -------------- ------------ --------------- ----------
4 OK 0 131030 131072 703802
 File Name: /media/orclvol1/oradata/matrix/users01.dbf
 Block Type Blocks Failing Blocks Processed
 ---------- -------------- ----------------
 Data 0 10

428 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 12: Backup and Recovery Considerations 429

 Index 0 3
 Other 0 29

channel ORA_DISK_1: starting full datafile backup set
channel ORA_DISK_1: specifying datafile(s) in backup set
input datafile file number=00001
name=/media/orclvol1/oradata/matrix/system01.dbf
input datafile file number=00005
name=/media/orclvol2/oradata/matrix/actor_d_01.dbf
input datafile file number=00006
name=/media/orclvol2/oradata/matrix/actor_i_01.dbf
input datafile file number=00002
name=/media/orclvol1/oradata/matrix/sysaux01.dbf
channel ORA_DISK_1: backup set complete, elapsed time: 00:00:55
List of Datafiles
=================
File Status Marked Corrupt Empty Blocks Blocks Examined High SCN
---- ------ -------------- ------------ --------------- ----------
1 OK 0 12863 78080 1156673
 File Name: /media/orclvol1/oradata/matrix/system01.dbf
 Block Type Blocks Failing Blocks Processed
 ---------- -------------- ----------------
 Data 0 54058
 Index 0 8928
 Other 0 2231

File Status Marked Corrupt Empty Blocks Blocks Examined High SCN
---- ------ -------------- ------------ --------------- ----------
2 OK 0 18222 64920 1156673
 File Name: /media/orclvol1/oradata/matrix/sysaux01.dbf
 Block Type Blocks Failing Blocks Processed
 ---------- -------------- ----------------
 Data 0 15367
 Index 0 13749
 Other 0 17582

File Status Marked Corrupt Empty Blocks Blocks Examined High SCN
---- ------ -------------- ------------ --------------- ----------
5 OK 0 2544 2560 676361
 File Name: /media/orclvol2/oradata/matrix/actor_d_01.dbf
 Block Type Blocks Failing Blocks Processed
 ---------- -------------- ----------------
 Data 0 5
 Index 0 0
 Other 0 11

File Status Marked Corrupt Empty Blocks Blocks Examined High SCN
---- ------ -------------- ------------ --------------- ----------
6 OK 0 2548 2560 676360
 File Name: /media/orclvol2/oradata/matrix/actor_i_01.dbf
 Block Type Blocks Failing Blocks Processed
 ---------- -------------- ----------------

Chapter 12: Backup and Recovery Considerations 429

 Data 0 0
 Index 0 1
 Other 0 11

channel ORA_DISK_1: starting full datafile backup set
channel ORA_DISK_1: specifying datafile(s) in backup set
including current control file in backup set
including current SPFILE in backup set
channel ORA_DISK_1: backup set complete, elapsed time: 00:00:01
List of Control File and SPFILE
===============================
File Type Status Blocks Failing Blocks Examined
------------ ------ -------------- ---------------
SPFILE OK 0 2
Control File OK 0 598
Finished backup at 14-JAN-09

RMAN>

Recovery Manager complete.

You can also use the DBVERIFY utility to identify corrupted datafiles. The ANALYZE command
can also be used to identify corrupted data blocks.

You can refer to the following documents for additional information on handling data
corruption errors: Note 428570.1 “Best Practices for Avoiding and Detecting Corruption” and
Note 35512.1 “DBVERIFY—Database Verification Utility.”

User Errors
Accidents happen. Tables can be accidentally dropped, jobs can be run in the wrong order, or the
wrong jobs can be executed. In any case, the end result will be that the data needs to be backed out.
You could do a point-in-time recovery, or you could consider some of the following options instead:

 Flashback query ■ Retrieves data from a previous point in time

 Flashback table ■ Restores table to a previous point in time

 Flashback drop ■ Recovers a dropped table

 Flashback transaction backout ■ Backs out a transaction

 Flashback Database ■ Repairs database-wide logical errors

When configuring the primary and standby databases, it would be to your advantage to
configure a flash recovery area for each database. The FRA is a storage location where all of the
files needed for a recovery are kept. These files would include the control files, archived redo
logs, online redo log copies, flashback logs, and RMAN backups. You should consider placing
the FRA on disks separate from those that are used for the database. To configure the flash
recovery area in ASM, you will need to set the following parameters. (If you are not using ASM,
you would use a directory path as the FRA.)

DB_RECOVERY_FILE_DEST = +FLASH
DB_RECOVERY_FILE_DEST_SIZE = 52400M

430 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 12: Backup and Recovery Considerations 431

Enable Flashback Database on the primary and standby databases. This will enable you to
roll back the database to an earlier point in time without requiring a complete restore. When
Flashback Database is enabled, flashback logs are kept in the flash recovery area. These logs can
be used to roll back the database without requiring a complete restore. Refer to Chapters 8 and 9
for additional details on the flashback technology as it applies to a Data Guard environment. In
addition, you can refer to Note 305648.1 when configuring your flash recovery area.1

Recovery Scenarios
In any recovery situation, the analysis should be done up front to determine the exact cause of the
error and the most time-efficient manner to recover the database. This may seem like common sense,
but when you’re in this situation and management and customers are calling and everyone is in a
rush to get the database back online, bad decisions can be made. This section will cover some of the
recovery scenarios that you may encounter as well as options to use to recover from these situations.

It is recommended that you practice different recovery scenarios. Not only does this help to
validate that you can meet your recovery requirements, but it will help you avoid mistakes that
you may have otherwise made when recovering your database. Refer to Oracle® Database
Backup and Recovery User’s Guide 11g Release 1 (11.1) and Oracle® Data Guard Concepts and
Administration 11g Release 1 (11.1) for additional detailed recovery scenarios.

Loss of a Datafile on a Primary Database
Two options are available to you when you lose a datafile on the primary database: You can use
a backup to recover the datafile or use files on a standby database to recover the datafile as of
Oracle Database 11g.

Using a Backup to Recover the Datafile
The following summarizes the steps that you would take if you were using a backup to recover
the datafile on the primary:

 1. Connect to the primary database as the target:

RMAN TARGET / CATALOG rman/<pswd>@RCAT

 2. Alter the datafile offline:

RMAN> SQL "ALTER DATABASE DATAFILE 1 OFFLINE";

 3. Restore and recover the datafile:

RMAN> RESTORE DATAFILE 1;
RMAN> RECOVER DATAFILE 1;
RMAN> SQL "ALTER DATABASE DATAFILE 1 ONLINE";

1 Note: 305648.1 “What Is a Flash Recovery Area and How to Configure It”

Chapter 12: Backup and Recovery Considerations 431

Using a Standby Database to Recover the Datafile
The following summarizes the steps that you would take if you were using the datafiles from the
standby database to recover a lost datafile:

 1. Connect to the standby database as the target database, and connect to the primary
database as the auxiliary database:

RMAN TARGET sys/<pswd>@MATRIX_DR0 CATALOG rman/<pswd>@RCAT auxiliary /

 2. Back up the datafile on the standby and transfer to the primary:

RMAN> BACKUP AS COPY DATAFILE 1 AUXILIARY FORMAT
 2> '/u04/oradata/MATRIX_DR0/users.dbf';

 3. Start RMAN and connect to the primary database as target and to the recovery catalog:

RMAN TARGET / CATALOG rman/<pswd>@RCAT

 4. Use the CATALOG DATAFILECOPY command to catalog this datafile copy so that RMAN
can use it:

RMAN> CATALOG DATAFILECOPY '/u04/oradata/MATRIX_DR0/users.dbf';

 5. Use the SWITCH DATAFILE command to switch the datafile copy so that this file
becomes the current datafile:

RUN {
SET NEWNAME FOR DATAFILE 1 TO '/u04/oradata/MATRIX/users.dbf';
SWITCH DATAFILE 1;
}

Loss of a Datafile on a Standby Database
Use the following steps to recover a lost datafile on a standby database:

 1. Stop the Redo Apply using the ALTER DATABASE command:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

 2. Start RMAN and connect both to the standby and recovery catalog:

RMAN TARGET / CATALOG rcat/<pswd>@RCAT

 3. Issue the following commands to restore and recover datafiles on the standby database:

RMAN> RESTORE DATAFILE 1;
RMAN> RECOVER DATAFILE 1;

 4. Restart SQL Apply:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE
USING CURRENT LOGFILE DISCONNECT;

432 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 12: Backup and Recovery Considerations 433

Loss of Standby Controlfile
You can restore the control file from backups by executing the RESTORE CONTROLFILE command.
You can use several ways to do this depending on whether you’re using an RMAN catalog or FRA.
Here are some of the options:

RMAN> RESTORE CONTROLFILE FROM AUTOBACKUP;
RMAN> RESTORE CONTROLFILE FROM '/BACKUP_DIR/PIECE_NAME';
RMAN> RESTORE CONTROLFILE; => MOST RECENT BACKUP.

You can then start and mount your database. Depending on your configuration you can also
refer to Note: 459411.1 “Steps to Re-create a Physical Standby Controlfile” and Note 734862.1
“Step by Step Guide on How to Recreate Standby Control File When Datafiles Are on ASM And
Using Oracle Managed Files” for details.

Loss of Primary Controlfile
You can restore the control file from a backup by executing the RESTORE CONTOLFILE and the
RECOVER DATABASE commands. The RECOVER DATABASE command automatically fixes the filenames
in the control file to match the files existing at that database and recovers the database to the most
recently received log sequence at the database. Lastly, you may also create a new control file using
CREATE CONTROLFILE. As a part of your backup process, you may want to include a step to back up
your control file to trace. This will come in handy if you ever need to rebuild your control file.

RMAN> SQL "ALTER DATABASE BACKUP CONTROLFILE TO TRACE";

Or use this:

SQL> ALTER DATABASE BACKUP CONTROLFILE TO TRACE;

In the alert log, you will see a line similar to the following, which tells you where the control
file create script has been written:

Backup controlfile written to trace file
/OracleHomes/diag/rdbms/matrix/Matrix/trace/Matrix_ora_ 28431.trc

Loss of an Online Redo Log File
If the online redo log files are multiplexed, then the loss of one member will not impact the
database. You can then shut down the database and copy the other members of the group over
the missing or damaged member:

 1. Shut down the database.

 2. Copy the existing multiplexed member over the missing or damaged member.

[matrix]$ ls
control01.ctl redo02a.rdo sysaux01.dbf users01.dbf
redo01a.rdo redo03a.rdo system01.dbf
[matrix]$ cp redo03a.rdo /media/orclvol2/oradata/matrix/redo03b.rdo
[matrix]$ cd /media/orclvol2/oradata/matrix

Chapter 12: Backup and Recovery Considerations 433

[matrix]$ ls
actor_d_01.dbf control02.ctl redo02b.rdo temp01.dbf
actor_i_01.dbf control03.ctl redo01b.rdo redo03b.rdo undotbs01.dbf

 3. Start up the database.

If all of the members of an inactive group that has been archived are lost, the group can be
dropped and re-created.

If the current group or an inactive group that has not yet been archived is damaged or
missing, you must failover to the standby database, or take a loss of data and recover primary to a
time just prior to that current or inactive group.

In Oracle Database 11g, a tool called Data Recovery Advisor can help you diagnose and fix
media failures. It will determine the best recovery options and can perform the recovery.

Once the database has detected the failure or you’ve run diagnostic checks or executed the
VALIDATE commands, the results are stored in the Automatic Diagnostic Repository (ADR).
Once ADR records the failures, you can invoke the Data Recovery Advisor. Here’s an example of
what you would see if the failure has not been placed in ADR:

RMAN> list failure;
no failures found that match specification

The following is an example of a Data Recovery Advisor report for a missing redo log:

RMAN> advise failure;
starting full resync of recovery catalog
full resync complete
List of Database Failures
=========================
Failure ID Priority Status Time Detected Summary
---------- -------- --------- ------------- -------
702 HIGH OPEN 05-JAN-09 Redo log file
/media/orclvol2/oradata/matrix/redo03b.rdo is missing
 Impact: Database might be unrecoverable or become unrecoverable
analyzing automatic repair options; this may take some time
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=135 device type=DISK
analyzing automatic repair options complete

Mandatory Manual Actions
========================
no manual actions available

Optional Manual Actions
=======================
1. If file /media/orclvol2/oradata/matrix/redo03b.rdo was unintentionally
renamed or moved, restore it

Automated Repair Options
========================

434 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 12: Backup and Recovery Considerations 435

Option Repair Description
------ ------------------
1 Drop and re-create redo log group member
/media/orclvol2/oradata/matrix/redo03b.rdo
 Strategy: The repair includes complete media recovery with no data loss
 Repair script:
/u01/app/oracle/diag/rdbms/matrix/matrix/hm/reco_2237002612.hm

The LIST FAILURE command cannot be used on a physical standby database. If you try, you
will see the following error:

RMAN> LIST FAILURE;
RMAN-00571: ===
RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS ===============
RMAN-00571: ===
RMAN-03002: failure of list command at 02/15/2009 18:33:58
RMAN-05533: LIST FAILURE is not supported on STANDBY database

The Data Recovery Advisor is also available in Grid Control and Database Control in a GUI
format. In Grid Control it is under the Availability tab for the primary database in the Perform
Recovery action. The Data Recovery Advisor (without any errors showing) is displayed in Figure 12-1.

The RESTORE PREVIEW command can be used to determine which backups will need to be
restored and recovered and what checkpoint you must exceed to open the database reset logs.
The RECOVER DATABASE command automatically fixes the filenames in the control file to match
the files existing at that database and recovers the database to the most recently received log
sequence at the database.

Here’s the restore DATABASE preview command:

RMAN> restore DATABASE preview;
Starting restore at 04-JAN-09
starting full resync of recovery catalog
full resync complete
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=125 device type=DISK
List of Backup Sets
===================
BS Key Type LV Size Device Type Elapsed Time Completion Time
------- ---- -- ---------- ----------- ------------ ---------------
63 Incr 0 780.04M DISK 00:01:20 03-JAN-09
 BP Key: 65 Status: AVAILABLE Compressed: NO Tag:
TAG20090103T115553
 Piece Name: /media/orclvol3/matrix_df675172553_2_1
 List of Datafiles in backup set 63

FIGURE 12-1. Data Recovery Advisor

Chapter 12: Backup and Recovery Considerations 435

 File LV Type Ckp SCN Ckp Time Name
 ---- -- ---- ---------- --------- ----
 1 0 Incr 580819 03-JAN-09
/media/orclvol1/oradata/matrix/system01.dbf
 2 0 Incr 580819 03-JAN-09
/media/orclvol1/oradata/matrix/sysaux01.dbf
 3 0 Incr 580819 03-JAN-09
/media/orclvol2/oradata/matrix/undotbs01.dbf
 4 0 Incr 580819 03-JAN-09
/media/orclvol1/oradata/matrix/users01.dbf

BS Key Type LV Size Device Type Elapsed Time Completion Time
------- ---- -- ---------- ----------- ------------ ---------------
228 Incr 1 22.17M DISK 00:01:25 04-JAN-09
 BP Key: 234 Status: AVAILABLE Compressed: NO Tag:
TAG20090104T195543
 Piece Name: /media/orclvol3/matrix_df675287744_8_1
 List of Datafiles in backup set 228
 File LV Type Ckp SCN Ckp Time Name
 ---- -- ---- ---------- --------- ----
 3 1 Incr 652440 04-JAN-09
/media/orclvol2/oradata/matrix/undotbs01.dbf
 4 1 Incr 652440 04-JAN-09
/media/orclvol1/oradata/matrix/users01.dbf

BS Key Type LV Size Device Type Elapsed Time Completion Time
------- ---- -- ---------- ----------- ------------ ---------------
229 Incr 1 5.73M DISK 00:00:30 04-JAN-09
 BP Key: 235 Status: AVAILABLE Compressed: NO Tag:
TAG20090104T195543
 Piece Name: /media/orclvol3/matrix_df675287836_9_1
 List of Datafiles in backup set 229
 File LV Type Ckp SCN Ckp Time Name
 ---- -- ---- ---------- --------- ----
 1 1 Incr 652474 04-JAN-09
/media/orclvol1/oradata/matrix/system01.dbf

BS Key Type LV Size Device Type Elapsed Time Completion Time
------- ---- -- ---------- ----------- ------------ ---------------
230 Incr 1 29.46M DISK 00:00:23 04-JAN-09
 BP Key: 236 Status: AVAILABLE Compressed: NO Tag:
TAG20090104T195543
 Piece Name: /media/orclvol3/matrix_df675287868_10_1
 List of Datafiles in backup set 230
 File LV Type Ckp SCN Ckp Time Name
 ---- -- ---- ---------- --------- ----
 2 1 Incr 652488 04-JAN-09
/media/orclvol1/oradata/matrix/sysaux01.dbf
using channel ORA_DISK_1

436 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 12: Backup and Recovery Considerations 437

List of Archived Log Copies for database with db_unique_name MATRIX
===

Key Thrd Seq S Low Time
------- ---- ------- - ---------
226 1 31 A 04-JAN-09
 Name:
/media/orclvol3/MATRIX/archivelog/2009_01_04/o1_mf_1_31_4p2t9wb5_.arc

Media recovery start SCN is 652440
Recovery must be done beyond SCN 652488 to clear datafile fuzziness
Finished restore at 04-JAN-09

Here’s the RESTORE ARCHIVELOG ALL PREVIEW command:

RMAN> RESTORE ARCHIVELOG ALL PREVIEW

Starting restore at 04-JAN-09

using channel ORA_DISK_1

List of Backups

===============

Key TY LV S Device Type Completion Time #Pieces #Copies Compressed Tag

------- -- -- - ----------- --------------- ------- ------- ---------- ------------------

63 B 0 A DISK 03-JAN-09 1 1 NO TAG20090103T115553

228 B 1 A DISK 04-JAN-09 1 1 NO TAG20090104T195543

229 B 1 A DISK 04-JAN-09 1 1 NO TAG20090104T195543

230 B 1 A DISK 04-JAN-09 1 1 NO TAG20090104T195543

List of Archived Log Copies for database with db_unique_name MATRIX

===

Key Thrd Seq S Low Time

------- ---- ------- - ---------

226 1 31 A 04-JAN-09

 Name:

/media/orclvol3/MATRIX/archivelog/2009_01_04/o1_mf_1_31_4p2t9wb5_.arc

Media recovery start SCN is 652440

Recovery must be done beyond SCN 652488 to clear datafile fuzziness

Incomplete Recovery of the Primary Database
Several options are available when you need to perform an incomplete recovery of the primary
database. If flashback is enabled on the primary, you can recover the primary and standby
database prior to the error occurring. However, if media recovery is required, a restore and
recovery will be needed. On the primary, do the following.

 1. Mount the database exclusive:

SQL> startup mount exclusive
ORACLE instance started.
Total System Global Area 1.0737E+10 bytes
Fixed Size 2101912 bytes
Variable Size 4160753000 bytes

Chapter 12: Backup and Recovery Considerations 437

Database Buffers 6492782592 bytes
Redo Buffers 81780736 bytes
Database mounted.

 2. Flash back the database:

SQL> flashback database to '<timestamp>;
Flashback complete.

 3. Open the database reset logs:

SQL> alter database open resetlogs;
Database altered.

On the standby database, you will need to issue the same FLASHBACK STANDBY
DATABASE statement on the standby database before restarting apply services. Note that you do
not execute OPEN RESETLOGS on a physical standby database after the flashback command.

Recovering from a Dropped Table
The following is an example of recovering from the accidental dropping of a table.

 1. Drop the table:

SQL> drop table matrix_user.movie_titles;
Table dropped.

 2. Flash back the table:

SQL> flashback table matrix_user.movie_titles to before drop;
Flashback complete.

Recover a Missing Datafile from
a Backup Taken on the Standby
The following covers the procedures you will need to follow to restore a datafile to the primary
database with a backup that was taken on a physical standby.

RMAN> list failure;
List of Database Failures
=========================
Failure ID Priority Status Time Detected Summary
---------- -------- --------- ------------- -------
402 HIGH OPEN 12-FEB-09 One or more non-system datafiles
are missing

RMAN> repair failure preview;
List of Database Failures
=========================

438 Oracle Data Guard 11g Handbook Chapter 12: Backup and Recovery Considerations 439

Failure ID Priority Status Time Detected Summary
---------- -------- --------- ------------- -------
402 HIGH OPEN 12-FEB-09 One or more non-system datafiles
are missing

analyzing automatic repair options; this may take some time
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=125 device type=DISK
analyzing automatic repair options complete

Mandatory Manual Actions
========================
no manual actions available

Optional Manual Actions
=======================
1. If file /media/orclvol2/oradata/matrix/location_d_01.dbf was unintentionally
renamed or moved, restore it
2. If file /media/orclvol1/oradata/matrix/location_i_01.dbf was unintentionally
renamed or moved, restore it
Automated Repair Options
========================
Option Repair Description
------ ------------------
1 Restore and recover datafile 7; Restore and recover datafile 8
 Strategy: The repair includes complete media recovery with no data loss
 Repair script:
/u01/app/oracle/diag/rdbms/matrix/matrix/hm/reco_515388588.hm

RMAN>
Strategy: The repair includes complete media recovery with no data loss
Repair script: /u01/app/oracle/diag/rdbms/matrix/matrix/hm/reco_515388588.hm

contents of repair script:
 # restore and recover datafile
 sql 'alter database datafile 7, 8 offline';
 restore datafile 7, 8;
 recover datafile 7, 8;
 sql 'alter database datafile 7, 8 online';

 1. Offline the missing datafiles:

RMAN> sql 'alter database datafile 7, 8 offline';
sql statement: alter database datafile 7, 8 offline

 2. Associate the standby backup with the primary database:

RMAN> change backup tag='ORALINUX2_FULL_021209' from db_unique_name
matrixdr reset db_unique_name;
change backup piece db_unique_name
backup piece handle=/media/orclvol3/matrix_df678591310_24_1 RECID=15
STAMP=678591326

Chapter 12: Backup and Recovery Considerations 439

change backup piece db_unique_name
backup piece handle=/media/orclvol3/matrix_df678591351_25_1 RECID=16
STAMP=678591366
change backup piece db_unique_name
backup piece handle=/media/orclvol3/matrix_df678591452_26_1 RECID=17
STAMP=678591467
Changed 3 objects db_unique_name

 3. Run a list summary to ensure that the backups are now accessible by the primary database:

RMAN> LIST BACKUPSET SUMMARY;
List of Backups
===============
Key TY LV S Device Type Completion Time #Pieces #Copies Compressed Tag
------- -- -- - ----------- --------------- ------- ------- ---------- ---
1017 B 0 A DISK 11-FEB-09 1 1 NO
ORALINUX1_FULL_021109
1018 B 0 A DISK 11-FEB-09 1 1 NO
ORALINUX1_FULL_021109
1019 B 0 A DISK 11-FEB-09 1 1 NO
ORALINUX1_FULL_021109
1037 B F A DISK 11-FEB-09 1 1 NO
TAG20090211T223025
1096 B 0 A DISK 12-FEB-09 1 1 NO
ORALINUX2_FULL_021209
1097 B 0 A DISK 12-FEB-09 1 1 NO
ORALINUX2_FULL_021209
1098 B 0 A DISK 12-FEB-09 1 1 NO
ORALINUX2_FULL_021209

 4. Restore the datafiles from the standby backup:

RMAN> restore datafile 7, 8 from tag='ORALINUX2_FULL_021209';
Starting restore at 12-FEB-09
using channel ORA_DISK_1

channel ORA_DISK_1: starting datafile backup set restore
channel ORA_DISK_1: specifying datafile(s) to restore from backup set
channel ORA_DISK_1: restoring datafile 00007 to
/media/orclvol2/oradata/matrix/location_d_01.dbf
channel ORA_DISK_1: reading from backup piece
/media/orclvol3/matrix_df678591351_25_1
channel ORA_DISK_1: piece handle=/media/orclvol3/matrix_
df678591351_25_1 tag=ORALINUX2_FULL_021209
channel ORA_DISK_1: restored backup piece 1
channel ORA_DISK_1: restore complete, elapsed time: 00:00:03
channel ORA_DISK_1: starting datafile backup set restore
channel ORA_DISK_1: specifying datafile(s) to restore from backup set
channel ORA_DISK_1: restoring datafile 00008 to
/media/orclvol1/oradata/matrix/location_i_01.dbf
channel ORA_DISK_1: reading from backup piece
/media/orclvol3/matrix_df678591452_26_1

440 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 12: Backup and Recovery Considerations 441

channel ORA_DISK_1: piece handle=/media/orclvol3/matrix_
df678591452_26_1 tag=ORALINUX2_FULL_021209
channel ORA_DISK_1: restored backup piece 1
channel ORA_DISK_1: restore complete, elapsed time: 00:00:03
Finished restore at 12-FEB-09

 5. Recover the missing datafiles:

RMAN> recover datafile 7, 8 from tag='ORALINUX2_FULL_021209';
Starting recover at 12-FEB-09
using channel ORA_DISK_1

starting media recovery
media recovery complete, elapsed time: 00:00:01

Finished recover at 12-FEB-09

 6. Set the datafiles online:

RMAN> sql 'alter database datafile 7, 8 online';
sql statement: alter database datafile 7, 8 online

General Best Practices
Following industry best practices2 can save you lot of headaches and possible reimplementation
of architectural changes. The following shows some general best practices:

 The RMAN catalog should be stored on a separate server from the primary and standby ■
databases. In the case of a disaster, there will be no impact to the recovery of either site.

 Take backups at both the primary and standby databases to reduce recovery time in case ■
of double outages.

 Maintain multiple copies of the backup files as well as archive logs in different locations. ■
Refer to Note 443814.1 “Managing Multiple Archive Log Destinations with RMAN” for
details.

 Specify ■ FILESPERSET = 1 when backing up. Have each datafile in a single backupset.
When doing a partial restore, RMAN must read through the entire piece to get the
datafile/archive log requested. The smaller the backup piece, the quicker the restore
can complete.

 Specify ■ MAXOPENFILES = 1 for each channel defined. This will ensure that each RMAN
channel reads from only a single file at any one time.

 Define additional channels to increase the number of parallel backup processes running. ■
With FILESPERSET set to 1 and MAXOPENFILES set to 1, you will need to specify
additional channels and/or degrees of parallelism that will allow RMAN to keep more
data moving into the backupsets.

2 Note: 388422.1 “Top 10 Backup and Recovery Best Practices”

Chapter 12: Backup and Recovery Considerations 441

 Turn on logical block checking to detect memory and data corruptions as soon as they ■
occur. There is overhead associated with enabling it depending on the level of checking
that you’ve selected and the workload in your environment.

 Turn on block change tracking when using RMAN backups. RMAN can use the block ■
change tracking file to identify the blocks that have changed for incremental backups,
thus avoiding the need to scan every block in the datafile.

 When backing up a database, use the ■ check logical parameter. To ensure that you
have a good backup, this will check for logical corruption within a block as well as the
normal head/tail checksums.

 If you’re using tape, ensure that your retention period is in line with your tape retention ■
policy requirements. If you’re not using a catalog, ensure that your control file record
keep time matches the retention policy.

 Set ■ AUTOBACKUP to ON. This will ensure that you always have an up-to-date control file
and spfile available that has been taken at the end of the current backup, not during it.

 Don’t use ■ DELETE ALL INPUT when backing up archive logs. It will back up from one
destination and delete all copies of the archive log in the other destinations, whereas
DELETE INPUT will back up from one location and then delete only what has been
backed up. Use the RMAN command BACKUP RECOVERY FILES to copy disk backups in
the flash recovery area to tape.

Conclusion
As a database administrator, you are responsible for the availability of the databases in your
environment. In this chapter, we've discussed backup and recovery strategies, techniques, and
the integration of RMAN in a Data Guard environment. It is crucial that you spend time planning,
testing, and documenting your backup and recovery strategies. Your understanding of backup
and recovery concepts and your knowledge of which techniques to use during a specific type of
recovery will enable you to respond in a timely and efficient manner during an emergency. You
will also want to review Oracle® Data Guard Concepts and Administration 11g Release 1 (11.1)
manual as well as the Oracle® Database Backup and Recovery User’s Guide 11g Release 1 (11.1)
for more detailed information.

Chapter
13

Troubleshooting
Data Guard

443

444 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 13: Troubleshooting Data Guard 445

n the previous chapters, you learned industry best practice techniques to set up
and enable Data Guard. Just as with any kind of database administrative tasks,
Data Guard often requires “nurturing and feeding.” When configuring and
maintaining a Data Guard environment, you will inevitably run into issues. In this
chapter, we will focus on some of the common issues and resolutions regarding

the configuration and maintenance of a Data Guard environment. We’ll cover where to look for
information to help you pinpoint the issue as well as steps for corrective action to resolve the
most common problems.

Several great sources of diagnostic information are available to aid you in determining the
root cause of your Data Guard issues. Available at your disposal are the alert log and trace files,
database health checks, the Data Guard Broker, Oracle Enterprise Manager, and performance
views. The majority of the potential Data Guard errors can be divided into the following
categories, which are covered in this chapter:

 Common management issues ■

 Physical standby issues ■

 Logical standby issues ■

 Switchover troubleshooting ■

 Failover troubleshooting ■

 Data Guard Broker issues ■

 Data Guard Snapshot standby issues ■

Troubleshooting methodologies and techniques evolve and mature over time. Although we try
to provide you the most amount of troubleshooting information in this chapter, we cannot cover all
the possible errors that a DBA can encounter in a Data Guard environment. We will address the
common issues that you may encounter. For future updates and latest troubleshooting tips, please
visit the Data Guard Handbook blog site at blog.dataguardbook.com.

Diagnostic Information
Oracle provides common diagnostic information in database alert logs, observer logs, Data Guard
trace files, and the Data Guard Broker log files. In addition to describing how to use the log files,
we will include a brief description of some of the performance views that you can use to monitor
a Data Guard configuration. We will also provide you with relevant information about where to
look to determine the root cause of an issue with your Data Guard configuration.

Database Alert Logs
The database alert logs provide a great source of information in investigating issues with both the
primary and standby databases. You should start diagnosing the problem by investigating the
contents of the database alert logs. Most issues can be identified here, but you will frequently
need to obtain additional information to resolve them. The Data Guard Broker also writes
information to the alert logs as well as its own Disaster Recovery Center (DRC) log files. Prior to
Oracle Database 11g, the alert log could be found in the background destination directory in the

I

Chapter 13: Troubleshooting Data Guard 445

format alert<dbname>.log. Starting with Oracle Database 11g, the text alert log file resides in the
trace subdirectory of the diagnostic destination along with the trace files and the XML version in
the alert subdirectory. These are found under the Oracle base directory in the following format:
 ${ORACLE_BASE}/diag/rdbms/${ORACLE_SID}/${ORACLE_SID}. To determine the exact
directories you can query the V$DIAG_INFO view on your primary or standby database as in the
following example (slightly edited here to fit the page).

SQL> SELECT NAME,VALUE FROM V$DIAG_INFO WHERE VALUE LIKE '%OracleHomes%';

NAME VALUE
------------- --

ADR Base /scratch/OracleHomes

ADR Home /scratch/OracleHomes/diag/rdbms/matrix_dr0/Matrix_DR0

Diag Trace /scratch/OracleHomes/diag/rdbms/matrix_dr0/Matrix_DR0/trace

Diag Alert /scratch/OracleHomes/diag/rdbms/matrix_dr0/Matrix_DR0/alert

Diag Incident /scratch/OracleHomes/diag/rdbms/matrix_dr0/Matrix_DR0/incident

Diag Cdump /scratch/OracleHomes/diag/rdbms/matrix_dr0/Matrix_DR0/cdump

HealthMonitor /scratch/OracleHomes/diag/rdbms/matrix_dr0/Matrix_DR0/hm

Chapter 7 contained a comprehensive alert log monitoring shell script that you can employ to
monitor your database by mining the text alert log. Oracle 11g also comes with a new utility
called adrci that allows you to interactively examine the XML formatted alert log. The nice thing
about this utility is that it will find all the logs that currently reside in your Oracle Database 11g
diagnostics directory structure.

[Matrix_DR0] adrci

ADRCI: Release 11.1.0.6.0 - Beta on Sat Apr 25 11:49:38 2009

Copyright (c) 1982, 2007, Oracle. All rights reserved.

ADR base = "/scratch/OracleHomes"
adrci> SHOW ALERT
Choose the alert log from the following homes to view:
1: diag/clients/user_oracle/host_1716447713_11
2: diag/asm/+asm/+ASM
3: diag/tnslsnr/lcarpent-lnx/listener
4: diag/rdbms/matrix_dr0/Matrix_DR0
5: diag/rdbms/bogus/Matrix_DR0
Q: to quit

Please select option:

Selecting one from the list will convert the XML file into a text file and load it directly into an
editor so you can examine the alert log. Or you can use a single command to search for a certain

446 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 13: Troubleshooting Data Guard 447

type of message. For example, to look for all occurrences of ORA-12nnn messages (usually TNS
errors) you use the following command.

adrci> SHOW ALERT -P "MESSAGE_TEXT LIKE '%ORA-12%'"

Choose the alert log from the following homes to view:

1: diag/clients/user_oracle/host_1716447713_11
2: diag/asm/+asm/+ASM
3: diag/tnslsnr/lcarpent-lnx/listener
4: diag/rdbms/matrix_dr0/Matrix_DR0
5: diag/rdbms/bogus/Matrix_DR0
Q: to quit

Please select option: 4

Output the results to file: /tmp/alert_12564_3086_Matrix_DR0_3.ado

Which would then put you into the editor where you would see the results of the query as
follows.

2009-02-03 23:49:05.418000 -05:00
Errors in file /scratch/OracleHomes/diag/rdbms/matrix_dr0/Matrix_DR0/trace/
Matrix_DR0_lns1_28677.trc:

ORA-12528: TNS:listener: all appropriate instances are blocking new connections

2009-02-03 23:49:13.090000 -05:00
Errors in file /scratch/OracleHomes/diag/rdbms/matrix_dr0/Matrix_DR0/trace/
Matrix_DR0_arc3_19858.trc:

ORA-12528: TNS:listener: all appropriate instances are blocking new connections

2009-02-11 00:08:23.537000 -05:00
Errors in file /scratch/OracleHomes/diag/rdbms/matrix_dr0/Matrix_DR0/trace/
Matrix_DR0_lgwr_2660.trc:

ORA-12514: TNS:listener does not currently know of service requested in connect
descriptor

You could then repeat the same query on one of the other log files in the list. Of course if you
have a grep capability you could do the same thing on the text alert log file. However, there is a
lot more to ardci than meets the eye. For example, using the SHOW PROBLEM command gives
you a list from all alert logs on the system that are considered a problem.

adrci> SHOW PROBLEM
ADR Home = /scratch/OracleHomes/diag/clients/user_oracle/host_1716447713_11:

0 rows fetched
ADR Home = /scratch/OracleHomes/diag/asm/+asm/+ASM:

0 rows fetched
ADR Home = /scratch/OracleHomes/diag/tnslsnr/lcarpent-lnx/listener:

Chapter 13: Troubleshooting Data Guard 447

0 rows fetched
ADR Home = /scratch/OracleHomes/diag/rdbms/matrix_dr0/Matrix_DR0:

PROBLEM_ID PROBLEM_KEY LAST_INCIDENT LASTINC_TIME
---------- ------------- ------------- -------------------------
5 ORA 600 [1433] 20422 2009-03-25 10:17:23.029677 -04:00
6 ORA 239 19833 2009-03-24 21:31:00.990974 -04:00
4 ORA 600 [600] 19801 2009-03-22 03:35:30.344734 -04:00
3 ORA 494 19378 2009-03-22 00:45:12.459292 -04:00
2 ORA 7445 [ksmdgidx()+24] 16921 2009-03-07 15:05:08.714188 -05:00
5 rows fetched
adrci>

Type HELP to get a list of all the commands or refer to the Oracle documentation for more
information on ardci.

Observer Log Files
If you are using the Fast-Start Failover (FSFO) feature of Data Guard, additional diagnostic
information is available in the observer log file. If you use the Data Guard command-line interface
(DGMGRL), you can configure the log file to track observer events. In addition, the observer
maintains a file with the configuration information, called FSFO.dat by default. As we mentioned
in Chapter 8, you can change the name of this file. If you’re using Enterprise Manager to configure
the observer, the observer datafiles are kept in the ${ORACLE_HOME}/dbs directory and the log
files are in the ${ORACLE_HOME}/rdbms/log directory. The datafiles are called afo<nnnnn>.dat
and the log files are called dgmgrl<nnnnn>.log. The <nnnnn> is a system-generated number that
will change each time the observer is started. You can use the DGMGRL -logfile option to start
the observer so that all of the troubleshooting actions can be captured in a file. Here’s an example:

% DGMGRL -LOGFILE observer.log / "START OBSERVER"

All the observer output is then recorded in an observer.log file in the current working
directory where you issued the DGMGRL command. In general, the observer.log file often provides
useful information for troubleshooting problems with the observer as well as problems with FSFO.

Data Guard Trace Files
Data Guard trace files can also provide crucial information to diagnosing Data Guard configuration
issues and/or identify areas in the Data Guard topology that need attention. Oracle will write an
audit trail of the archived redo logs received from the primary database into a trace file when the
LOG_ARCHIVE_TRACE initialization parameter is enabled. You can also set this parameter for the
standby databases to generate trace output for the remote file services (RFS), archiver process ARCn,
and Managed Recovery Process (MRP0) processes. The trace files will be located in the user_dump_
dest directory. The format for the parameter is as follows, where nn is the trace level:

LOG_ARCHIVE_TRACE=nn

To enable, disable, or change the parameter on a standby database, issue the following
command; for example, here we set it to 16:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_TRACE=16

448 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 13: Troubleshooting Data Guard 449

The higher the trace level, the more detailed the information generated. The following
examples show some of the trace file formats:

 Remote file server ■ <instance_name>_rfs_<number>.trc

 Management recovery process ■ <instance_name>_mrp_<number>.trc

 Virtual timekeeper ■ <instance_name>_vktm_<number>.trc

Data Guard Broker Log Files and Tools
The Data Guard Monitor (DMON) process also writes status information to a log file. DMON log
files can be useful in diagnosing Data Guard failures and can be found in the background_dump_
dest directory. The name of the DMON log file is drc<DB_UNIQUE_NAME>.log.

With Grid Control (which uses the Broker), you can identify the root cause of errors by executing
the VERIFY command to run a series of checks on the Broker configuration, including a health
check of each database in the configuration. You can also invoke tracing for more detailed
information. This information will be found in the alert log and trace files.

The Data Guard Broker will also automatically check the overall health of the primary and
standby databases by checking each component of the Data Guard configuration. It takes the current
database state and current parameter settings and matches those with the Broker configuration file.
Table 13-1 identifies the fundamental health checks the Data Guard Broker will perform on both the
primary and standby databases.

The following database properties can be used to query the database status through DGMGRL:

 StatusReport ■ Lists all the issues detected during a database health check

 LogXptStatus ■ Lists all the log transport errors detected on all of the instances on the
primary database

 InconsistentProperties ■ Lists all of the properties with inconsistencies between
the Broker configuration and the database settings

 InconsistentLogXptProps ■ Lists all of the redo transport inconsistencies between
the Broker configuration and the redo transport settings

Database Data Guard Broker will check

Primary Database settings are the same as those specified in the Broker configuration.

Redo transport settings match those in the redo transport–related properties of the
standby database.
Redo transport services do not have any errors.

Database is in the correct data protection mode.
Data protection level is consistent with configured data protection mode.

Supplemental logging is turned on when a logical standby database exists.

Standby Database settings are consistent with those specified within the Broker configuration.

Primary and standby databases are synchronized or within lag limits (if FSFO is enabled).

TABLE 13-1. Data Guard Broker Health Checks

Chapter 13: Troubleshooting Data Guard 449

Here’s an example of how to query this information via the DGMGRL SHOW DATABASE
command:

DGMGRL> SHOW DATABASE 'MATRIX_DR0' 'StatusReport'

NOTE
For more detailed information on the health check, see Chapter 5.

Dynamic Performance Views
Table 13-2 shows the dynamic performance views and brief descriptions that provide
troubleshooting information for common Data Guard issues.

Name Description

DBA_LOGSTDBY_EVENTS Contains the last 100 (default) events that occurred on the
logical standby

DBA_LOGSTDBY_PROGRESS Checks whether SQL Apply is progressing

DBA_LOGSTDBY_LOG Checks whether archive logs are being delivered to a logical
standby

DBA_LOGSTDBY_UNSUPPORTED Identifies SQL Apply unsupported data types

V$ARCHIVE_DEST Describes all the destinations in the Data Guard configuration,
including each destination’s current settings

V$ARCHIVE_DEST_STATUS Displays runtime and configuration information for the redo
transport destinations

V$ARCHIVE_GAP Displays information to help you identify a gap in the
archived redo log files on a physical standby

V$DATAGUARD_CONFIG Lists the DB_UNIQUE_NAME parameters defined in the Data
Guard configuration in LOG_ARCHIVE_CONFIG

V$DATAGUARD_STATUS Displays and records events that would typically be triggered
by any message to the alert log or server process trace files
limited to the last 256 messages

V$LOG Displays information from the online redo log files

V$LOGFILE Contains information about the online redo log files and
standby redo log files

V$LOG_HISTORY

V$ARCHIVED_LOG

Contains archive log history information from the control file
Contains more detailed archived log information from the
control file.

V$LOGSTDBY_PROCESS Shows whether logical standby process is running; if query
returns no rows, it is not running

V$MANAGED_STANDBY Displays current status information for Oracle Database
processes related to Data Guard

V$STANDBY_LOG Contains standby log file information

TABLE 13-2. Database Performance Views

450 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 13: Troubleshooting Data Guard 451

Data Guard Configuration and Management Errors
The majority of DBAs will encounter common errors that could impact their physical and/or
logical standby databases as well as those that impact the Data Guard Broker. We will discuss the
common errors that plague DBAs and corrective actions to resolve the issues that DBAs may run
into when trying to configure and maintain a Data Guard environment. In addition, we’ll address
issues relating to the failover and switchover processes.

Common Management Issues
Several situations can cause problems with your Data Guard configuration. We’ll discuss the
common issues that can occur at a standby environment, starting with errors associated with the
password file.

The Password File
You may encounter a couple of errors associated with the password file. For instance, you may
have problems connecting to the standby database and may see the “ORA-01034: ORACLE not
available” error message. Check your password for the SYS account on the primary and standby
databases to make sure that they are the same.

If you encounter an ORA-16191 error when the primary attempts to connect to the standby,
verify that the SYS password is the same on the primary and standby databases. Ensure that the
primary and standby databases are using a password file and that the REMOTE_LOGIN_PASSWORD
parameter is set to SHARED or EXCLUSIVE. You will need to push a new copy of the password
file from the primary and replace the password file on the standby to fix the issue. In a Real
Application Clusters (RAC) environment for the primary and standby, verify the timestamps of all
of the password files and copy the latest file to all other nodes.

Remember that as of Oracle Database 11g you can no longer just create a new password file
for a physical standby database. You must always copy the primary database password file to all
physical standby databases whenever a privileged user’s password is changed.

SQL Apply Fails with ORA-01031
This error tells you that SQL Apply has failed with insufficient privileges. The problem is that
background processes are not running with SYSDBA privileges. They will need to be granted
manually on both the primary and standby databases. You will see the following in the alert log
on the logical standby:

LOGSTDBY stmt: grant sysdba to maxtrix_user
LOGSTDBY status: ORA-01031: insufficient privileges

SYS User and Data Guard
The password of the SYS user is used to authenticate redo transport sessions when a
password file is used. In Oracle 11g the REDO_TRANSPORT_USER parameter can be used to
select a different user for redo transport authentication by setting this parameter to the name
of any user who has been granted the SYSOPER privilege.

451

At the standby site, execute the following commands to grant the appropriate role to the
matrix_user:

SQL> alter session disable guard;
SQL> grant sysdba to matrix_user;
SQL> alter session enable guard;

Once the privilege has been granted, you will need to skip the transaction that caused the
error on the standby and start the logical apply again. You can run the following command to
determine the transaction in question:

SQL> SELECT XIDUSN, XIDSLT, XIDSQN, STATUS, STATUS_CODE
 FROM DBA_LOGSTDBY_EVENTS
 WHERE EVENT_TIME =(SELECT MAX(EVENT_TIME)FROM DBA_LOGSTDBY_EVENTS);

Pass the information from this query to the following stored procedure to skip the transaction:

SQL> EXECUTE DBMS_LOGSTDBY.SKIP_TRANSACTION (xid,xidslt,xidsqn);

However, we strongly recommend that you do not just randomly skip transactions. You must
fix the problem that caused SQL Apply to stop in the first place (as above) before you can skip the
errant transaction.

Resolving Gaps Manually
A redo gap occurs whenever redo transmission is interrupted. Redo Transport Services will
automatically detect the redo gap and resolve it by sending the missing redo to the destination
once redo transmission resumes. In some cases, though, gap resolution can’t be performed
automatically and must be done manually. For example, redo gap resolution must be performed
manually on a standby database if the primary database is unavailable or if the missing archive
log is no longer on disk at the primary.

To determine whether a redo gap exists on your physical standby, you can run the following
query. It gives you the lowest and highest sequence number of the log files received on the
standby database. The thread# value will be 1 in the case of a single instance. If you are
running a RAC configuration, this number will be different for each node.

SQL> SELECT * FROM V$ARCHIVE_GAP;
 THREAD# LOW_SEQUENCE# HIGH_SEQUENCE#
----------- ------------- --------------
 2 6233 6233
 3 4531 4531
 4 4938 4939

In this example, the query indicates for thread 2 that the standby is missing a log file with the
sequence number of 6233. On thread 3, the log file with the sequence number of 4531 is missing,
and on thread 4, log files with the sequence numbers between 4938 and 4939 are missing. You
can use the low and high sequence numbers to identify the actual log files that are missing. Run
the following query on the primary to capture this information:

SQL> SELECT name
 FROM v$archived_log
 WHERE thread# = 2

452 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 13: Troubleshooting Data Guard 453

 AND dest_id = 2
 AND sequence# = 6233;
NAME

/u06/oradata/MATRIX/recovery_area/arch_2_6233_656445787.arc

If gaps exist, the output from this query will indicate which log files are missing. You may
need to run this query multiple times because it returns only the gap that is currently preventing
Redo Apply from continuing. Generally Data Guard will automatically resolve these gaps.
However, if Data Guard does not resolve them you need to investigate why by examining the
alert logs of both the primary and standby databases. If necessary, copy these files either from the
production site or from backups to the physical standby site and register them with the physical
standby database using the following command:

SQL>ALTER DATABASE REGISTER LOGFILE '<log file name>';

To determine whether other archived redo log files are missing, query the V$ARCHIVED_LOG
view on the standby database to obtain the last sequence received and V$LOG to get the last
sequence sent based on information in the control file for a specific thread:

SQL> SELECT MAX(R.SEQUENCE#) LAST_SEQ_RECD, MAX(L.SEQUENCE#) LAST_SEQ_SENT
 FROM V$ARCHIVED_LOG R, V$LOG L
 WHERE R.DEST_ID=2 and L.ARCHIVED='YES';
LAST_SEQ_RECD LAST_SEQ_SENT
------------- --------------
 11071 11073

If possible, copy any archived redo log files from the primary database that have sequence
numbers higher than the highest sequence number available on the standby database to the
standby site and register them. This must be done for each thread. But do not forget to investigate
why Data Guard could not resolve this gap in the first place and fix that problem as well, so that
it does not happen again!

On a logical standby database, run the following query to determine whether gaps exist. The
DBA_LOGSTDBY_LOG view contains information about logs registered for the logical standby
database. The NEXT_CHANGE# is the system change number (SCN) of the next archive log and
FIRST_CHANGE# is the SCN of the current archive log:

SQL> SELECT THREAD#, SEQUENCE#, FILE_NAME
 FROM DBA_LOGSTDBY_LOG L
 WHERE NEXT_CHANGE# NOT IN
 (SELECT FIRST_CHANGE#
 FROM DBA_LOGSTDBY_LOG
 WHERE L.THREAD# = THREAD#)
 ORDER BY THREAD#, SEQUENCE#;
 THREAD# SEQUENCE# FILE_NAME
---------- ---------- ---
 1 6
/u06/oradata/MATRIX_DR0/recovery_area/arch_1_6_656445787.arc
 1 10
/u06/oradata/MATRIX_DR0/recovery_area/arch_1_10_656445787.arc

Chapter 13: Troubleshooting Data Guard 453

This example indicates that a gap exists in the sequence of the archive log files for thread 1. The
highest log file is at sequence 10; however, a gap exists between this file and the log file at
sequence 6. You will need to copy the missing log files over and register them.

Use an Incremental RMAN Backup to Roll a Standby Forward
In cases where the standby has fallen behind for a long period of time, you may want to use an
incremental backup as a more efficient method for handling large gap scenarios. You should use
this method only if the standby has fallen significantly behind the primary or no NOLOGGING
operations have been performed on the primary. This solution can be used only on a physical
standby database.

 1. The first step is to stop Redo Apply on the standby database:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

 2. Next, determine the current SCN for the standby database. You can use the following
method if the standby is lagging behind the primary database:

SQL> SELECT CURRENT_SCN FROM V$DATABASE;
CURRENT_SCN

885952

 3. Use the value for the current SCN to take your incremental backup on the primary
database:

RMAN> run
{
allocate channel d1 type disk;
allocate channel d2 type disk;
backup incremental from scn 885952 database format
'/tmp/dba/bkups/MATRIX_%U';
release channel d1;
release channel d2;
}

 4. On the primary, obtain a new standby control file and copy it to physical standby:

SQL> alter database create standby controlfile as '/tmp/std.ctl'

 5. Copy the backupset and the standby control file backup to the physical standby server
using the scp or sftp command. Shut down the physical standby, and replace the
control file on the physical standby database with /tmp/std.ctl. Issue the startup
mount command on the physical standby.

 6. After you finishing copying the backupset to the standby system, catalog the backup using
the target database control file:

RMAN> CATALOG START WITH '/tmp/dba/bkups';
List of Files Unknown to the Database
=====================================

454 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 13: Troubleshooting Data Guard 455

File Name: /tmp/dba/bkups/MATRIX_0ijmc1cn_1_1
File Name: /tmp/dba/bkups/MATRIX_0hjmc1ck_1_1
File Name: /tmp/dba/bkups/MATRIX_0jjmc1es_1_1
Do you really want to catalog the above files (enter YES or NO)? YES
cataloging files...
cataloging done
List of Cataloged Files
=======================
File Name: /tmp/dba/bkups/MATRIX_0ijmc1cn_1_1
File Name: /tmp/dba/bkups/MATRIX_0hjmc1ck_1_1
File Name: /tmp/dba/bkups/MATRIX_0jjmc1es_1_1

 7. Recover the database from the incremental backup using NOREDO:

RMAN> recover database noredo;

 8. Restart the MRP:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE
 USING CURRENT LOGFILE DISCONNECT;

If your databases uses OMF (or ASM which uses OMF by default) you will need to take care
when you recreate the standby control file. For more detail refer to MetaLink Note 734862.11.

Standby Database Is Not Receiving Redo Logs
If the redo data is not being transported to the standby database, query the V$ARCHIVE_DEST
view and check for error messages. Here is an example of the query:

SQL> SELECT DEST_ID, STATUS, ERROR
 FROM V$ARCHIVE_DEST;
DEST_ID STATUS ERROR
------- --------- --------------------------------------
 1 ERROR ORA-16012: Archivelog standby database identifier mismatch
 2 INACTIVE
 3 INACTIVE

If the output of the query does not help you, check the following list of possible issues. If any
of the following conditions exists, log transport services will fail to transmit redo data to the
standby database.

Listener Issues

 The listener.ora file has not been configured correctly. ■

 The listener has not been started on the standby. ■

 The service name for the standby instance is not configured correctly in the tnsnames.ora ■
file on the primary database.

If you cannot log in remotely to the standby database using the TNSNAME identifier, ■
then Data Guard cannot log in either. Try the remote login yourself:

SQL> CONNECT SYS/PASSWORD@MYTNSNAME AS SYSDBA;

1 Note 734862.1: Step By Step Guide on How to Recreate Standby Control File When Datafiles Are on ASM and
Using Oracle Managed Files

Chapter 13: Troubleshooting Data Guard 455

Archive Destination Issues

 The service name specified by the ■ LOG_ARCHIVE_DEST_n parameter for the primary
database is incorrect.

 The ■ LOG_ARCHIVE_DEST_STATE_n parameter for the standby database is not set to the
value ENABLE.

 A disconnect occurred and the number of seconds specified by ■ REOPEN has not yet passed.

 The standby instance is not started. ■

 The standby control file was created incorrectly. ■

 The correct backup was not used to build the standby. ■

Standby Waiting on Log Files that Exist at the Standby
If the standby is waiting on logs that are in the standby destination area, the logs are most likely
not properly registered on the standby. Check the appropriate views (physical is V$ARCHIVED_
LOG and logical is DBA_LOGSTDBY_LOG) to see if they are registered. If they are not registered,
the file on disk is unusable and you should use the manual procedure if Data Guard cannot
resolve the gaps automatically. Do not try to use the file on disk! Also verify that the local
archival destination on the standby is correct.

Receive an ORA-16032 on Alter System Archive Log All
One of the LOG_ARCHIVE_DEST_n parameters is not configured correctly. Verify the local
destinations on the primary.

Media Recovery Failures
If media recovery fails on the standby, leaving your standby in an unrecoverable state, you will
see the following messages:

ORA-01578: ORACLE data block corrupted
ORA-26040: Data block was loaded using the NOLOGGING option.

In this example the problem is the result of a nologging operation on the primary database.
The steps required to recover from this error or any other data file problem are the same.
Following is a summary of steps to follow to recover from media failures on your standby
databases (the steps would be similar if the failure is on the primary database).

First, take a full backup of the primary database and restore the necessary files to the physical
standby database. On the physical standby database, you will need to do the following:

 1. Offline the corresponding datafiles.

 2. Copy the backup datafiles from the primary database.

 3. Replace the corrupted datafiles.

 4. Stop the Redo Apply.

 5. Online the corresponding datafiles.

 6. Restart the Redo Apply.

456 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 13: Troubleshooting Data Guard 457

Resync Logical Standby Database When Nologging Issue Occurs Keep in mind that SQL
Apply will skip over nologging operations. Therefore, the datafiles will not be affected by the data
block corruption. You will eventually see an “ORA-01403: No Data Found on the standby” error.
To resync the table with the primary table, you will need to re-create it with the INSTANTIATE table
procedure.

If you see an “ORA-00308: cannot open archived log,” cancel SQL Apply and manually
retrieve the missing files.

Renaming Datafiles with the ALTER DATABASE Statement
You cannot rename a datafile on the standby site when the STANDBY_FILE_MANAGEMENT
initialization parameter is set to AUTO. In addition, you are not permitted to use any of the
following SQL statements:

SQL> ALTER DATABASE RENAME
SQL> ALTER DATABASE ADD/DROP LOGFILE
SQL> ALTER DATABASE ADD/DROP STANDBY LOGFILE MEMBER
SQL> ALTER DATABASE CREATE DATAFILE AS

If you attempt to use any of these statements on the standby database, the following error is
returned if STANDBY_FILE_MANAGEMENT is set to AUTO:

ORA-01511: error in renaming log/data files
ORA-01270: RENAME operation is not allowed

You can still add and delete standby redo log files:

SQL> ALTER DATABASE ADD/DROP STANDBY LOGFILE;

Physical Standby Issues
You will likely encounter several common issues when managing a physical database:

 You cannot mount the physical standby database. ■

 The standby archive destination is not defined properly. ■

 The standby site does not receive logs. ■

 The standby site is not processing the logs (MRP down, and so on). ■

Unable to Mount the Physical Standby Database
The physical standby can’t be mounted if the control file was created with an operating system–
created backup or a backup created using an ALTER DATABASE statement without the STANDBY
options. The standby control file must be created with the ALTER DATABASE CREATE STANDBY
CONTROLFILE statement or the RMAN BACKUP CURRENT CONTROLFILE with the FOR STANDBY
option.

Primary Database Shutdown
If you have configured standby redo log files on your standby database, the size of the current
standby redo log file on each standby database must be the same size as the redo log file on the
primary database. After a log switch, if no available standby redo log files match the size of the redo
log file on the primary database, the primary will shut down if it is in Maximum Protection mode.

Chapter 13: Troubleshooting Data Guard 457

The primary database becomes unsynchronized if it is in Maximum Availability mode. You will
see the following message in the alert log:

No standby log files of size <#> blocks available.

To avoid this message, make sure that when you add a redo log group to the primary
database, you add a corresponding standby redo log group to the standby database of the same
size. At a minimum, you should have at least one standby redo log file group more than the
number of online redo log file groups per thread on the primary database.

ORA-16066
You will encounter this error when the REMOTE_ARCHIVE_ENABLE parameter is set to FALSE.
This parameter controls whether the archival of the redo logs to remote destinations is permitted.
This parameter has been deprecated, but if you are using it you will have to set REMOTE_
ARCHIVE_ENABLE=TRUE in your parameter file and bounce the primary database.

ORA-16204: Parameter %s Cannot Be Parsed
The value for the LOG_ARCHIVE_DEST_n parameter is incorrect. Some of the common causes are
an option that is missing a required value, a misplaced equal sign, or an unrecognized option.
You will need to correct the value for the LOG_ARCHIVE_DEST_n parameter.

Remote Archival to Standby Database Fails with an ORA-01031
You will see this error if an archiver process (ARCn) or LogWriter Network Service (LNS) process
at the primary database fails with the ORA-01031 and the redo is not getting transferred to the
standby. This is a result of a missing password file on the standby database. Copy the password
file from the primary to the standby database, and restart the standby database.

SQL> SELECT STATUS, ERROR
 FROM V$ARCHIVE_DEST;
STATUS ERROR
--------- ---
VALID
ERROR ORA-01031: insufficient privileges
INACTIVE
INACTIVE
INACTIVE
INACTIVE
INACTIVE

Standby Database Cannot Apply Redo
If you encounter issues with applying the logs to the standby database, and you see the ORA-
00326 message in your alert log, you’ll see the following:

ORA-00326: log begins at change <SCN> , need earlier change <SCN>

This means that media recovery has found an archive log which was generated after the required
archive log. It needs the correct log. When you are using Data Guard Redo Apply, this error cannot
occur since the managed recovery process (MRP) will provide media recovery only with the logs in
the correct order. If the next log is not in the correct order, the MRP will not pass anything to media
recovery. This usually occurs when Data Guard ends up performing gap resolution.

458 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 13: Troubleshooting Data Guard 459

If you were using manual recovery and feeding media recovery archive logs one at a time, it
normally means that you provided an archive log generated after the required log. You can
remedy the problem by providing the correct file.

In reality, the ORA-00326 error should strike fear in the heart of the Data Guard DBA. When
you get this error in your Data Guard configuration, it means that someone did something very
bad. Since the MRP will never pass a media recovery log file out of order, it is impossible for a
physical standby that has always been maintained by Data Guard to encounter this error.

However, if someone had used manual recovery on a physical standby without paying
attention to the log files they were providing, it is possible to have media recovery apply a log that
it should not have and get into this situation. This is because Data Guard, in the earlier releases,
tried to help out in a failover situation by leaving partial archive logs on disk in case you needed to
failover. Of course, if you were using standby redo logs (SRLs), this was never necessary because
the SRL file would contain the last bit of redo for the failover. However, if you were not using SRL
files or if Data Guard was in the process of resolving a gap and a failure occurred at the primary,
then one of these partial archive log files would be left on disk, but never registered in the physical
standby control file. Since it is not registered, the MRP would ignore it. If the primary came back
online and you did not perform a failover, then that partial archive log would be overwritten by
the real archive log and the MRP would continue correctly. If you had to failover, then you could
manually register this partial archive log file and the MRP would process it and you could activate
the physical standby.

If everyone obeyed the rules, these problems would not occur. However, when a large gap
appears, someone will often copy over a bunch of archive log files and run manual recovery on
those files until they are caught up, and then restart the MRP. If the person were not careful,
media recovery would pick up one of these partial archive log files and apply it since internally it
looked like a normal archive log. The problem would become apparent when Data Guard Redo
Apply was restarted and the MRP passed the next proper log to media recovery. Since the
previous archive log was a partial, the starting SCN of the new log would not follow in order and
media recovery could not continue. At this point, all you could do would be completely re-create
the physical standby since media recovery would not reapply the archive log that was mistakenly
applied (as a partial) since that thread/sequence log file had already been processed.

When you plan to use manual recovery on a physical standby for any reason, you must first
examine the standby database control file to determine what archive logs have been registered for
each thread. Then you must make sure that you copy all archive logs from the primary that follow
the last registered sequence for each thread. You cannot rely on what you see on disk—you must
use the control file of the standby.

Because of this problem, Data Guard no longer leaves partial archive log files on disk. If you
are using versions of Oracle Database prior to 10.1.0.5, these partial archive logs could still be on
disk at your standby database. In this case, be very careful if you decide to use manual recovery.

Log Shipment Errors—ORA-12570
You may encounter sporadic “ORA-12570: TNS packet reader failure” messages when shipping
redo data between the primary and standby when the connection is going through a firewall. If
you can’t disable the firewall timeout or bypass the firewall, set sqlnet.expire_time in the
sqlnet.ora file on both servers. This will enable Dead Connection Detection (DCD). For a more
detailed explanation, refer to MetaLink Notes 550103.1 and 151972.12.

2 Note 550103.1: Log Shipment Intermittently Errors with ORA-12570 and Note 151972.1: Dead Connection
Detection (DCD) Explained

Chapter 13: Troubleshooting Data Guard 459

Logical Standby Database Failures
Several issues can occur with a logical standby environment:

 SQL Apply stops. ■

 SQL Apply hangs. ■

 SQL Apply cannot keep up with the primary. ■

 Data is not applied to the logical standby. ■

What to Do if SQL Apply Stops
Log apply services cannot apply unsupported Data Manipulation Language (DML) statements,
Data Definition Language (DDL) statements, and Oracle-supplied packages to a logical standby
database running SQL Apply. The following sections summarize some of the conditions under
which SQL Apply will stop.

Determine What Has Failed You can find the last statement that SQL Apply tried to process in
the DBA_LOGSTDBY_EVENTS view:

SQL> SELECT XIDUSN, XIDSLT, XIDSQN, STATUS, STATUS_CODE
 2 FROM DBA_LOGSTDBY_EVENTS
 3 WHERE EVENT_TIME =
 4(SELECT MAX(EVENT_TIME)
 5 FROM DBA_LOGSTDBY_EVENTS);

The output of the query will reveal the statement and error that caused SQL Apply to fail. If an
incorrect SQL statement caused SQL Apply to fail, transaction information as well as the
statement and error information can be viewed. The following sections discuss using some of the
“skip” procedures in SQL Apply to avoid some of these problems. Just remember that you cannot
randomly skip errors or transactions in SQL Apply without first fixing the issue that caused the
problem in the first place. Are we repeating ourselves? Yes, because this is extremely important.
Never randomly skip transactions at a Logical Standby!

Database Management Issues If a database management issue occurs, such as running out of
space in a particular tablespace or adding a datafile on the primary with a file specification that
doesn’t match that in the logical standby environment, fix the problem and resume SQL Apply
using the ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE; statement.

Incorrect SQL Statements Fix the problem by executing the correct SQL statement and using
the SQL Apply skip procedure, DBMS_LOGSTDBY.SKIP_TRANSACTION, to ensure that the
incorrect statement is ignored the next time SQL Apply is run. Then, restart SQL Apply using the
ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE; statement.

Another important tool for handling logical standby database failures is the DBMS_LOGSTDBY.
SKIP_ERROR procedure. Depending on the circumstances of the error, you might want to do one
of the following:

 Ignore failures for a table or specific DDL. ■

 Associate a stored procedure with a filter so at runtime a determination can be made ■
about skipping the statement, executing the statement, or executing a replacement
statement.

460 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 13: Troubleshooting Data Guard 461

Taking one of these actions prevents SQL Apply from stopping. Later, you can query the DBA_
LOGSTDBY_EVENTS view to find and correct any problems that exist.

ORA-01403: No Data Found You will encounter the ORA-01403 error when DML is executed
on the logical standby to tables maintained by SQL Apply. This will generally occur if someone
makes these changes with SYSDBA privileges or if the logical standby guard was disabled. The
primary and the logical can get out of sync and the error won’t show up until the table on the
primary standby is updated.

To resolve the issue, you would need to skip and re-instantiate the table. Make sure that
you have a database link defined to connect to the primary database. You can use the DBMS_
LOGSTDBY.SKIP and DBMS_LOGSTDBY.INSTANTIATE_TABLE procedures to accomplish this,
as demonstrated here:

SQL> EXEC DBMS_LOGSTDBY.SKIP('DML','ACTORS','%');
SQL> EXECUTE DBMS_LOGSTDBY.INSTANTIATE_TABLE
 2 ('MATRIX_USER', 'ACTORS', 'MATRIX_DBLINK');

ORA-16211: Unsupported Record Found in the Archived Redo Log You will encounter the
ORA-16211 error when log apply encounters a record in the archived redo log that could not be
interpreted. This error could occur under any number of circumstances; however, a few
documented potential causes for this error do exist:

 Nologging on an object on the primary ■

 Changes made to an Indexed Organized Table (IOT) on the primary ■

 Direct path inserts on a partition table ■

To resolve this error, you can re-instantiate the object or drop the object. In either case, you
will want to determine the archive log with the error and send it to Oracle support for analysis.

Handling DDL Issues You will often face issues with DDL statements in a standby database.
For example, a DBA may add a datafile to the primary and the path is not valid on the logical
standby. Remember that the DB_FILE_NAME_CONVERT parameters are not used on a logical
standby. Keep in mind that the following statements are skipped automatically on the standby:

 CREATE ■ and ALTER DATABASE commands

 CREATE ■ and DROP DATABASE LINK commands

The following procedures can be used to help resolve issues with DDL:

 DBMS_LOGSTDBY.SKIP ■ Skips a schema or object or a type of statement

 DBMS_LOGSTDBY.SKIP_ERROR ■ Ignores a class of errors and continues the SQL Apply

 DBMS_LOGSTDBY.SKIP_TRANSACTION ■ Skips a failed transaction provided that you
issued a compensating transaction

For additional information pertaining to skipping SQL statements on the logical standby
database, refer to Chapter 4.

Chapter 13: Troubleshooting Data Guard 461

SQL Apply Hanging
If it appears that SQL Apply is hanging, perform the following steps for investigative procedures:

 1. Check DBA_LOGSTDBY_PROGRESS to see if any activity is occurring:

SQL> SELECT APPLIED_SCN, APPLIED_TIME, READ_SCN,
 READ_TIME, NEWEST_SCN, NEWEST_TIME
 FROM DBA_LOGSTDBY_PROGRESS;

 2. Check the HIGH_SCN from the V$LOGSTDBY view. The SCN should change as the SQL
Apply progresses:

SQL> SELECT TYPE, HIGH_SCN, STATUS
 FROM V$LOGSTDBY;

 3. Check V$LOGSTDBY_STATS for information on the activity on the standby. You can
look at the number of transactions applied or transactions ready and tell whether the
transactions are being applied as fast as they are being read.

NOTE
Additional information for monitoring a SQL Apply delay or hanging
situation is available in Chapter 7.

Switchover Issues
You may encounter several common issues when performing a switchover. For example, if the
switchover to standby fails on the primary, then you probably have sessions connected. In this
scenario, you can use the WITH SESSION SHUTDOWN option. If the switchover fails on the
standby, take a look at the alert log to determine what happened. If it is sessions, one thing to look
at, if you are running an older version of Oracle, is the setting for the JOB_QUEUE_PROCESSES
initialization parameter, to confirm that it is set to 0. Otherwise, just use the WITH SESSIONS
SHUTDOWN qualifier.

Switchover Fails—Redo Data Was Not Transmitted
It is also possible that the standby never received the final redo from the primary during the first part
of the switchover. Query the THREAD#, SEQUENCE#, ARCHIVED, APPLIED, and STATUS columns in
the V$ARCHIVED_LOG view of the standby to determine whether the last redo data was transmitted
from the primary database and was applied on the standby database. If the last redo data was not
transmitted to the standby database, you can copy the archived redo log file containing the final
End-of-Redo data from the primary database to the standby database and register it. Restart log
apply services and the archived redo log file will then be applied automatically.

Switchover Fails—ORA-01102 Error
If both the standby database and the primary database reside on the same server and switchover
fails with an ORA-01102 error “Cannot mount database in EXCLUSIVE mode,” you should verify
that you’ve specified a DB_UNIQUE_NAME in the initialization parameter file that is used by the
original primary database (standby database). Keep in mind that if the DB_UNIQUE_NAME
parameter of the standby database is not set, the standby and the primary databases both use the
same mount lock and will cause the ORA-01102 error during the startup of the second database.
To fix the issue, add the DB_UNIQUE_NAME to the initialization parameter file of the standby
database and shutdown and restart the standby and primary databases.

462 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 13: Troubleshooting Data Guard 463

Switchover Fails—Active SQL Sessions
If you receive the following error during switchover, “ORA-01093: Alter Database Close only
permitted with no sessions connected,” then you need to make sure that you include the WITH
SESSION SHUTDOWN clause as a part of the ALTER DATABASE COMMIT TO SWITCHOVER TO
PHYSICAL STANDBY statement. Active SQL sessions will prevent a switchover from being
processed. Some of the other processes that can prevent the switchover are

 Job queue scheduler process ■

 Advance queue time manager ■

 Oracle Enterprise Manager agent ■

You can reset the job_queue_processes and aq_tm_processes to 0 dynamically to fix
the issue. If the OEM agent is preventing the switchover, you can stop it with the EMCTL STOP
AGENT command. Most of these issues have been resolved in Data Guard in later versions of
Oracle Database.

Back Out from an Unsuccessful Switchover
You may end up with two physical standbys if the switchover fails in the middle. In this case, go
back to the original primary database that was converted to a physical standby and perform the
second part of the switchover—the ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY;—
and make it the primary database. Identify the root cause of the switchover failure by examining
the alert log files of both databases and resolve the issues before proceeding. Remember that once
you resolve the problem, which was most probably a gap in the redo that existed before you
started the switchover, and restart the MRP, it will stop again once it processes the End-of-Redo
from the original switchover attempt. All you have to remember is to restart the MRP again before
continuing with the second switchover.

If you need to back out from an unsuccessful switchover on a physical standby, you may be
able to accomplish this with the following steps:

 1. Issue the following command on the original primary database:

SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY;

If this statement is successful, shut down and restart the database. The database will be
running in the primary database role. However, if the statement is not successful, you
will need to continue with the next steps.

 2. When the switchover was started, a trace file was written in the log directory. This
trace file contains the SQL statements needed to re-create the original primary control
file. Capture the statements from this file and execute them from SQL*Plus on the new
standby database. The new standby database will revert back to the primary role.

 3. Shut down the original physical standby database and create a new standby control file
on the primary database. Copy the standby control file to the original physical standby
site. The following is an example of how to re-create the standby control file:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;
SQL> SHUTDOWN IMMEDIATE;

Chapter 13: Troubleshooting Data Guard 463

On the primary database do the following:

SQL> ALTER DATABASE CREATE STANDBY controlfile as '<file name>';

 4. Restart the original physical standby instance. If this procedure is successful and archive
gap management is enabled, the Fetch Archive Log (FAL) processes will start and
rearchive any missing archived redo log files to the physical standby database. You can
now attempt the switchover again after correcting any issues that led to the failure of
initial switchover.

Switchover—Archived Redo Logs Are Not Applied
After a successful switchover, if the archived logs are not applied to the standby database, you will
need to verify that your environment and the initialization parameters are set correctly. You can
take the following steps to find the problem:

 1. Verify that the LOG_ARCHIVE_DEST_n parameter is set correctly on the primary:

SQL> SELECT DEST_ID, STATUS, DESTINATION
 FROM V$ARCHIVE_DEST;

If you do not see an entry corresponding to the standby database, you need to set the
LOG_ARCHIVE_DEST_n and LOG_ARCHIVE_DEST_STATE_n parameters.

 2. Verify the local archiving LOG_ARCHIVE_DEST_n, STANDBY_ARCHIVE_DEST, and LOG_
ARCHIVE_FORMAT parameters at the standby database so that the archived redo log files
are configured to the correct location.

 3. On the standby database, set the DB_FILE_NAME_CONVERT and LOG_FILE_NAME_
CONVERT parameters. Set the STANDBY_FILE_MANAGEMENT parameter to AUTO if you
want the standby to automatically add new datafiles that are created at the primary site.

 4. Verify that the listener.ora file on the standby site has an entry for the listener. In addition,
check the tnsnames.ora file at the primary site to ensure that a corresponding service
name exists at the primary site.

 5. Verify that the listener is up on the standby site. If not, then start it.

Failover Issues
During a failover process, errors are more likely to occur when a standby database is transitioning
to the primary role. To address the issue, analyze the errors to find the root cause of the issue and
correct it.

If you have a gap in the redo, then a normal failover will not succeed. In this case, you have
two choices: resolve the problem of the missing redo or use the ACTIVATE STANDBY command
and failover, losing the missing redo.

Another example of this occurs when the primary database is still running. This is usually
indicated by the presence of Remote File Server (RFS) processes on the standby database. If the
primary database is still running but can no longer function as a primary database, shut it down
and retry the failover. In Oracle Database 10g Release 2, you could use the FORCE qualifier to the
ALTER DATABASE RECOVER MANAGED STANDBY DATABASE FINISH command and Data Guard
would terminate the errant RFS processes automatically. As of Oracle Database 11g terminating
the RFS processes is the default.

464 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 13: Troubleshooting Data Guard 465

Data Guard Broker Issues
The following sections cover common configuration errors, problems with failover and
switchover processing, and common FSFO observer problems.

ORA-16627 on the Standby Database
You may receive an “ORA-16627: Operation disallowed since no standby databases would
remain to support protection mode” for several reasons. Table 13-3 summarizes the causes and
resolutions to this error.

TABLE 13-3. Root Cause and Resolutions for ORA-16627

Causes Action

Attempt to change a configuration’s
overall protection mode and no online,
enabled standby databases support the
proposed protection mode
Attempt to enable a configuration and
no online, enabled standby databases
support the overall protection mode

Confirm that at least one standby database
satisfies the new protection mode.

Confirm that at least one standby database has
a LogXptMode configuration property setting
that supports the current overall protection mode
when enabling a configuration.

A switchover attempt that would violate
the configuration’s overall protection
mode

Confirm that at least one other standby database
has a LogXptMode configuration property
setting that supports the overall protection
mode. In addition, ensure that the LogXptMode
configuration property established for the
primary database supports the overall protection
mode.
After the switchover, the old primary database
will become the standby database and its
LogXptMode configuration property setting
must support the overall protection mode.

An attempt to disable or remove a
database that, if successful, would result
in no available standby databases that
could support the configuration’s overall
protection mode

Confirm that at least one other standby database
has a LogXptMode configuration property
setting that supports the overall protection mode.

Trying to set a configuration or database
offline that would result in violating the
configuration’s overall protection mode

Confirm that at least one other standby database
has a LogXptMode configuration property
setting that supports the overall protection mode.
You may have to downgrade the protection
mode setting to maximum performance if
attempting to offline the configuration.

The Broker returns this error during a
health check

Confirm that at least one standby database has a
LogXptMode configuration property setting that
supports the current overall protection mode.

Chapter 13: Troubleshooting Data Guard 465

The LogXptMode parameter is dynamic and can be viewed or updated via Enterprise
Manager or DGMGRL. This parameter enables you to set the redo transport service on the
standby database. The database must be configured with standby redo logs. The following are the
valid options for this parameter:

 ASYNC ■

 SYNC ■

Here’s an example of how to change this parameter:

DGMGRL> EDIT DATABASE 'MATRIX_DR0' SET PROPERTY 'LogXptMode'='SYNC';

Redo Is Not Being Sent to Standby Databases
In a Data Guard Broker configuration, you determine that the redo are not being sent to the
standby databases. To identify the root cause of the problem you can check the following:

 Verify that the state of the primary database is in the ■ TRANSPORT-ON state using the SHOW
DATABASE command.

 Verify that the standby database is available. ■

 Verify that the listener is up. ■

 Verify that the value of the ■ LogShipping configurable database property of the standby
database is ON.

 Check the status of the redo transport services on the primary database using the ■
LogXptStatus database property. Check for error messages associated with redo
transport services. This can provide additional information to help you find the issue.

Redo Received by the Standby but Not Applied
Redo might not be applied to the standby database for several reasons. You can investigate the
cause of the failure by doing the following:

 Determining whether or not the log apply services might be stopped ■

 Checking to see if a failed transaction has occurred, if this is a logical standby database ■

 Verifying the state of the standby database is ■ APPLY-ON

 Verifying the state of the primary database is ■ TRANSPORT-ON

 Checking to see if log files are building up because the value of the ■ DelayMins property
is set too large

If you cannot see any errors, compare the transport rate to the apply rate on the Performance
page in Enterprise Manager to see if the apply rate is lower than the transport rate.

Physical Standby Switchover Failures
You can perform the following steps to recover from a failed switchover on a physical standby
that’s being managed by Data Guard Broker:

 1. Investigate the error messages returned by the Broker to find the source of the problem
on the standby database. Examine the alert log file information and the contents of the

466 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 13: Troubleshooting Data Guard 467

Broker log file for the standby database. If FSFO is enabled, disable it. You can use
DGMGRL to enable and disable this configuration:

DGMGRL> ENABLE CONFIGURATION
DGMGRL> SHOW CONFIGURATION
Configuration
Name: MATRIX
Enabled: NO
Protection Mode: MaxAvailability
Fast-Start Failover: DISABLED
Databases:
MATRIX - Primary database
MATRIX_DR0 - Physical standby database

 2. Convert the standby back to a primary database.

 3. Finish the recovery.

 4. Re-enable the configuration.

 5. Perform the switchover operation again.

Logical Standby Switchover Failures
Perform the following steps to recover from a failed switchover on a logical standby that’s being
managed by Data Guard Broker:

 1. Analyze and correct the detected failure. (If FSFO is enabled, disable it.)

 2. Remove the configuration.

 3. Convert back to the primary database.

 4. Re-create the configuration.

 5. Re-enable the configuration.

 6. Perform the switchover operation again.

Transition the Primary Database to the Standby Role
If you have problems transitioning the primary database to the standby role, you can try the
following to fix the issue:

 1. Disable the configuration using DGMGRL.

 2. Investigate the error message returned by the Broker to find the source of the problem on
the primary database and correct it. You can review the alert log and the Broker log file
to determine the root cause of the issue.

 3. Re-enable the configuration to restore the databases to their original roles and states.

 4. Perform the switchover again.

Transition the Standby Database to the Primary Role
If you encounter a problem when transitioning the target standby database to the primary role, use
these general guidelines to restore to the pre-switchover state. If FSFO is enabled, the Broker does

Chapter 13: Troubleshooting Data Guard 467

not allow switchover to any standby database except to the target standby database. In addition,
switchover to the target standby database is allowed only when the value of the FS_FAILOVER_
STATUS column in the V$DATABASE on the standby database is set to READY or SUSPENDED.

ORA-16596: Object Not Part of the Data Guard Broker Configuration
You will see this error in a couple of scenarios. The following shows those conditions:

 The Broker fails to locate a Broker configuration for the database that is running. ■

 The database instance in which you made a request to the Broker is not a part of the ■
Broker configuration.

 The Broker configuration file for one of its databases was accidentally removed or is ■
outdated.

Verify that a database does exist in the Broker configuration that has a name that matches the
DB_UNIQUE_NAME of the database that returned the error. If the configuration does exist, remove
the database from the Broker configuration and delete the configuration file for the standby
database.

Try to enable the configuration. Once the configuration is enabled, create a new database
profile from the previously deleted standby database. You can use Enterprise Manager or the
DGMGRL.

Problems with Starting Multiple Observers
When enabling the observer for FSFO, you need to be aware of a few things during the enabling
and maintaining the configuration.

Only one observer can be observing the Broker configuration at any given time. If you
attempt to start additional observers, one of the following errors is returned:

ORA-16647: could not start more than one observer
DGM-16954: Unable to open and lock the Observer configuration file

Use the DGMGRL SHOW CONFIGURATION VERBOSE command to determine the location of
the observer that is currently associated with the Broker configuration. If it is not correct, you can
issue the STOP OBSERVER command and restart the observer on another system. In addition, if
you try to start the observer for another Broker configuration in the same home directory as an
existing observer you can encounter this error. Use the FILE qualifiers noted in Chapter 8.

Observer Has Stopped
If the observer server is no longer available, you can move it to a new host. As with the preceding
situation, to move the observer, you must terminate the link between the observer and the Broker
configuration:

DGMGRL> STOP OBSERVER;

Issue the DGMGRL SHOW CONFIGURATION VERBOSE and SHOW DATABASE commands to
verify that the configuration is no longer being observed:

DGMGRL> SHOW CONFIGURATION VERBOSE;

Note that you do not need to issue the DGMGRL SHOW commands to verify that the observer
has actually stopped. Successful completion of the DGMGRL STOP OBSERVER command will

468 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 13: Troubleshooting Data Guard 469

allow a new observer to become associated with the configuration. You can issue the START
OBSERVER command to initiate a new observer on a different host:

DGMGRL> START OBSERVER;

Errors Converting to a Snapshot Standby
You must be in MOUNT state and the MRP must be stopped to convert a database to a snapshot
standby. You will receive the following error messages when invoking the ALTER DATABASE
CONVERT TO SNAPSHOT STANDBY command if this is not the case:

ORA-38784: Cannot create restore point …….
ORA-01153: an incompatible media recovery is active

The same applies when converting back to a physical standby. The database must be in
MOUNT mode or you will receive the following error when issuing the ALTER DATABASE
CONVERT TO PHYSICAL STANDBY Command:

ORA-01126: database must be mounted in this instance and not open in any
instance.

For additional information on converting to a Snapshot Standby, please review Chapter 9.

Helpful Hints and Tips
As always, when using Data Guard to protect your primary database, you’ll benefit by following a
few recommendations. Some of the items in the following sections are reiterations of issues
discussed earlier in the book but bear repeating here.

Avoid Refreshing the Standby Control File
If at all possible, avoid refreshing the standby control file. This will remove all archived log
information from the standby and replace it with the information from the primary database. You
can set STANDBY_FILE_MANAGEMENT to AUTO and any operating system file additions or deletions
on the primary database are replicated on your physical standby. You would refresh the standby
control file when STANDBY_FILE_MANAGEMENT is set to MANUAL under the following
circumstances:

 Rename or delete a datafile ■

 Add or drop a tablespace ■

 Add or drop online redo logs ■

 Alter control file ■

Avoid Using the NOLOGGING Clause
As mentioned in earlier chapters, nologging operations at the primary database will render your
standby databases unrecoverable and in need of attention before you need to use the standby. At
worst, the following operations can completely destroy the standby and you’ll have to re-create it

Chapter 13: Troubleshooting Data Guard 469

from scratch. Remember that no logging operations can occur at all levels in the database if you
do not use ALTER DATABASE FORCE LOGGING on the primary database. The hierarchy of no
logging operations are

 Database ■

 Tablespace ■

 Objects ■

 SQL*Loader ■

As a last resort, if you choose to use the no logging option for performance considerations,
please review Chapter 7 on monitoring your production database for no logging activities. You
want to proactively monitor and assess your situation before switching or failing over to your
disaster recovery site.

OMF—Copying Control File
The datafile names will be different in the primary and physical standby if you are using
Automatic Storage Management (ASM), because ASM enforces Oracle Managed Files (OMF).
When you copy over the standby control file, you lose all the information in the control file about
your datafiles, archive logs, and so on. The following steps show you how to handle this scenario:

 1. On the primary database, create the standby control file:

rman target /
RMAN> BACKUP CURRENT CONTROLFILE FOR STANDBY FORMAT '/tmp/standby.ctl.
bkup';

Or do this:

SQL> ALTER DATABASE CREATE STANDBY CONTROLFILE AS '/tmp/standby.ctl';

 2. Copy the control file to the standby site.

 3. On the standby database, shut down all the instances.

 4. Restore the standby control file:

rman target /
RESTORE STANDBY CONTROLFILE FROM '/tmp/standby.ctl.bkup';
ALTER DATABASE MOUNT;
EXIT

 5. Catalog all the disk groups for your datafiles:

rman target /
CATALOG START WITH '+DG_DBA_DF501/MATRIX_DR0/';
CATALOG START WITH '+DG_DBA_DD501/MATRIX_DR0/';
SWITCH DATABASE TO COPY;
EXIT

470 Oracle Data Guard 11g Handbook

 6. Re-enable flashback:

sqlplus / as sysdba
ALTER DATABASE FLASHBACK OFF;
ALTER DATABASE FLASHBACK ON;

 7. Re-create standby control files:

ALTER DATABASE RECOVER MANAGED STANDBY DATABASE
USING CURRENT LOGFILE DISCONNECT;

For a more detailed explanation of these steps, refer to MetaLink Note 734862.1.

Conclusion
This chapter offers you a great starting point for diagnosing many issues that you may encounter
in a Data Guard environment. We have covered where to find diagnostic information, what tools
are available to aid in resolving issues, and resolutions to some of the most common errors. You
will find that many of these errors can be avoided by spending the majority of your time planning
and configuring your environment, and of course, by reading this book, which you have just
about completed.

Again, make sure that you visit our blog site at blog.dataguardbook.com to review the latest
and greatest tips and tricks to troubleshooting a Data Guard environment. We will help you
maintain a healthy Data Guard ecosystem.

Chapter
14

Deployment Architectures

471

472 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 14: Deployment Architectures 473

ne of the most important things this book has sought to accomplish is to show how
Data Guard is more than just a solution for disaster recovery. Data Guard also
addresses requirements for high availability by offering a unique combination of
high performance, functionality, and simplicity. Data Guard can boost primary
database performance and response time by offloading read-only queries, reporting,

and backups to a standby database. Data Guard can increase availability by enabling rapid failover
to a standby database in the event that mundane events such as data corruption, critical component
failure, or human error bring down the primary database—events that occur much more frequently
than natural disasters.

Data Guard rolling database upgrades increase availability by minimizing planned downtime
when installing new patch sets or new Oracle releases, executing a technology refresh, moving
data centers, and performing other types of planned maintenance described in this book. Data
Guard standby databases can also improve the quality and efficiency of quality assurance testing,
increasing availability by eliminating disruption due to unforeseen consequences of introducing
change to the production environment.

Yes, Data Guard is a disaster recovery solution for the Oracle Database, but it offers so much
more value to the daily operation of any mission-critical database that no DBA should ever “leave
home without it”, even if their company is never hit by a power outage, fire, flood, hurricane,
earthquake, or other event of similar magnitude.

Data Guard’s rich feature set and flexibility creates opportunities for many different deployment
architectures. The preceding chapters have covered technical details for implementing and
managing Data Guard configurations. This chapter explores deployment architectures which
address requirements which extend beyond traditional disaster recovery. The architectures
discussed are derived from the collective experiences of the authors of this book with Data
Guard users worldwide and are representative of those deployed by the following users:

 A manufacturing company ■

 A utility company ■

 A retail brokerage firm ■

 A government agency ■

 A pharmaceutical company ■

 A web retailer ■

 An insurance firm ■

O

Myth Buster: Data Guard Is a DR Solution
This chapter is chock-full of Data Guard solution architectures, but not one of them has
disaster recovery as its primary objective. Data Guard is used to achieve objectives for high
availability, data protection, and high performance, and for enabling the confidence to
introduce change to a production system. Disaster protection comes along as a by-product
of simply choosing a remote location for your standby database.

Chapter 14: Deployment Architectures 473

Manufacturing Company: HA Configuration
Assume you work for a small manufacturing company that has limited DBA resources—you are
the only DBA and you also wear other hats. Scalability for the mission-critical database you
manage is not a concern. A single node, while at times used more heavily than you would like to
see, has proven sufficient to meet service-level expectations. Your priority is on high availability
(HA) and data protection. The company previously implemented cold failover cluster solutions to
protect against server failure. This configuration is perceived as “single-node simple” because
applications run on only one server at a time. The server running the application (in this case an
Oracle instance) is the active node. The second server in the cluster is a passive node and will
host an Oracle instance only if the first server fails. The active and passive nodes each have access
to the storage hosting the Oracle database files, and their status is monitored by cluster software
that restarts the Oracle instance on the passive node if the active node fails.

Contrast the cold failover cluster to a Data Guard configuration where primary and standby
databases are located on a local area network (LAN) in the same facility. This meets the criteria of
being a single-node simple configuration in that production always runs on one Oracle instance at a
time. A Data Guard standby database, however, is a much more powerful HA solution than a passive
node in a cold cluster configuration. While a standby database provides the same HA protection
against server failure, the other attributes of a standby database provide better data protection, higher
availability for additional hardware failures, better system utilization, better performance, and more
scalability than a cold failover cluster. A Data Guard HA configuration provides this manufacturing
company the following advantages:

 Data Guard Redo Apply (physical standby) provides optimal protection against data ■
corruptions and industry-unique protection from lost writes caused by hardware or
operating system failures that can corrupt your database.

 Zero data loss recovery point objective from any component failure, including network ■
attached storage (NAS)/Storage Area Network (SAN) failure, network failure, and/or
complete database failure—eliminating single points of failure that are not addressed
by cluster environments. Note that best practices for a Data Guard configuration with a
local standby database always requires that the standby database be hosted on separate
storage from the primary database, either locally attached or on a separate NAS or SAN.

 Zero data loss recovery point objective for any event that destroys a computer room ■
while the rest of the manufacturing plant is viable. The primary and standby databases
are deployed in two different computer rooms located at either end of the plant.

 A worst-case recovery time objective of less than 60 seconds, utilizing Oracle-integrated ■
automatic failure detection, database failover, and application failover.

 Fast point-in-time recovery from user error and logical corruptions using Oracle ■
Flashback Database without the management overhead and increased storage costs
required to maintain multiple rolling snapshots. Note that unlike a full database snapshot,
Flashback Database requires disk space only to hold flashback logs (data changes) used
to rewind the database back to your desired point in time.

 Rolling database upgrades to minimize planned downtime when upgrading to new ■
patchsets and major database releases.

474 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 14: Deployment Architectures 475

 Greater scalability and maximum return on investment (ROI) by offloading read-only ■
queries, reports, and fast incremental backups from the production database to the
standby databases while in standby role. Queries and reports on the standby are able to
return up-to-date results. Using the standby database for read-only workload does not
impact recovery point objectives (RPOs) or recovery time objectives (RTOs).

The manufacturing company chose to implement a simple Data Guard HA configuration
illustrated in Figure 14-1. The company selected Data Guard not for protection against site failure,
because in this case the database is of no value if the plant is destroyed. Data Guard was selected for
the express purpose of providing HA and data protection for failure events that occur within the site.

Myth Buster: Cold-Failover Clusters Are an HA Solution
Addressing server failure alone does not an HA solution make. HA solutions are designed to
eliminate single points of failure (SPOFs). The single database management system to which
all nodes in a cluster share access becomes an SPOF, whether those nodes are active-active
as with Oracle Real Application Clusters (RAC) or active-passive as with cold failover
clusters. Hardware and software failures can cause the database management system to
become corrupt and/or fail. A comprehensive HA solution eliminates SPOF by intelligently
maintaining a synchronized replica of the database management system on separate servers
and storage that is isolated from events that can impact the availability of the primary
database, protecting against a wider range of failures. This makes Data Guard a necessary
component of any comprehensive HA architecture designed for the Oracle Database.

FIGURE 14-1. Manufacturing company HA configuration

Computer Room B
Active Standby

Computer Room A
Primary

• Data Guard Observer
 • Fast-Start Failover Threshold = 10

Data Guard
Fast-Start Failover

2500 feet

• NET_TIMEOUT = 10
• Flashback Database with 12-hour
 Flashback Window

• Maximum Availability
• SYNC Redo Transport
• Fast-Start Failover Target
• Flashback Database
• Active Data Guard
• RMAN Fast Incremental

Chapter 14: Deployment Architectures 475

The HA configuration consists of primary and standby databases using Data Guard Maximum
Availability protection mode (zero data loss) and synchronous redo transport services (SYNC).
Primary and standby databases are located in different computer rooms at opposite ends of the
plant so that the destruction of a computer room will not impact operations as long as the rest of
the plant remains viable. Data Guard Broker is used to manage the configuration and Data Guard
Fast-Start Failover1 is used to automate database failover. The following are highlights of the
significant elements for this configuration:

 Because primary and standby are on the same LAN with reliable quality of service from ■
a network perspective, the FastStartFailoverThreshold property has been reduced
from the default of 30 seconds to just 10 seconds to accelerate failover time without
increasing the risk of “false failovers” caused by transient network issues.

 Likewise, the value of ■ NET_TIMEOUT has been reduced from the default of 30 seconds to
10 seconds without increasing the risk of transient network issues impacting data protection.

 Client failover best practices described in Chapter 10 are followed to automatically ■
break application clients connected to the failed primary out of TCP timeout, and all
connections are all automatically directed to the new primary database.

 For maximum corruption protection in Oracle Database 11 ■ g, they set DB_ULTRA_SAFE =
DATA_AND_INDEX on primary and standby databases. Note that one of the checks
enabled with this setting is DB_BLOCK_CHECKING=FULL. While this will have little
impact on primary performance, it can have significant impact redo apply performance
on a physical standby. If testing proves that the standby overhead is too great, then
change the standby settings to DB_BLOCK_CHECKSUM=FULL and DB_LOST_WRITE_
PROTECT=TYPICAL in lieu of using DB_ULTRA_SAFE.

 Flashback Database is configured with a 12-hour retention period on both primary ■
and standby databases to enable fast point-in-time recovery from user error or logical
corruptions, as well as automatic database reinstatement should a Data Guard automatic
failover occur.

1 MAA Best Practices for Data Guard Fast-Start Failover; see www.oracle.com/technology/deploy/availability/pdf/
MAA_WP_10gR2_FastStartFailoverBestPractices.pdf

Optimal Corruption Protection
DB_ULTRA_SAFE = DATA_AND_INDEX is new for Oracle Database 11g and sets the
following parameters:

DB_BLOCK_CHECKSUM=FULL ■ Block checking prevents memory and data
corruptions.

DB_BLOCK_CHECKING=FULL ■ Redo and data block checksum detects corruptions
on the primary and protects the standby.

DB_LOST_WRITE_PROTECT=TYPICAL ■ Losts write protection enables a physical
standby database to detect lost write corruptions on the primary or standby.

www.oracle.com/technology/deploy/availability/pdf/MAA_WP_10gR2_FastStartFailoverBestPractices.pdf
www.oracle.com/technology/deploy/availability/pdf/MAA_WP_10gR2_FastStartFailoverBestPractices.pdf

476 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 14: Deployment Architectures 477

 Oracle patchset releases and major versions are upgraded in rolling fashion using the ■
Data Guard rolling upgrade process.2 They use the existing physical standby database for
the upgrade during off-peak hours by transitioning read-only users back to the primary
database for the duration of the upgrade. The concern is that this impacts RTO/RPO if
a failure event occurs while the upgrade is being executed. To eliminate this concern,
a second standby database is provisioned on a temporary basis to execute the rolling
upgrade.

 The standby database uses the Active Data Guard Option ■ 3 so that it is open read-only
while it continues to be synchronized with the primary database. This provides more
headroom for primary database processing, mitigating past concerns in which CPU
utilization ran uncomfortably high.

 The standby database is also used to offload backups from production using an RMAN- ■
based online backup strategy of one full backup, then subsequent fast incremental backups
that are merged with the previous full backup on-disk to roll forward a complete image
backup of the production database.

This Data Guard HA configuration allows the manufacturing company the simplicity of a
cold-failover cluster plus the ability to improve performance and scalability by using all servers
and storage at all times. Data Guard’s integrated automatic failover more closely monitors the
status of the primary database than an external cluster manager and increases availability by
eliminating the need to restart Oracle before the failover node can become active. Unlike
clustered solutions that share access to a common database, the independent synchronized
replica maintained by Data Guard eliminates the database and the storage on which it resides
from being a single point of failure. Should the SAN fail or if other issues cause the database to
become unavailable, production automatically transitions to the standby database without
downtime or data loss. Continuous Oracle validation before data is applied to the standby
database isolates the replica from physical corruptions that impact the primary database due to
hardware or software errors. Data Guard enables the Oracle Database to be in continuous
recovery mode on the standby server, making it a validated “hot” synchronized copy ready to
assume primary processing at any time.

Utility Company: Zero Data Loss HA/DR
A utility company is also seeking a simple HA architecture, but it wants to “have its cake and eat
it too” when it comes to disaster recovery. Management quickly realizes they can achieve both
HA and DR by simply moving their standby database to a remote location. While the distance
between primary and standby is limited by the influence of network latency in synchronous
configurations, the inherent efficiency of Data Guard Redo Transport enables a greater degree of
geographic separation and thus better data protection than third-party storage-centric alternatives.

For an optimal combination of protection and performance, the utility company will separate
their primary and standby databases at a distance where testing shows the performance impact of

2 MAA Best Practices for Rolling Database Upgrades; see www.oracle.com/technology/deploy/availability/pdf/
MAA_WP_10gR2_RollingUpgradeBestPractices.pdf
3 MAA Best Practices for Active Data Guard; see www.oracle.com/technology/deploy/availability/pdf/maa_
wp_11gr1_activedataguard.pdf

www.oracle.com/technology/deploy/availability/pdf/MAA_WP_10gR2_RollingUpgradeBestPractices.pdf
www.oracle.com/technology/deploy/availability/pdf/MAA_WP_10gR2_RollingUpgradeBestPractices.pdf
www.oracle.com/technology/deploy/availability/pdf/maa_wp_11gr1_activedataguard.pdf
www.oracle.com/technology/deploy/availability/pdf/maa_wp_11gr1_activedataguard.pdf

Chapter 14: Deployment Architectures 477

SYNC redo transport can still be tolerated by their applications and service level agreements.
Performance testing shows that despite the combination of variables that impact synchronous
performance—network latency, congestion, message size, commit concurrency, and so on—the
company can successfully use an existing data center located 125 miles from their primary site.4
Figure 14-2 illustrates the classic HA/DR Data Guard configuration chosen by the utility company
to address their requirements.

High-level details of this HA/DR configuration are identical to the previous HA deployment:
Maximum Availability protection mode (zero data loss) and synchronous redo transport services
(SYNC) with Data Guard Broker to manage the configuration and Data Guard Fast-Start Failover
(FSFO) to automate database failover. The same provisions made in the preceding example are

4 MAA Best Practices for Data Guard Redo Transport and Network Configuration; see www.oracle.com/technology/
deploy/availability/pdf/MAA_WP_10gR2_DataGuardNetworkBestPractices.pdf

Myth Buster: I Can’t Use SYNC—It Will Hang My Primary Database
You know this is a myth because you have read this book and understood the difference
between Maximum Protection and Maximum Availability modes. In Maximum Availability,
the primary database will never stall for any longer than NET_TIMEOUT seconds if the primary
is not able to communicate with the standby database, a value over which you have complete
control.

FIGURE 14-2. Utility company: zero data loss HA/DR

Site 2
Active Standby

Site 1
Primary

• Data Guard Observer
 • Fast-Start Failover Threshold = 30

Data Guard
Fast-Start Failover

125 miles

• NET_TIMEOUT = 30
• Flashback Database

• Maximum Availability
• SYNC Redo Transport
• Fast-Start Failover Target
• Active Data Guard
• Flashback Database

www.oracle.com/technology/deploy/availability/pdf/MAA_WP_10gR2_DataGuardNetworkBestPractices.pdf
www.oracle.com/technology/deploy/availability/pdf/MAA_WP_10gR2_DataGuardNetworkBestPractices.pdf

478 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 14: Deployment Architectures 479

made in this case for automating client failover, using Flashback Database, preventing
corruptions, and performing rolling database upgrades. Active Data Guard is also used to offload
read-only queries, reporting, and backups from the primary database.

The minor differences between the HA/DR configuration and the preceding HA configuration
all stem from the fact that the disaster recovery site is deployed on a wide area network (WAN),
specifically as follows:

 FastStartFailoverThreshold ■ property is increased to 30 seconds to reduce the risk
of false failovers caused by transient network issues.

 The same WAN quality of service concerns, combined with the zero data loss objective, ■
lead to raising the value of NET_TIMEOUT to 30 seconds. The potential to stall primary
database processing for 30 seconds is accepted in return for the increased likelihood
of preserving zero data loss protection throughout transient disruptions of service.
A NET_TIMEOUT value of 15 seconds would be used if a greater emphasis was placed
on performance than on data protection.

 The Data Guard observer process that monitors the FSFO configuration and initiates ■
failover is located at the disaster recovery site on a system separate from the system
hosting the standby database. Ideally, the observer can be hosted at a third site, and
will thus not be impacted by failures at either primary or standby sites. Under no
circumstances would the observer be located at the site that predominantly functions as
the primary data center location.

This HA/DR configuration illustrates how Data Guard has evolved far beyond traditional DR
solutions. The utility company has simply moved their standby to a remote site, with few
differences between this configuration and the HA architecture deployed by the manufacturing
company in the preceding example.

Retail Brokerage Firm: HA/DR with Zero Data
Loss and Extended Geographic Separation
A retail brokerage firm seeks zero data loss HA/DR along with an additional level of protection
from events that impact a wider geographic area extending more than 500 miles from their
production data center. In addition to HA/DR, they require active use of standby systems, storage,
and software while in standby role for maximum ROI. Their requirements are the following:

 A zero data loss RPO for outages caused by any event within a 75-mile radius of the ■
primary data center, and an associated complete RTO of less than 60 seconds from
time a failure occurs to the time that applications can reconnect to the new production
database.

 A maximum data loss exposure not to exceed a 10-second RPO for outages caused by ■
any event within a 500-mile radius of the primary data center, with an associated RTO of
30 minutes following detection of the failure.

 Optimal protection against data corruptions and lost writes. ■

 Fast point-in-time recovery from user error and logical corruptions. ■

Chapter 14: Deployment Architectures 479

 Rolling database upgrades to minimize planned downtime. ■

 Active use of all systems by offloading read-only queries, reports, and fast incremental ■
online backups from the production database to standby databases while they are in
standby role. Queries and reports must return up-to-date results. Using the standby
database for such workloads must not impact RPO or RTO.

 The ability to use a standby database for preproduction testing of hot patches and other ■
changes without compromising RPO objectives.

These requirements are addressed with an architecture that uses as building blocks the zero
data loss HA/DR configuration deployed by the utility company in the preceding example, and a
second remote standby database that uses Data Guard Maximum Performance mode and ASYNC
redo transport services, illustrated in Figure 14-3.

The HA/DR building block differs from that used by the utility company in that it is located
just 75 miles from the production database, and they have shaved 10 seconds off the value of the
FastStartFailoverThreshold property to afford more time for application clients to failover
to the new production database within the required 60-second RTO. Active Data Guard is used to
address the requirement for offloading read-only queries, reports, and online backups from the
primary database.

The next building block in this architecture is a second remote standby database deployed
more than 500 miles from the primary site and configured for Maximum Performance mode and
ASYNC redo transport. Earlier in this book we discussed the fact that a primary database can have
up to nine directly attached standby databases. A remote standby database using ASYNC redo
transport addresses the second tier RPO/RTO objective to survive events that impact up to

FIGURE 14-3. Retail brokerage firm: extended geographic separation

Site 2
Active Standby

Site 1
Primary

Site 3
Standby/Snapshot Standby

• Data Guard Observer
 • Fast-Start Failover Threshold = 30

75 miles500+ miles

• NET_TIMEOUT = 30
• Flashback Database

• Maximum Availability
• SYNC Redo Transport
• Fast-Start Failover Target
• Active Data Guard
• Flashback Database

• Maximum Availability
• ASYNC Redo Transport
• Snapshot Standby
• Flashback Database
• Rolling Database Upgrades

480 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 14: Deployment Architectures 481

a 500-mile radius from the production database, without subjecting the primary database to
overhead caused by high–round trip time (RTT) network latency at such distances. During normal
operation, the ASYNC standby can be converted to a Data Guard Snapshot standby and used for
preproduction testing without impacting RPO or RTO objectives. Redo data continues to be
received by the Snapshot standby the entire time it is open read-write for testing to maintain the
RPO. The RTO objective for the second standby has enough leeway to accommodate the
conversion and resynchronization of the snapshot back to its original role as a standby database if
a failover is required.

In the event of a failure occurring within a 75-mile radius, an automatic failover is executed to
the SYNC standby with zero data loss, and the second remote standby automatically recognizes
the new primary database. Should a failure destroy both the primary production site and the FSFO
target, a manual failover is executed to transition the ASYNC standby to the primary role.

Government Agency: Protection
from Multi-site Threats
This government agency is very concerned about continuous operations even when confronted
with a multi-site threat. On the surface, this requirement sounds as though it could be achieved
by the preceding configuration deployed by the retail brokerage firm—but different requirements
and additional operating philosophies motivate this user to deploy a slightly different architecture.

Data protection is critical—but near-zero data loss, measured in single-digit seconds, is
sufficient to meet the RPO requirement because safeguards at the application level mitigate this
small exposure to data loss. The combination of data protection, performance, and availability
are critical to maintaining confidence in these systems. A multi-site architecture was designed to
meet the following requirements:

 A three-site architecture that can survive intentional acts of violence that may occur ■
against two different locations at the same time.

 More than 500 miles of separation between each site so that two of the three sites will ■
survive large-scale geographic disasters, making it possible to provide continuous data
protection even after a failover has occurred.

 5

5 Oracle Database High Availability Best Practices, 11g Release 1 (11.1), B28282-01, Section 2.6, Configuring
Oracle Database 11g with Data Guard; see http://otn.oracle.com/goto/maa

General MAA Best Practices
While the representative architectures presented in this chapter have Data Guard as their
focus, they all assume that related HA best practices are followed, including the use of
DB_ULTRASAFE for optimal corruption protection, a flash recovery area for automated
management of recovery-related files, Flashback Database for fast point-in-time recovery,
and more.5

http://otn.oracle.com/goto/maa

Chapter 14: Deployment Architectures 481

 Multiple mission-critical Oracle Databases are to be hosted by this disaster recovery ■
configuration. The user has high expectations for the operating efficiency and state of
production readiness at each site. For this reason, the organization wants to disperse
the production instances across all three sites. Each site will host standby databases
for the production instances hosted at the other sites. In this manner, each location
is a production site at all times, eliminating any chance of complacency due to the
perception of being a standby site. This also limits the impact of a single site outage to
just a third of the agency’s total production instances, while spreading the burden of
recovering from that loss across the two remaining sites.

 The three-site architecture and the requirements stated require that each primary database ■
be able to synchronize two standby databases—each one located at each of the other
sites.

 This agency is incredibly conservative by nature due to the implications that failure to ■
perform their mission will have for the community it serves. This conservatism leads
agency officials to prefer manual failover in lieu of automatic failover, so that they have
complete control of all role transitions.

 Data protection must be continuous at failover time—the remaining standby database ■
must automatically recognize the new primary database and continue to protect the
latest transactions.

 Officials prefer the simplicity and high performance of physical versus logical replication ■
to maintain standby replicas, assuming a physical replica can meet their additional
requirements as stated.

 All standby databases must be able to provide read-only access to data for adhoc queries ■
and reports. Latency between the standby and primary databases must be minimal, not to
exceed 10 seconds at peak and this activity must not impact the RTO or RPO.

 When not being used for adhoc queries and reports, standby databases must be able ■
to support test activities that require independent read-write access to verify planned
system and software changes before they are placed into production, while continuing to
provide disaster protection. It is understood that using a standby database for test activity
can impact the RTO, but it must not impact the RPO.

 The user had evaluated storage-based replication solutions for disaster protection. These ■
solutions were eliminated from consideration due the inability to have Oracle mounted
and able to access the database while a remote-mirroring session is active. The agency
also requires a solution that is data-aware and able to perform Oracle validation before
data is applied to any standby database for optimal protection against corruption caused
by hardware, OS, and firmware failures. All these things are not possible with storage
solutions.

 The solution must include an integrated capability for very fast point-in-time recovery— ■
also referred to as Continuous Data Protection (CDP). This feature is required given the
distributed nature of some transactions executing against the various databases. The
disaster recovery solution must support distributed transactions as well as provide a
mechanism for coordinated distributed point-in-time recovery.

482 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 14: Deployment Architectures 483

The architecture selected is depicted in Figure 14-4. It is a multi-site architecture in which
each standby database is configured using Data Guard Maximum Performance and ASYNC redo
transport services. It uses Flashback Database in combination with manual procedures to execute
change-based recovery to re-establish global consistency for distributed transactions.6 It uses

6 Oracle Database High Availability Best Practices, 11g Release 1 (11.1), B28282-01, Recovering Databases in a
Distributed Environment, Section 4.2.9; see http://otn.oracle.com/goto/maa

Automatic Recognition of Role Transitions
In a multiple-standby configuration having any combination of physical and logical
standbys, failover/switchover to any physical standby will result in all other standbys
seamlessly recognizing and accepting redo data from the new primary database. The only
caveat is that for this process to be automatic, the applied SCN on other standby databases
cannot be in the future of the SCN at which the standby became primary. If that is the case,
then manual intervention using Flashback Database will be required. For this reason and to
achieve minimum data loss, it is always recommended to failover to the standby database
that is most closely synchronized with the primary at the time it failed.

FIGURE 14-4. Government agency: protection against multi-site threats

Database

Database

Database

Database

Database

Database

Database

Database

Database

Site 1 Site 2 Site 3<1400 miles> <1250 miles>

P = Primary Database
A = Active Standby Database

http://otn.oracle.com/goto/maa

Chapter 14: Deployment Architectures 483

Active Data Guard to provide read-only access to an up-to-date physical standby and Data Guard
Snapshot standby to enable a physical standby to be dual purposed for DR and quality assurance
testing. (See Chapter 9 for more details on Active Data Guard and Snapshot standby.) The long
distance between sites provides enough geographic separation to prevent any single event from
taking down more than one data center at a time. The three-site architecture also enables two
sites to survive a disaster, leaving an operational standby database to provide continuous
protection for each primary database after a failover has occurred. This user has achieved their
operational objective of making each site a production site in its own right. Data Guard Redo
Apply, with its simplicity, high performance, high reliability, and rich functionality, has enabled
the user to deploy an architecture where all sites are active and all systems are utilized.

Pharmaceutical Company: Centralized
HA/DR and Data Distribution
A pharmaceutical company has a mission-critical database that supports applications used to
comply with federal regulatory requirements. The company is required to maintain a secure,
synchronized replica of the production database at a remote location for zero data loss in the
event of primary site failure. The company must also replicate various subsets of data from the
production database to research and manufacturing facilities located worldwide. While the
primary database and remote replica used for data protection use the same hardware architecture
and operating system, the research facilities host their Oracle databases on an assortment of
hardware architectures and operating systems. Ideally, the pharmaceutical company can offload
the primary database of the overhead of replicating data subsets to many different sites. This also
would make it easier to insure the security of the source data by limiting direct access to the
primary database. The replication targets at the remote research facilities can be up to 5 minutes
behind the primary database.

The pharmaceutical company selected an architecture described in Figure 14-5. They have
configured Data Guard Maximum Availability (SYNC) to maintain a zero data loss physical
standby database located 150 miles from the primary data center. The physical standby database
is always the failover/switchover target. A second standby database using SQL Apply is deployed
on separate storage at the same remote location. The logical standby is configured using Data
Guard Maximum Performance (ASYNC) and serves as the source database from which Oracle
Streams replicates different subsets of data to each of the remote research facilities. All Streams
capture processing required to replicate subsets to remote targets is performed on the logical

Myth Buster: You Can’t Run Streams on a Logical Standby Database
This used to be true for Oracle Database releases prior to 11.1.0.7 and (coming soon we
hear) 10.2.0.5. You can now run Streams on a logical standby database, which makes a
logical standby very useful for creating a stage database to offload Streams upstream capture
processing from a primary database. An additional advantage is that logical standby
integrates seamlessly into a configuration that uses physical standby databases for HA/DR.
The logical standby will automatically recognize when a failover or switchover to the
physical standby has occurred and continue to receive data from the new primary database.

484 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 14: Deployment Architectures 485

standby database. During role transitions when the physical standby becomes the primary, the
logical standby will automatically recognize the new primary database and continue to replicate
data to the remote sites. Note that should the logical standby fail, the company will need to recover
the database using a previous backup of the logical and allow Data Guard to resynchronize the
logical standby with the primary to resume Streams replication.

Web Retailer: HA/DR with Reader-farm Scale Out
A popular retail web site has an extensive inventory of products for sale that is constantly being
updated. Consumers frequently access the site to browse the company’s online catalog. Query
volume, while high during normal periods, can peak at 10-times normal volume during holiday and
promotional periods. This user is already using Data Guard to protect their mission-critical databases,

Myth Buster: There Are Only Three Ways to Scale Read Performance
Buying a bigger box, deploying Oracle RAC, or using SQL-based replication technology to
maintain a reporting/query replica have been the traditional approaches to scaling real-time
read performance. A new alternative is to use Active Data Guard to implement a reader-farm
comprising multiple, low-cost, single-node physical standby databases. An Active Data Guard
reader farm can be cheaper than a big box, simpler to manage than a cluster, offering better
performance, reliability, and less complexity and effort than SQL-based replication.

FIGURE 14-5. Pharmaceutical company: centralized HA/DR and data distribution

A
P

L

P = Primary Database
A = Active Standby (physical) that is Failover Target
L = Logical Standby that serves as Streams Source

Streams
Replica

Streams
Replica

Streams
Replica

Streams
Replica

Streams
Replica

Streams
Replica

Streams
Replica

Chapter 14: Deployment Architectures 485

with primary and standby sites located 90 miles apart. The company prefers to run simple HA/DR
configurations with a single node primary and a single node Data Guard physical standby database.
The company also wants to build a reader farm by creating read-only replicas of their primary
database to scale performance for catalog browsing during holiday periods without increasing the
complexity of their current environment. Updates must be propagated to all read-only replicas within
5 seconds of the original update on the primary database.

The company’s chosen architecture is described in Figure 14-6. One standby database is
located at their DR site configured for Maximum Availability (SYNC). Between two and eight
additional Active Data Guard standby databases are deployed to support online web access from
outside the firewall. For security reasons, web access to the DR copy is not allowed.

As seasonal query volume expands or contracts, the company simply deploys/decommissions
standby database instances as appropriate. At failover or switchover time, all active standby
databases automatically recognize the new primary database and continue to provide read-only
access. Similar to how it has implemented HA/DR by having the primary database and failover
target located at separate sites, the company has also dispersed their Active Data Guard standby
databases across both data centers. In this fashion, the failure of an entire site does not impact
data protection or availability for either online customer access or internal operations.

FIGURE 14-6. Web retailer: HA/DR with reader-farm scale out

P S

A

A

A

A

A

A

Site 1 Site 2

A = Active Standby
Reader Targets

A = Active Standby
Reader Targets

P = Primary Database S = Standby Database that
is the Failover Target

Database

Database

Database

Database

Database

Database

Database

Database

486 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 14: Deployment Architectures 487

Insurance Company: Maximum
Availability Architecture
An insurance company determined that a mission-critical claims application was no longer
meeting its business needs. Antiquated application design made it very difficult to respond
quickly to new business opportunities, and the mainframe platform on which it was running was
inflexible and costly to maintain.

The mainframe model used by the legacy application partitioned claims processing and data
by geographic region—each region had its own regional operations center served by its own
mainframe, database, and instance of the claims application. While this configuration isolated
failures to individual regions, it also resulted in many operational challenges and costly
investment in idle capacity, all stemming from the fact that there was no single consolidated
database to serve claims processing. Operational reporting on the mainframe was also severely
constrained by the lack of a consolidated database for all regions and by concern for the impact
that it would have on OLTP processing. This was ironic because operational reporting is most
critical during troubled times when claims processing is at its peak, yet this would be the very
moment when claims processing could least afford to be impaired by overhead from operational
reporting.

The company decided to implement a complete redesign of their application and system
architecture. The goal was to achieve better than mainframe performance, scalability, and
availability with a more flexible application design and lower cost system architecture that could
quickly evolve to meet the changing needs of their business. Key criteria for their new architecture
included the following:

 High scalability ■ More than 12,000 concurrent users access the system during peak
work hours and sudden increases in workload occur with little warning. A hurricane on
the Gulf Coast, wildfires on the West Coast, or ice storms in New England can cause
dramatic increases in the volume of claims applications—the expectation is that response
time will be the same during these critical times as it is on a holiday morning when all is
calm.

 High availability ■ Server failure must not impact all 12,000 users at the same time. The
new application design assumes a single consolidated database. The systems architecture
must find a way to support this while providing the necessary level of high availability.

 Operational reporting ■ Claims processing and operational reporting must each be able
to scale independently, without impacting the performance of the other. Operational
reporting must have access to a data that can be no more than 10 seconds behind the
OLTP system.

 Reducing planned downtime windows ■ The mainframe environment offers little in the
way of reducing planned downtime. Operating system upgrades, hardware maintenance,
database upgrades, and new patchsets all require extended periods of downtime that the
business is seeking to eliminate or minimize to the greatest degree possible.

 RPO ■ There is a very small tolerance for data loss—an RPO of less than 10 seconds—
regardless of the nature or scope of failure, be it from data corruption caused by
component failure or a catastrophic event that destroys the production database and
impacts an area within a 350-mile radius of the primary site.

Chapter 14: Deployment Architectures 487

 RTO ■ Server failure can never impact more than 25 percent of the user population at
one time and must have an accompanying RTO of less than 1 second for the affected
users. RTO for database failover following site failure is less than 60 seconds once
administrators are able to respond to the failure event and make the decision to execute
a failover operation.

The insurance company selected the combination of Oracle RAC and Data Guard as the
foundation for its next generation architecture, as depicted in Figure 14-7. A four-node Oracle
RAC primary database has a corresponding four-node Oracle RAC physical standby database,
with primary and standby data centers separated by 350 miles. Oracle RAC meets both the
scalability requirements of a consolidated database and the HA requirements for server failure.
The primary database serves all claims processing from a single database. All nodes process
claims applications. Additional nodes can be quickly provisioned should additional capacity
be required.

Active Data Guard is deployed at the standby database to address requirements for operational
reporting while having zero impact on OLTP performance of the primary database. Standby
database capacity is provisioned to match the primary database so that service levels for OLTP
processing are not impacted if a failover or switchover occurs. Active Data Guard uses two of the
standby cluster nodes for Redo Apply and operational reporting during steady state processing
while in standby role. If more capacity is required for operational reporting, additional nodes can
be added to the standby database to meet that requirement with zero impact to the availability of
the reporting system or to primary database processing. The remaining standby nodes are used to
host other databases used for test and development to use all available systems to the fullest. These
nodes are quickly reallocated to production processing if a failover is required. Similarly, since
OLTP and operational reporting will both run on the same database after a failover, a degraded
level of operational reporting is acceptable during a failover scenario—OLTP processing takes
priority.

FIGURE 14-7. Insurance company: maximum availability architecture

Site 2
Active Standby

Site 1
Primary

350 miles

• Redo Apply (physical standby database)
• Two Nodes Use Active Data Guard to
 Support Read-only Operational Reporting
• Two Nodes Host Other Development and Test
 Database While in Standby Role
• Flashback Database
• Snapshot Standby
• Rolling Database Upgrades

• Primary Database
• Data Guard Maximum Performance
• ASYNC Redo Transport
• Flashback Database

488 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Chapter 14: Deployment Architectures 489

The standby database is also used as a Snapshot standby for full-blown QA testing. Such
testing is reserved for periods of low activity when the primary cluster has enough idle capacity to
handle both OLTP and operational reporting.

Data Guard Maximum Performance (ASYNC) is used to achieve RPO and RTO requirements
with near zero performance impact on the primary database. Data Guard FSFO has not been used
to automate database failover (ASYNC support included in Oracle Database 11g onwards) due to
the user’s preference for manual control. Testing confirmed that manual failover would meet RTO
objectives.

Oracle RAC rolling upgrades are used to eliminate planned downtime for hardware and
operating system maintenance and installation of one-off patches for the Oracle Database. Such
maintenance is performed in a rolling fashion, one node at a time, without impacting the
availability of the primary or standby Oracle RAC clusters. Data Guard rolling upgrades are used
to minimize downtime for installation of Oracle patchsets and major database releases that
cannot be upgraded using the RAC rolling upgrade functionality. A second standby instance is
created to use Data Guard SQL Apply on a temporary basis when a database rolling upgrade is
performed.

In addition to Oracle RAC and Data Guard, they make extensive use of ASM, Oracle
Recovery Manager, flash recovery area, Flashback Database, and Oracle Enterprise Manager
using the best practices described in this book and documented in Oracle Database High
Availability Best Practices.7

Conclusion
This chapter covered seven different deployment architectures. The first six used Data Guard to
address requirements for high availability, data protection, and scalability using configurations
that are single-node simple to deploy and manage resources. Data Guard’s rich feature set and
ability to use all computing resources create new opportunities to solve complex problems using
a lower cost architecture that has fewer moving parts and thus is simpler to implement and
manage.

The last example, however, acknowledges that single-node simple won’t solve your problem
if you must scale beyond what a single server can support, or if you desire a level of high
availability in which server failure is completely transparent. The good news is that you can take
all of the same elements of data protection and availability that Data Guard enables for single-
node architectures and address additional requirements for scalability and HA by simply adding
Oracle RAC to your Data Guard configuration.

To illustrate this point, let’s assume that you work for the retail brokerage firm discussed
earlier in this chapter and have implemented the architecture depicted in Figure 14-3. Things run
fine for a year, and then the business customer you support informs you that a new initiative is
being rolled out that will increase your OLTP workload to double the volume that your current
system is sized to handle. You need a fast, low-cost, low-risk solution to accommodate this extra
workload and meet the needs of your customer.

You decide to add a second node to one of your standby databases and create an Oracle RAC
cluster. You test the new cluster using read-only queries while it is in standby role. Then you test
the new cluster in primary role by using Snapshot standby and Real Application Testing. Once you

7 Oracle Database High Availability Best Practices, 11g Release 1 (11.1), B28282-01; see http://otn.oracle.com/
goto/maa

http://otn.oracle.com/goto/maa
http://otn.oracle.com/goto/maa

Chapter 14: Deployment Architectures 489

are 100-percent confident that the new cluster is optimally configured and stable, you convert the
Snapshot standby back to a synchronized standby database, and at a convenient time you take a
5-minute planned maintenance window to switchover production to the new cluster. You then
upgrade the original primary database and the second standby database in your configuration to
Oracle RAC clusters. The result of this work is depicted in Figure 14-8.

Adding Oracle RAC has doubled the volume of workload that you can support while completely
preserving your previous hardware investment and the bulk of your previous management practices.
Rather than expensive forklift upgrades, the integration of Data Guard and Oracle RAC has enabled
you to efficiently and safely scale beyond single-node capacity. You have also set yourself up for
near-unlimited future growth. If other initiatives come along with even more workload, you can
simply add more Oracle RAC nodes to your existing clusters online—with zero downtime. You can
use Snapshot standby and Real Application Testing so that you always have confidence in any new
changes that you introduce.

The breadth of Oracle’s high availability technologies provides users with the flexibility to
choose the right tools for the job at hand, without incurring additional costs or complexity for
capabilities that you do not need today. At the same time, you can proceed with complete
confidence that you can evolve the architecture you begin with to easily address whatever the
future may bring.

FIGURE 14-8. Retail brokerage firm after Oracle RAC upgrade

Site 2
Active Standby

Site 1
Primary

Site 3
Standby/Snapshot Standby

• Data Guard Observer
 • Fast-Start Failover Threshold = 30

75 miles500+ miles

• NET_TIMEOUT = 30
• Flashback Database

• Maximum Availability
• SYNC Redo Transport
• Fast-Start Failover Target
• Active Data Guard
• Flashback Database

• Maximum Performance
• ASYNC Redo Transport
• Snapshot Standby
• Flashback Database
• Rolling Database Upgrades

Appendix

Data Guard vs.
Array-based Remote
Mirroring Solutions

491

492 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Appendix : Data Guard vs. Array-based Remote Mirroring Solutions 493

ou’ve made it through the book! Congratulations! But we’re not quite done with
you yet. Throughout your voyage, you have been learning about all the features
and every nuance of Data Guard. You have been following along as we peeked
into every dark corner and examined every knob, tool, and option available to
you. We sincerely hope that it has been worthwhile for you and that your Data

Guard knowledge has been considerably expanded. If there is any doubt still in your mind about
using Data Guard, we hope to expel it completely by comparing Data Guard against the other
most popular disaster recovery solution, remote mirroring.

The Basics
Array-based remote mirroring is available from several mainstream storage vendors, including
EMC, Hitachi, and Network Appliance. While the technology employed by each vendor differs
somewhat, in principle the method by which they replicate data to the remote site is very similar.
Because of this similarity, we’ll discuss the differences between remote mirroring solutions and
Data Guard in terms of topology, performance, and solution reliability when applied to disaster
recovery (DR).

Very rarely, if ever, is the execution of real-world DR plans the result of planned events.
Disasters of any type that would take out a primary production database simply don’t give us
advance notice that they are going to occur. To the contrary, they occur with no warning, and
allow us no time to test or make ready our DR site to accept the transition of our production
workload. It’s assumed that regardless of whether we are using Data Guard or an array-based
remote mirroring solution, we will have run DR exercises to test the readiness and thoroughness
of our DR planning at some time prior to the disaster occurring.

Many companies create task forces dedicated to business continuity in the event of disasters,
and those divisions of the IT group often perform DR exercises on a quarterly or semi-annual
basis. The processes involved in bringing up the DR infrastructure are thoroughly documented so
that in the event of a catastrophe, the failover of the application and database can occur without
errors—and, of course, with minimum or no data loss.

With a mirroring strategy, even though we may have tested our DR readiness earlier through
exercising controlled tests, when we completed those tests, the DR site had to be rebuilt from
scratch.

In other words, the DR site in place at the time of the actual disaster has never been tested.
In the simplest of terms, it will start and work, or it won’t.

Oracle Data Guard gives us the same flexibility of the array-based replication (and more) in
validating our DR readiness, without requiring the complete rebuild of the DR site. In Oracle
Database 10g Data Guard, we can open the standby database in read-only, or even read-write
mode executing Data Manipulation Language (DML) during our testing, and then return the DR
site to its previous state with absolutely no need to reinstantiate the DR site. We saw the operation
of this capability in Chapter 9 in the section on opening an Oracle Database 10g Release 2 Data
Guard standby in read-only and read-write mode. Also in Chapter 9, we demonstrated the
significant increase in flexibility for opening a DR standby database with Oracle Database 11g
Data Guard in both read-only and read-write mode with the introduction of snapshot standby
databases and Active Data Guard. In both Oracle Database 10g and 11g Data Guard, we are able
to return the opened DR standby database to its role as a managed DR standby.

Y

Appendix : Data Guard vs. Array-based Remote Mirroring Solutions 493

The flexibility and effectiveness of Data Guard in managing your DR standby databases
provides the ultimate return on investment (ROI) since expenditures for additional space
utilization do not have to be incurred.

Data Guard does not minimize the value of array-based remote mirroring when it comes to
storage not directly tied to the Oracle database data files themselves, such as file system data and
files. Often, the combination of Data Guard and storage array-based replication proves to be the
best combination, especially with application data not in the database. Of course, this does not
include the Oracle home, since with Data Guard you have separately installed homes on the
primary and standby systems.

Topology
The backbone of topology for Oracle Data Guard and array-based remote mirroring solutions is
a network and its associated components, the database servers, underlying storage supporting the
databases, and the databases themselves. It is a given that for a DR site to be an effective mirror of
the production site, ready to take over the production role at any time, it must be continuously
updated as changes occur on the production site. This is where the two technologies diverge from
one another and take very distinct and different approaches to keeping the DR site in sync with
the production site.

Array-based remote mirroring solutions by definition enable synchronization of the databases
via transmission of changed data as observed at the storage level from the primary database to the
standby database. Synchronization at the storage level requires the transmission of the database
redo that initiated the synchronization, in addition to every write to data files, other members of
the online redo log groups, archived log files, temporary data files, undo data files, and control
files. In addition, if flashback recovery is enabled, all writes to the flashback logs, and multiplexed
online redo and archive logs if they exist, need to be synchronized. All of this synchronization
activity must occur across the network and its associated components that are connecting the
primary and remote DR sites to each other. Contrast the requirements of array-based mirroring
with that of Oracle Data Guard, where only the writes to the online redo logs of the primary
database must be transmitted to the standby database.

When array-based remote mirroring solutions are implemented across WANs over long
distances, their underlying topology itself can become a limiting factor to its practicality as a DR
solution. When run synchronously for maximum data protection, a distance of around 60 miles
can be achieved using specialized network devices. Distances beyond this require additional
hardware in the form of repeaters and converters from third-party vendors. From a practical
standpoint, going beyond the distance of normal LAN coverage will most likely introduce
latencies that produce significant performance degradation to primary databases.

Performance
In primary and standby DR sites of close proximity, network latencies may not be high, and hence
any performance impact on the primary production database may be negligible. On the other
hand, true standby DR sites are rarely in close proximity to the primary production database.
Generally, true standby DR sites target zero data loss as a tenant of their design. It is important to
note that both array-based remote mirroring and Data Guard provide for zero data loss. The
mechanisms by which they achieve this are quite different, as noted earlier.

494 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Appendix : Data Guard vs. Array-based Remote Mirroring Solutions 495

Zero data loss dictates that a commit on the primary production database must be written to
disk on the remote standby database before the next transaction can proceed. As you know, when
transactions commit, their redo must be written out to the online redo log and that redo must be
transmitted to the remote standby database before the transactions actually commit. Both mirroring
and Data Guard have to obey this rule but what is happening underneath is slightly different. With
mirroring, the I/O to the online redo log is not acknowledged back to the log writer process
(LGWR) until the same blocks are sent over the network to the DR site, an additional I/O
performed on the DR disks, and the acknowledgment sent back. With Data Guard, the online redo
log file I/O is performed once, and then the LogWriter Network Service (LNS) process takes the
redo from memory, sends it over the network where it is written to the standby redo log, and sends
the acknowledgment to the LGWR process—still, two-disk I/Os and a network roundtrip for both
operations. This is why we tell users that it makes no sense to mirror the database and use Data
Guard at the same time, because you just end up with a minimum of three disk I/Os and two
network roundtrips.

But you should also consider that with mirroring, while the online redo log file (ORL)
processing from above is going on, any change to the database as a result of a write on the
primary database requires a corresponding change on the remote standby database. The bottom
line is many, many more writes are required with array-based remote mirroring than are required
with Data Guard. In addition, significantly more network roundtrips are required to maintain the
remote standby database in sync with the primary database when using array-based remote
mirroring.

One study using an OLTP workload that generated 3 MB/sec of redo with a synchronous zero
data loss configuration, and varying degrees of network latency, compared an off-the-shelf remote
mirroring solution with Data Guard. The remote mirroring solution introduced more than six times
the performance overhead of Data Guard at 10ms round trip times (RTT). As distances between the
primary database and the remote standby database increase, it is reasonable to assume the latencies
or RTT will also increase. This fact, coupled with the dramatically larger amount of data that must
be sent, received, and acknowledged in a zero data loss environment, reduces the practicality of
implementing array-based remote mirroring as a viable solution for DR. The converse of this
demonstrates the practicality of implementing Oracle Data Guard over large geographic distances,
improving the separation of a primary and standby DR database.

Reliability
As mentioned in the opening of this appendix, you don’t know if the mirrored database is actually
going to open until you have to activate it, which is usually during one of those “unplanned
disasters.” The biggest reason why this is so frightening is because you really don’t know what is
going on during the mirroring other than the changes are going over to the DR site. Should a
corrupt block occur on the primary database, an array-based remote mirroring solution will likely
replicate the corrupt block, as it would a clean block. You won’t find this out until you activate
the mirror during a failover and discover that the database will not start up. Oracle Data
Guard, on the other hand, validates all redo blocks before transmitting and applying them to
the remote standby database, eliminating the chance that corruptions will be propagated to
the remote standby database.

Appendix : Data Guard vs. Array-based Remote Mirroring Solutions 495

Final Thoughts
Oracle Data Guard has been built for one purpose: the reliable, successful propagation of data
from an Oracle primary database to one or more Oracle remote standby databases. Data Guard
provides the following significant advantages over array-based remote mirroring:

 No additional disk space nor special hardware is required. ■

 The network requirements are substantially less with Data Guard. ■

 Protection can be maintained across far greater geographic distances. ■

Both array-based replication and Data Guard provide compression algorithms to compress the
packets/blocks before the changed data is transmitted over the WAN, but many more implementation
options are available with Oracle Data Guard out of the box. With Data Guard, you have real-time
validation and application of redo. You can open the remote standby databases in read-only or
read-write mode (depending on the type of standby), and for the Oracle Database 11g physical
standbys, you also can have real-time apply of redo while the database is open in read-only mode.
Data Guard allows you to open a physical standby in read-write mode, complete thorough testing of
DR plans, application upgrades, or break-fix, and then return the database to its standby mode fully
utilizing your DR site. Snapshot standby databases, Real Application Testing (RAT), and active standby
databases offer a complete and comprehensive suite of availability configurations for nearly any
purpose.

Array-based remote mirroring can enable some of the same functionality by mounting the
remote file systems and then opening the remote standby database. The most significant difference,
though, is that once you have opened the remote standby database, it can no longer be maintained
in sync with the primary database, eliminating it from service as a DR site. Once the remote
standby database has been opened, you can return it to service as a DR site by shutting down the
instance, dismounting the file systems or ASM disks, and resynchronizing them from the preserved
image (Snapshot Image or business continuity volumes [BCV]). You can also snap off a copy of the
mirror database, activate it, and use it for testing. But not only does this require double the disk
space on the DR site and you are testing on stale data, it provides no guarantee that the actual
mirrored database is going to work when you need it.

Both array-based remote mirroring and Oracle Data Guard serve in many locations as the
primary DR vehicle that companies rely on in the event of a disaster. Before choosing your
environment, you should carefully consider all facets of your requirements and understand how
you can leverage your remote standby database to maximize the ROI of the significant outlay
that will be made to deploy a true disaster recovery site.

Think about this: If the head of IT comes to you and asks, “Are we ready for any kind of
failure?”, which of these answers would you prefer to give:

 “We know that the mirroring is working and the information is getting over there.” ■

 “Sure, we’re running our reporting over on the Active Data Guard standby database as ■
we speak, and we test with switchover every other Saturday.”

A

ABORT command, 316
ACID properties, 108–109
ACTIVATE STANDBY DATABASE

command, 57, 463
Active Data Guard, 371–375

basic configuration, 372–373
configuring, 374–375
overview, 13, 371–372
reader farms, 373–374
Real-Time Query, 373, 375
reporting, 26
vs. read-only physical standby, 351

active rate, 271–272
Active Session History (ASH), 146
active SQL sessions, 462
active standby databases, 26–29
ADD DATABASE command, 195, 200
ADDRESS_LIST, 380–382, 389
ADR (Automatic Diagnostic Repository), 433–434
adrci utility, 445–447
Advanced Compression option, 9, 59–60, 83, 99
AFFIRM attribute, 81, 83
AFFIRM processing, 57
AFFIRM standby database, 39
alert log files

historical information, 264–265
mining, 259–264
overview, 444–447
redo generation rate, 43
searching, 229
viewing, 228–229

alerts, severity categories, 263
aliases, 380
ALL setting, 134
ALL_LOGFILES value, 82
ALL_ROLES value, 82
ALTER command, 193
ALTER DATABASE statement, 456
ALTER SYSTEM commands, 199, 206
ALTER SYSTEM SET command, 204
ALTERNATE attribute, 84
Alternate property, 210
AlternateLocation property, 210
analysis, Database Replay, 366–367
ANALYZE command, 429
ANALYZER process, 147, 154
applications

JDBC, 389, 391–392
OCI, 385, 386, 391, 392
Real Application Clusters. See RAC
Real Application Testing, 28,

364–365, 398
Transparent Application Failover, 382–384

APPLIER processes, 147
apply engine, 163–164
apply lag, 159, 227, 231–233, 252, 272
apply method, 36, 61–62
apply rate, 271–272
apply services, 11–17. See also Redo Apply;

SQL Apply
considerations, 19–20
described, 4, 114

ApplyInstanceTimeout property, 202–203
ApplyParallel property, 207–208

Index

497

498 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Index 499
ARCH (archive) processes

compression, 83
dedicated, 80
deprecated for redo transport, 11, 56,

198, 304, 312
described, 115
gap resolution and, 10, 58
number of, 83–84
REMOTE_ARCHIVE_ENABLE

parameter, 79–80
ARCH transport, 11, 18, 56
architecture, 1–29
archive destination issues, 455
archive log files, 264–271

archivelog mode, 282–284
backing up, 426
deleting, 417, 418
destinations, 269–271
partial, 57, 304, 458
splitting, 102

archive processes. See ARCH
archived redo logs, 108, 463
ARCHIVE_LAG_TARGET parameter, 37, 266
archivelog mode, 282–284
array-based remote mirroring systems, 491–495
ASH (Active Session History), 146
ASH reports, 146, 157, 159
ASM (Automatic Storage Management)

migrating to, 396
standby data file location, 69–71
storing configuration files, 180–181

ASM disk groups, 57, 180, 269–271, 420
ASM instance, 69–70
ASM standby files, 69–70
ASMCMD utility, 180–181
ASSM (Automatic Segment Space

Management), 396
ASYNC attribute, 81
ASYNC (asynchronous) redo transport

architecture, 8
compression, 9
enhancements, 7
LNS send size and, 45
Maximum Performance mode, 36–37
optimizing, 8, 59–61
overview, 7–9
vs. SYNC transport, 38

asynchronous redo transport. See ASYNC
asynchronous standby destinations, 61
asynchronous transmission, 20
atomic, 108

atomicity, 108
attributes, deprecated, 84–85
AUTOBACKUP to ON parameter, 441
Automatic Diagnostic Repository (ADR),

433–434
automatic failover, 22–24, 335–347, 377–394
automatic gap resolution, 9–11
automatic log switch, 37
Automatic Segment Space Management

(ASSM), 396
automatic site/client failover, 377–394
Automatic Workload Repository. See AWR
auxiliary database, 411
availability

high. See high availability
maximum, 38–39
monitoring, 252–255
threats to, 2

AWR (Automatic Workload Repository), 43
AWR reports, 43–44, 146, 369, 397, 398

B

backouts
flashback, 429
from unsuccessful switchovers, 462–463

BACKUP AS COPY command, 419–420
backup files

physical standby database, 68–71
RMAN Oracle Database 10g, 94–97

backup pieces, 411
BACKUP RECOVERY FILES command, 441
backups, RMAN, 409–426

archive log deletion and, 417
archive log files, 426
canceling, 314
control files, 412, 418
creating standby database,

88–89, 91, 423
cumulative, 421
differential, 421
fast incremental, 27
full, 417–418
as image copies, 419–420
image copies rolled forward, 420–423
incremental, 411–412, 416, 421
incremental RMAN, 453–454
missing data files, 437–440
multiple copies, 440
offload, 27

Index 499
primary database, 417–418
scenarios, 417–426
standby control file, 416
on standby database, 423–425
strategies, 415–417

backupsets, 411, 425
bandwidth

compression and, 60
considerations, 43–44
described, 43
determining requirements for, 43–44
I/O, 119
latency and, 43–46
network, 43–46
tuning, 43–46

bandwidth-delay product. See BDP
base table trigger, 136, 137, 139
BCT (block change tracking), 411–412, 441
BCT files, 412
BCVs (business continuity volumes), 419
BDP (bandwidth-delay product), 49–50
BDP calculator, 50
bits, vs. bytes, 50
block change tracking (BCT), 411–412, 441
block checking, 125
blog.dataguardbook.com, 470
broker. See Data Guard broker
Broker log, 181, 323
Broker log files, 181, 323, 444, 448, 466
brokerage firm configuration, 478–480
BrokerResource Manager (RSM), 173–175
buffer cache locks, 111
buffered redo records, 3
BUILD command, 102–103
business continuity volumes (BCVs), 419
bystander logical standby database, 407
bytes, vs. bits, 50

C

cache, 111, 119. See also LCR cache; memory
Calibrate_IO utility, 119
“Cannot Open Archived Log” error, 456
catalog database, 411
catalogs, RMAN, 412
CHANGE command, 413
change vectors, 3, 108
channels, 411
check logical parameter, 441
checkpoint recovery phase, 117

checkpoints, 108, 149–150
clients

configuring, 387–392, 389
failover, 378, 387–394

client-side load balancing, 380–381
cloning database, 400, 423
Clusterware utility, 390, 400
cold failover clusters, 35, 473, 474
collections, 135
commands. See also specific commands

SQL, 102, 103, 173, 201, 301
switchover, 20, 303, 316–319, 348

commit records, 3
COMMIT statements, 4–5
COMMIT TO SWITCHOVER TO PRIMARY

command, 348
committing transactions, 111
CommunicationTimeout property, 175, 202
compatibility issues, 307, 320
COMPATIBLE parameter, 399, 403
COMPATIBLE setting, 405
compression

Advanced Compression, 9, 59–60, 83, 99
advantages of, 60
archive processes, 83
ASYNC redo transport, 9
asynchronous standby destinations, 61
considerations, 60–61
CPU resources and, 60
Data Guard Broker and, 61
enabling, 60–61
gap resolution, 61
purpose of, 60–61
redo, 45, 59–61, 282

COMPRESSION attribute, 83
configuration

Active Data Guard, 374–375
ASYNC redo transport, 59–61
clients, 387–392
Data Guard Broker. See Data Guard Broker
databases, 388, 390, 391, 392–394
displaying, 73
options for, 35–62
protection modes. See protection modes
redo transport mode, 42
RMAN, 412–415
SRL files, 56–58, 75–77
TAF, 382–384
tuning network, 42–56
verifying with Grid Control, 224–226
zero data loss and, 33–34, 39

500 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Index 501
configuration errors, 450–456
configuration files

Data Guard Broker, 174, 176–178
storing, 180–181

configuration-level properties, 201–202
CONFIGURE command, 413
CONNECT command, 178, 190, 193–195
connect identifiers, 72, 222, 223
connect strings, 183–186, 188, 413–414
connect time failover, 380–381
CONNECT_DESCRIPTOR, 381
connection load balancing, 380–381
consistency, 108
control files

backing up, 412, 418
losing, 432
managing, 412
primary, 412, 432
recovering, 432
restoring, 412
standby, 412, 432
troubleshooting, 469–470

CONVERT TO PHYSICAL statement, 406
COORDINATOR process, 147, 154, 167
COPY DATAFILE command, 420
COPY TABLESPACE command, 420
corruption, 3, 13
corruption protection, 13–14, 475
CPU resources, 60
CREATE CONFIGURATION command, 181,

193–194, 195
CURRENT_SCN value, 273–275

D

data blocks
block change tracking support,

411–412, 441
checking, 125
corrupted, 426–429
logical block checking, 441
soft-corrupt, 112

Data Center migration, 396
Data Definition Language. See DDL
Data Guard

accessing features, 220–221
architecture, 1–29
categories, 35–62
components, 114–124
goals of, 11–12

health checks, 224–225
implementing. See implementation
managing. See management
monitoring. See monitoring
overview, 2–5
planned migration, 396–398
planning for, 32–63
protection modes. See protection modes
rolling upgrades, 15, 396, 398–407
troubleshooting. See troubleshooting
vs. remote-mirroring, 3, 491–495

Data Guard Apply, 11, 12, 114, 118–119
Data Guard Broker, 171–217. See also

DGMGRL
basics, 179–193
Broker log, 181, 323
bypassing, 92
changing configuration properties, 200–210
changing database state, 200, 211–212
changing protection mode with, 212–213
compression and, 61
configuration files, 174, 176–178
configuring, 66–67, 72, 73, 88, 221–224
configuring Oracle Net Services, 187
connect strings, 183–185
connecting to, 190–196
considerations, 26, 63, 71, 72, 173
creating/enabling configurations, 193–200
database connections, 72
described, 25
health checks, 448–449
illustrated, 64
log files/tools, 444, 448–449, 466
managing Data Guard with, 193–213
monitoring Data Guard with, 214–216
Oracle Net Services, 183–187
overview, 25, 172–178
parameters, 179–183
performing failover with, 334
performing switchover with, 323
process flow, 174–176
process model, 173–174
Real Application Clusters, 176, 187–190
reliability of, 172
removing from production

database, 216–217
removing standby database, 250–251
troubleshooting, 464–468
using, 92

Data Guard Broker CLI, 178
Data Guard Handbook website, 422–423

Index 501
Data Guard home page, 73–75, 220, 248, 251
Data Guard (DG) Menu utility, 276–297
Data Guard Monitor. See DMON
Data Guard Net Server, 174
Data Guard Setup, 63, 66–77
Data Guard Switchover, 395–408
Data Guard wizard, 63, 68, 77, 178
data loss

acceptable loss, 33–34
failover and, 303–308
network considerations, 34
overview, 33–34
time loss, 33
transaction loss, 33
zero. See zero data loss

Data Recovery Advisor, 433–434
data types, unsupported, 130, 135, 407
database administrator. See DBA
database alert logs, 444–447
database checkpoint, 108
Database Control, 221, 366–368
database ID (DBID), 404
database image copies, 419–420
database level enforcement, 113
database management. See management
database metrics, 226–228
database monitoring. See monitoring
Database Replay, 364, 365–370, 398
database status, 448
Database Unique Name, 71
Database Upgrade Assistant (DBUA), 400–401
database writer process (DBWn), 4, 5
database-level properties, 202–209
database_role attribute, 142, 143
databases

active standby, 26–29
alternate destinations, 84
cloning, 400, 423
configuring, 388, 390, 391, 392–394
connect string, 183–186, 188, 413–414
Flashback. See Flashback Database
logical standby. See logical standby

databases
names, 78–79
physical standby. See physical standby

databases
primary. See primary databases
remote mirroring systems, 3, 13, 491–495
rolling upgrades, 15, 396, 398–407, 476
snapshot standby, 27, 250, 353–364, 468
“split brain” condition, 24

standby. See standby databases
states, 200, 211–212
switching primary/standby. See switchover
target, 411
unique names, 41, 79, 81–82, 412, 461
VLDB, 419

datafile checkpoint, 108
datafiles

losing on primary database, 430–431
losing on standby database, 431
missing, 437–440
recovering, 430–431, 437–440
renaming, 456
standby, 69–71

dataguardbook.com, 276
datasets

available at logical standby, 128
creating at logical standby, 141–145
local, 141–145
replicated from primary database,

129–134
DBA (database administrator)

monitoring and, 164, 258, 269
protecting data, 410
SYSDBA role, 72, 277

DBA_LOGSTDBY_EVENTS view, 164, 168,
289–290, 407, 449

DBA_LOGSTDBY_LOG view, 449
DBA_LOGSTDBY_PARAMETERS view, 292
DBA_LOGSTDBY_PROCESS view, 292–294
DBA_LOGSTDBY_PROGRESS view, 449
DBA_LOGSTDBY_STATS view, 291–292
DBA_LOGSTDBY_UNSUPPORTED view, 449
DB_BLOCK_CHECKING parameter, 125, 475
DB_BLOCK_CHECKSUM parameter, 475
DB_CACHE_SIZE parameter, 119
DB_CREATE_FILE_DEST parameter, 80
DB_CREATE_ONLINE_LOG_DEST

parameter, 75
DB_FILE_NAME_CONVERT attribute, 86
DBID (database ID), 404
DB_LOST_WRITE_PROTECT parameter, 475
DB_LOST_WRITE_PROTECTION

parameter, 125
DBMS_JOBS, 142
dbms_logstdby.apply_set parameter, 148
DBMS_LOGSTDBY.SKIP procedure, 130–131
dbms_logstdby.skip_transaction

procedure, 167
DBMS_SCHEDULER, 142–145, 387
DBMS_SERVICE PL/SQL package, 390

502 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Index 503
DB_NAME parameter, 78–79
DB_ROLE_CHANGE system event, 386–387,

388, 390, 393
DBUA (Database Upgrade Assistant), 400–401
DB_ULTRA_SAFE parameter, 125, 126
DB_UNIQUE_NAME attribute, 41, 79, 81–82
DB_UNIQUE_NAME parameter, 41, 78–79, 195,

412, 461
DBVERIFY utility, 112, 429
DBWn (database writer process), 4, 5
DBWR processes, 111, 119
DDL (Data Definition Language), 87–88
DDL issues, 460
DDL statements, 131, 135, 164
DDL transactions

skipping, 167–168, 295–296
SQL Apply, 153–157

deadlocks, 165–167
DELAY attribute, 84, 118, 383
DelayMins property, 207
DELETE ALL INPUT, 441
delete command, 418
dependent transactions, 304
deployment architectures, 471–489

data distribution, 483–484
extended geographic separation, 478–480
government agency configuration,

480–483
high availability configurations, 473–480
high availability/disaster recovery, 476–485
insurance company configuration,

486–488
manufacturing configuration, 473–476
maximum availability, 486–488
multi-site threat protection, 480–483
overview, 472
pharmaceutical company configuration,

483–484
retail brokerage firm configuration,

478–480
utility company configuration, 476–478
web retailer configuration, 484–485
zero data loss configurations, 476–480

DESCRIPTION_LIST, 380–381
DG (Data Guard) Menu utility, 276–297
DG_BROKER_CONFIG parameters,

176–177, 179
__DG_BROKER_SERVICE_NAMES parameter,

183–184
DG_BROKER_START parameter, 173, 181–183
dg.conf file, 276

DGConnectIdentifier property,
184, 185, 188

DGConnectionIdentifier property, 210
DGMGRL (Data Guard command-line

interface), 25, 66, 178, 447
DGMGRL CLI. See also Data Guard Broker

accessing, 178, 186
components, 193
configuring Broker, 193–210
configuring Data Guard, 181–183
connecting to Broker, 190–196
considerations, 173, 178, 186, 193, 205
disabling configuration, 466
help, 178
observer operations, 447, 467–468
performing failover, 334
performing manual restate, 341–342
performing switchover, 323
querying database, 448, 449
stopping processes, 362
using with Broker, 178
vs. Grid Control, 178

diagnostic information, 444–449
diagnostic scripts, 296
directories, 94, 180–181, 356
disaster recovery. See DR
Disaster Recovery Center (DRC) log

files, 444–447
DML statements, 131
DML transactions, 151–153
DML triggers, 136, 137
DMON log files, 448
DMON process, 173, 175, 177
DMON (Data Guard Monitor) process, 173, 448
DNS caching, 388
DNS name mapping, 388
DNS servers, 388
DR (disaster recovery), 26, 300, 302,

472, 476–485
DR solutions, 26, 300, 302, 472
DRC log, 183, 194, 216
DRC (Disaster Recovery Center) log files,

444–447
DRC processes, 174
dropped tables

flashback, 429
recovering from, 437

DUPLICATE command, 423
DUPLICATE FOR STANDBY command, 423
durability, 109
dynamic performance views, 449

Index 503

E

_EAGER_SIZE parameter, 150
EDIT command, 200–210
EDIT CONFIGURATION command,

202, 212–213
EDIT DATABASE command, 209,

211, 216
EDIT INSTANCE command, 209–210
EDS (Extended Datatype Support),

135, 407
ENABLE DATABASE command, 199
End Of Redo (EOR) marker, 301, 303, 348
Enterprise Manager (OEM), 25–26, 64, 124.

See also Grid Control
EOR (End Of Redo) marker, 301, 303, 348
error messages

“Cannot Open Archived Log,” 456
“No Data Found,” 456, 460
“Object Not Part of Data Guard Broker

Configuration,” 467
“Operation Disallowed,” 464–465
“ORACLE not available,” 450
“Parameter %s Cannot Be

Parsed,” 457
“TNS Packet Reader Failure,” 458
“Unsupported Record,” 460

errors. See also troubleshooting
configuration, 450–456
converting to snapshot standby, 468
log shipment, 458
management, 450–456
ORA. See ORA error codes
password file, 450
SQL Apply, 450–451
TNS, 175
user, 429–430
V$DATAGUARD_STATUS,

284–285
VERIFY command, 448

escape character, 131
events

checking for, 289–290
DB_ROLE_CHANGE system, 386–388,

390, 393
FAN, 385, 386, 389, 392
ONS, 392–393

exclusive locks, 111
Export/Import utility, 407
Extended Datatype Support (EDS), 135, 407

F

failback, 300, 397
failover, 302–309. See also switchover

automatic, 22–24, 335–347, 377–394
client, 378, 387–394
client notification, 378
complete, 378–379, 387–394
connect time, 380–381
with Data Guard Broker, 324
data loss and, 303–308
DB_ROLE_CHANGE system event,

386–387
efficient reconnection, 378
Fast-Start Failover, 335–347, 447
Flashback Database and, 243
flashback technologies and, 309–310
gap resolution and, 308, 331
inevitabiity of, 53, 310–311
issues, 463
logical standby database, 303, 328–329
manual, 22–24, 240–243
Maximum Availability mode, 325, 339
Maximum Performance mode, 303, 306,

308, 328, 340
Maximum Protection mode, 42, 303, 307,

325, 328, 339
multiple standbys and, 348
outbound connect timeout, 381–382
overview, 21–24, 302
partial, 379, 388–389
performing, 324–347
performing with Grid Control,

240–243, 334
physical standby, 303, 326–328
primary databases and, 22
redo gaps and, 326, 328
reinstating primary, 329–333
service relocation, 378
site, 378–379
“split brain” condition, 24
TCP timeouts, 381–382, 384, 386,

390–391
thread merging and, 304, 307–308
timeouts, 381–382
Transparent Application Failover, 382–384
triggers, 387, 390, 393–394
vs. switchover, 309

failover process, 303
FAL (Fetch Archive Log), 87, 266

504 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Index 505
FAL client, 87
FAL requests, 308
FAL_CLIENT parameter, 87
FAL_SERVER parameter, 87
FAN (Fast Application Notification), 384–386
FAN events, 385, 386, 389, 392
FAN messaging, 385, 390, 392
FAN OCI (Oracle Call Interface), 385–386
FAN Oracle Notification Service (ONS), 385
Fast Application Notification. See FAN
Fast Connection Failover (FCF), 385
Fast-Start Failover (FSFO) feature, 243,

335–347, 447
FCF (Fast Connection Failover), 385
FDDI (fiber distributed data interface), 44
Fetch Archive Log. See FAL
fiber distributed data interface (FDDI), 44
files

ASM standby, 69–70
backup. See backup files
BCT, 412
configuration. See configuration files
listener, 48, 52, 53, 65, 89, 185
log. See log files
OMF, 226, 469–470
ORL. See ORL files
password, 89, 104, 278–279, 450
pfile, 61, 104, 216, 418
spfile, 61, 95, 179, 216, 418
SRL. See SRL files
standby, 284
TNSNAME, 183, 184, 192
trace, 447–448

FILESPERSET parameter, 440
FINISH APPLY qualifier, 328
FINISH command, 326, 327, 330
fire_once_only property, 136, 137, 140
flash recovery area, 71, 85, 230–231, 255
Flash Recovery Area (FRA), 429
Flashback Database, 309–311

considerations, 309, 311
database rollbacks, 429–430
described, 230, 309
enabling, 230–231
failovers and, 243
logging capabilities, 230–231
uses for, 310

flashback drop, 309, 429
flashback logging, 404
flashback query, 309, 429
flashback SCN, 331, 332

flashback table, 429
flashback technologies, 309–311
flashback transaction backout, 429
FLASHBACK_SCN number, 332
FLASHBACK_TRANSACTION_QUERY

view, 168
FOR DB_UNIQUE_NAME clause, 413–414
force logging, 63, 113–114, 279, 281
FORCE LOGGING clause, 279, 281
FORCE qualifier, 327
FRA (Flash Recovery Area), 429
FROM ACTIVE DATABASE method, 67
FSFO (Fast-Start Failover) feature, 243,

335–347, 447
FSFO.dat file, 447

G

gap resolution
automatic, 9–11
compression, 61
considerations, 39
failover and, 308, 331
network and, 58
ORLs and, 8
proactive, 87
reactive, 87

gaps
archive log, 266–268
redo. See redo gaps

global checkpoint, 108
government agency configuration, 480–483
Grid Control, 219–256

accessing Data Guard features, 220–221
adding standby redo logs, 224–226
canceling apply, 76–77
changing protection modes with,

234–236
configuring Data Guard Broker, 221–224
configuring FSFO, 243, 345–347
creating logical standby databases,

244–250
creating standby databases, 67–73,

221–222
editing standby database properties,

236–238
enabling FlashBack Database, 230–231
High Availability Console, 252–255
metrics, 226–228
modifying standby databases, 222–224

Index 505
overview, 220
performing failover, 240–243, 334
performing switchover, 238–240,

323–324
power user method, 78–98
Real-Time Query, 375
reviewing Data Guard performance,

231–234
specifying backup files, 68–71
specifying standby SID, 68–69
starting Observer from, 342–343
using, 65–77
using with Broker, 178
verifying configuration, 224–226
viewing alert log files, 228–229
vs. Database Control, 221
vs. DGMGRL, 178

Grid Control Jobs page, 74
Grid Control snapshot convert, 363
group commits, 4
GRP (guaranteed restore point), 27–28, 310,

315, 354, 400
guaranteed restore point (GRP), 27–28, 310,

315, 354, 400
GUARD setting, 134

H

HA. See high availability
health checks, 224–225, 324, 448–449
HELP command, 178, 447
HEXTORAW function, 168
high availability (HA), 35, 252–255
high availability (HA) configurations, 473–480
High Availability Console, 252–255
high availability/disaster recovery (HA/DR),

476–485
high-speed networks, 43

I

image copies
backups as copies, 419–420
described, 411
rolled forward, 420–423

implementation, 31–106
configuration options, 35–62
creating logical standby database, 98–105
creating physical standby database, 63–98

determining requirements, 33–35
planning for, 32–63
RAC and, 105–106

InconsistentLogXptProps property, 448
InconsistentProperties property, 448
incremental backups, 27, 453–454
INDEX REBUILD statements, 155
InitialConnectIdentifier property,

184, 185, 188
instance recovery, 109
instance-level properties, 209–210
instances

Maximum Availability mode, 38–39
Maximum Performance mode, 37
Maximum Protection mode, 40–41

insurance company configuration, 486–488
INSVs (internode servers), 176
internode servers (INSVs), 176
I/O bandwidth, 119
IP addresses, 379, 387, 388
isolation, 109

J

Java Database Connectivity. See JDBC
Java Virtual Machine (JVM), 385
JDBC (Java Database Connectivity), 380, 385
JDBC applications, 389, 391–392
JDBC clients, 380, 382, 385
JDBC driver, 386
jobs, canceling, 314
JVM (Java Virtual Machine), 385

K

KEEP IDENTITY clause, 15, 404
kernel slaves (KSV), 119–120
kilobits, 50
KSV (kernel slaves), 119–120

L

lag
apply, 272
SQL Apply, 296–297
transport, 272

LANs (local area networks), 44
large objects (LOBs), 135

506 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Index 507
latency

ASYNC model and, 44
availability and, 38
bandwidth calculations and, 43–46
BDP and, 49–50
third-party replication products, 153

LatestLog property, 216
LCR cache, 159–163

considerations, 165
increasing size of, 157, 161–162
overview, 147–149
paging and, 295

LCR paging, 295
LGWR (log writer) process

asynchronous redo transport, 7–8
described, 3, 115
flushing redo buffers, 111
redo transport and, 5
SRL file I/O and, 56
writing to ORL, 4

LIST BACKUPSET SUMMARY command, 425
LIST DB_UNIQUE_NAME OF DATABASE

command, 415
LIST FAILURE command, 434
listener, 185–187
listener files, 48, 52, 53, 65, 89, 185
LISTENER.ORA file, 47–48, 51–52, 186, 454, 463
LNS (Log Network Server), 5–10
LNS (LogWriter Network Service), 115
LNS process

improving read speed, 59
reconnection, 81
timeouts, 81

LNS send size, 45
load balancing

client-side, 380–381
connection, 380–381
server-side, 380

LOBs (large objects), 135
local area networks (LANs), 44
local checkpoint, 108
LOCATION attribute, 84–85
log buffers

hit ratio, 8
increasing size of, 59
resizing, 59
tuning, 59

log files
alert. See alert log files
archive. See archive log files
archivelog mode, 282–284

bad, 233, 234
Broker, 181, 323, 444, 448, 466
DMON, 448
DRC, 444–447
FAL, 87, 266
gaps in, 9–11
MV logs, 141
nologging issue, 456, 468–469
observer, 447
ORL. See ORL files
SRL. See SRL files
standby database waiting on, 455
standby redo, 37
switching, 37, 56
target standby alert log, 315, 317–318
values for, 82

Log Network Server (LNS), 5–10
log read recovery phase, 117
log shipment errors, 458
log switches

archive, 264
automatic, 37
forcing, 37, 266
redos and, 56
SYNC standby database and, 38–39

log writer. See LGWR
LOG_ARCHIVE_CONFIG parameter, 41, 79
LOG_ARCHIVE_DEST parameter, 403

attributes, 80–86
considerations, 399
Data Guard Broker, 197–198, 205–207
deprecated attributes, 84–86
enabling compression, 61
Maximum Availability mode, 42
Maximum Performance mode, 42
Maximum Protection mode, 42
overview, 36, 80, 205–207
upgrades, 403

LOG_ARCHIVE_DEST_STATE attribute, 86
LOG_ARCHIVE_MAX_PROCESSES

parameter, 79–80
LOG_ARCHIVE_TRACE parameter, 45
log-based replication, 130, 134, 135, 144–145
LOG_BUFFER parameter, 59
LOG_FILE_NAME_CONVERT

parameter, 87, 403
log-force at commit, 111
logging

at database level, 113
flashback, 404
supplemental, 101, 103

Index 507
at table level, 114
at tablespace level, 113

logging table trigger, 136, 137, 140
logging tables, 136–141
logical block checking, 441
logical standby databases, 127–170. See also

SQL Apply
alert log file entries, 264
bystander, 407
considerations, 128–129
creating, 98–105
creating local dataset at, 141–145
creating via physical standby database,

101–105
creating with Grid Control, 244–250
customizing, 141–145
dataset replicated from primary, 129–134
datasets available at, 128
DG Menu utility, 285–297
diagnostic scripts, 297
failover, 303, 328–329
materialized views, 141–142
monitoring, 285–297
nologging issue, 456
operational aspects, 145–170
overview, 128–129
parameters, 292
prerequisites, 98–101
processes, 292–293
properties, 208–209
protecting replicated tables on, 134–141
reinstating primary after failover, 331–333
resyncing, 456
role transitions, 129
rolling upgrade, 399–407
scheduler jobs, 142–144
skipping DDL transactions, 295–296
skipping table entries, 245–250
status codes, 293–294
steady state issues, 34, 42–44, 128
streams and, 483
Streams capture, 144–145
stuck appliers, 294–295
support for, 98–101
switching to, 320–323
switchover, 301–302, 320–323
switchover failures, 466
transient, 15, 402–407
troubleshooting, 459–461
uses for, 128
using physical database for, 98–101

Logical Standby Process (LSP), 15–17, 115
logical standby properties, 208–209
LogMiner dictionary, 102–105, 154, 404
logminer memory spill, 149
LogMiner utility, 167–169
LogShipping property, 204, 205
LOGSTDBY status, 264
LogWriter Network Service (LNS), 115
LogXptMode parameter, 465
LogXptStatus property, 448
lost writes, 125–126
LSP (Logical Standby Process), 15–17, 115

M

MAA (Maximum Availability Architecture),
29, 480

MAA team, 58
managed recovery, 113
MANAGED RECOVERY command, 319
Managed Recovery Process. See MRP
management

with Broker, 193–213
errors, 450–456, 459
memory, 147–149
overview, 24–26
troubleshooting, 450–456, 459

MANDATORY attribute, caution about, 85
manufacturing configuration, 473–476
materialized views (MVs), 141–142
MAX_CONNECTIONS attribute, 83–84
MAX_FAILURE attribute, caution about, 85–86
Maximum Availability Architecture. See MAA
Maximum Availability mode

failover and, 325, 339
LOG_ARCHIVE_DEST parameter, 42
overview, 18–19, 38–39
vs. Maximum Protection mode, 40

Maximum Performance mode
failover and, 303, 306, 308, 328, 340
LOG_ARCHIVE_DEST parameter, 42
mixing standby databases, 39
overview, 18, 36–37

Maximum Protection mode
failovers and, 42, 303, 307,

325, 328, 339
FSFO and, 339
LOG_ARCHIVE_DEST parameter, 42
overview, 19, 39–41
vs. Maximum Availability mode, 40

508 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Index 509
MAXOPENFILES parameter, 440
MAX_SGA setting, 148, 150, 157, 158, 295
mean time to recover (MTTR), 416
media failures, 426
media recovery, 13, 110, 119–120
Media Recovery Coordinator (MRP0), 12
media recovery failures, 455–456
megabits, 50
megabytes, 50
memory. See also cache

media recovery and, 119
mining engine and, 148, 162
SQL Apply, 147–149
System Global Area, 3, 109, 146, 148, 150
TCP tuning and, 49

memory spill, 149
merged redos, 304, 305
METHOD attribute, 383
metrics, 226–228
migration, planned, 396–398
mining engine

checkpoints and, 149–150
DDL statements and, 154
memory and, 148, 162
processes in, 146
transaction chunking and, 150
tuning, 159–162

mirroring, remote, 3, 13, 491–495
monitoring, 257–297

active rate, 271–272
alert log files, 259–264
apply lag, 272
apply rate, 271–272
archive log files, 264–271
archive log mode, 282–284
current environment, 277–297
with Data Guard Broker, 214–216
DG Menu utility, 276–297
events, 289–290
LCR paging, 295
logical standby databases, 285–297
MRP status, 275–276
nologging activities, 279–282
overview, 258–259
password file, 278–279
redo transport delays, 268–269
SQL Apply lag, 296–297
standby databases, 272–276
standby file management, 284
stats, 291–292
stuck appliers, 294–295

transport lag, 272
V$DATAGUARD_STATUS errors, 284–285

MOUNT state, 189, 190
MRP (Managed Recovery Process)

applying redo, 73, 74
described, 115
errors, 457–458
reporting status of, 275–276
restarting, 47, 77
shutting down, 72, 73
stopping, 46, 76–77, 319

MRP0 (Media Recovery Coordinator), 12
MTTR (mean time to recover), 416
multiplexing, 57, 75–77, 90
MV logs, 141
MVs (materialized views), 141–142

N

names, unique. See unique name
nested tables, 135
NET_TIMEOUT attribute

Data Guard Broker, 198, 206
high availability and, 475, 477, 478
overview, 81
protection modes, 18–19, 38

network bandwidth. See bandwidth
networks

data loss and, 34
gap resolution, 58
high-speed, 43
LANs, 44
latency. See latency
throughput, 44
tuning, 42–58
WANs, 44

“No Data Found” error, 456, 460
NOAFFIRM attribute, 83
NOLOGGING activities, 279–282
NOLOGGING clause, 279–282, 468–469
nologging issue, 456, 468–469
nologging operations, 111–114
NOREGISTER attribute, caution about, 86
NSV processes, 174

O

OBJECT data type, 99, 135
“Object Not Part of Data Guard Broker

Configuration” error, 467

Index 509
Observer, 335–347, 447
observer log files, 447
observer servers, 467–468
OCI (Oracle Call Interface), 385–386
OCI applications, 385, 386, 391, 392
OEM (Enterprise Manager), 25–26, 64, 124.

See also Grid Control
offload backups, 27
offload read-only queries, 13, 26
OLTP (online transaction processing), 44
OLTP database, 144
OLTP nodes, 44
OMF (Oracle Managed Files), 226, 469–470
online redo log files. See ORL files
online transaction processing. See OLTP
ONLINE_LOGFILE value, 82
ONS (Oracle Notification Service), 385
ONS daemons, 385, 392
ONS events, 392–393
ONS publisher, 392–393
OPEN RESETLOGS command, 309, 310, 437
OPEN state, 302
operating systems, migrating to different

platform, 396
“Operation Disallowed” error, 464–465
optimization. See also performance

ASYNC redo transport, 8, 59–61
log clearing, 403
queries, 176
switchover, 403

optimizer statistics, 365
ORA error codes, 259–263
ORA-00257 error, 269–271
ORA-00308 error, 456
ORA-00326 error, 57, 457–458
ORA-600 3020 error, 126
ORA-00600 error, 259
ORA-752 error, 126
ORA-01031 error, 457
ORA-01034 error, 450
ORA-01102 error, 461
ORA-01403 error, 456, 460
ORA-3133 error, 386
ORA-4031 error, 164–165
ORA-04042 error, 169–170
ORA-12514 error, 186
ORA-12570 error, 458
ORA-16032 error, 455
ORA-16066 error, 457
ORA-16191 error, 450
ORA-16204 error, 457

ORA-16211 error, 460
ORA-16596 error, 467
ORA-16627 error, 213, 464–465
ORA-16642 error, 193–194
ORA-17503 error, 183
ORA-26786 error, 167
ORA-26787 error, 167
ORA-38500 error, 118
Oracle Advanced Compression

option, 9, 59–60, 83, 99
Oracle Call Interface. See OCI
Oracle Clusterware, 400
Oracle Data Pump, 133, 407
Oracle Database 10g Release

parallel recovery, 119
read-write standby, 353–357
RMAN, 94–98

Oracle Database 11g Release. See also databases
data protection changes, 124–125
MAX_CONNECTIONS attribute caution, 84
parallel recovery, 119
RMAN, 88–94

Oracle Enterprise Manager. See OEM
Oracle Managed Files (OMF), 226, 269–470
Oracle Net aliases, 380
Oracle Net Services, 5, 6, 53, 54, 183–187
“ORACLE not available” error, 450
Oracle Notification Service. See ONS
Oracle Real Application Clusters. See RAC
Oracle recovery. See recovery
Oracle Recovery Manager. See RMAN
ORACLE_HOME location, 400–401, 404, 405
ORL (online redo log) files

described, 3, 108
gap resolution and, 8
LGWR writing to, 4
MANDATORY attribute and, 85
not receiving, 454–455
recovering, 432–436
size, 56, 116
SRL files and, 37, 116
transmitting, 8

O/S. See operating systems
outbound connect timeout, 381–382

P

parallel media recovery (PMR), 119–120
PARALLEL option, 118
parallel query (PQ) slaves, 117, 119–120

510 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Index 511
“Parameter %s Cannot Be Parsed” error, 457
parameters, 78–88. See also specific parameters

considerations, 41
primary role, 80–86
protection modes, 41
role-independent, 78–80
standby role, 86–88

password files, 89, 104, 278–279, 450
passwords

physical standby database, 68–69
problems with, 450
SYS, 277

peak state, 34
performance. See also optimization

I/O best practices, 57–58
maximum, 36–37
Redo Apply, 13
remote mirroring, 493–494
reviewing with Grid Control, 231–234
SQL Apply, 157–164
standby apply, 17

pfile, 61, 104, 216, 418
PGA (Program Global Area), 111
pharmaceutical company configuration,

483–484
physical standby

switchover, 301–302, 315–320
physical standby databases. See also Redo Apply

backup files, 68
checking capability, 125–126
choosing interface, 63–64
components of, 114–124
corruption detection, 124–126
creating, 63–98
creating logical standby database via,

101–105
data file location, 69–71
data protection, 124–126
failover, 303, 326–328
Grid Control and, 65–77
location, 69
manual recovery on, 457–458
naming, 71–72
opening after switchover, 302
password, 68–69
power user method, 78–98
prerequisites, 64–65
primary redo and, 28
read-only mode, 350–353
read-write mode, 352–353
reinstating primary after failover, 329–331

snapshot, 353–364
specifying SID for, 68–69
switching to, 301–302, 315–320
switchover failures, 465–466
system ID, 68–69
transfer method, 69
troubleshooting, 456–458
username, 68–69

physical standby method. See Redo Apply
pipeline, 159, 163
PL/SQL (Procedural Language/Structured Query

Language), 122, 130, 277, 284, 398
PL/SQL procedures, 130, 135, 162
PMR (parallel media recovery), 119–120
PQ (parallel query) slaves, 117, 119–120
PR0x processes, 115, 120
PreferredApplyInstance property,

187–188, 203
PREPARE TO SWITCHOVER operation, 407
PREPARER processes, 146, 160–161, 292–295
preserve_commit_order parameter, 148,

151–152, 158, 166
primary control files, 412, 432
primary databases

backups, 417–418
control file loss, 432
described, 2
failover and, 22
incomplete recovery of, 436–437
Maximum Availability mode, 38–39
Maximum Performance mode, 36–37
Maximum Protection mode, 40–41
read-write clone, 353–357
recovering datafiles on, 430–431
Redo Transport, 14
registered, 412–413
reinstating after logical standby failover,

331–333
reinstating after physical standby failover,

329–331
remote archival failure, 457
shutdown (unwanted), 456–458
switching with standby. See switchover
transitioning standby to, 466–467
transitioning to standby role, 466

primary redo, 28
PRIMARY_ROLE value, 82
proactive gap resolution, 87
problems. See troubleshooting
Procedural Language/Structured Query

Language. See PL/SQL

Index 511
proc_name argument, 131
production databases. See primary databases
Program Global Area (PGA), 111
properties. See also specific properties

ACID, 108–109
configuration-level, 201–202
database-level, 202–209
instance-level, 209–210
logical standby, 208–209
reverse, 204–205
SQL, 207–208

protection modes. See also specific
protection modes

changing with Broker, 212–213
changing with Grid Control, 234–236
choosing, 36–42
considerations, 20, 41–42
described, 18, 36
displaying, 75
FSFO and, 339
NET_TIMEOUT attribute, 18–19, 38
overview, 18–19
parameters, 41
RPO and, 62–63
RTO and, 62–63
setting, 41–42

psfiles, 418

Q

QA environment, 353–364
queries

flashback, 309, 429
offload read-only, 13, 26
optimized, 176
parallel query slaves, 117, 119–120
Real-Time Query, 212, 236, 373, 375
SQL, 275

query SCNs, 13
queue lengths, 54–56

R

RAC (Real Application Clusters)
Data Guard Apply and, 12
Data Guard Broker and, 176, 187–190
Data Guard implementation and, 32,

105–106
Maximum Performance mode, 37

migrating to, 396
primary database, 77
redo generation rate, 43–44

RAC instances, 176
RAID controllers, 58
RAT (Real Application Testing), 28, 364–365,

371, 398
reactive gap resolution, 87
read performance, 484
reader farms, 373–374
READER process, 146, 147–148, 292
reader-farm scale out, 484–485
read-only mode, 350–353
read-write clone, 353–357
read-write mode, 352–353
read-write standby database, 353–357
Real Application Clusters. See RAC
Real Application Testing (RAT), 28, 364–365,

371, 398
Real Time Apply (RTA), 115, 117–119, 207, 353
Real-Time Query, 212, 236, 373, 375
receive buffer, 49, 51–53, 59
receive queue limits, 55
RECOVER DATABASE command, 432, 434
RECOVER TO LOGICAL command, 104
recoveries, RMAN. See also recovery; RMAN

block corruption, 426–429
control file loss on primary database, 432
control file loss on standby database, 432
datafile loss on primary database, 430–431
datafile loss on standby database, 431
datafiles, 430–431, 437–440
dropped tables, 437
incomplete recovery of primary database,

436–437
loss of online redo log files, 432–436
media failures, 426
online redo log file, 432–436
scenarios, 430–440
strategies, 426–430
user errors, 429–430

recovery. See also redo processing
ACID properties, 108–109
checkpoint phase, 117
concepts/components, 108
Flashback Database, 429–430
instance, 109
log read phase, 117
managed, 113
media, 110, 119–120
monitoring, 120–124

512 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Index 513
nologging operations, 111–114
overview, 109–110
parallel media, 119–120
redo apply phase, 117
RMAN. See recoveries, RMAN
thread merging, 110
types of failures, 109

recovery catalog, 412
recovery database, 411
Recovery Manager. See RMAN
recovery phases, 117
recovery point objective. See RPO
recovery rate, 118–119
recovery SCN, 331
recovery time objective. See RTO
redo allocation latch, 111
Redo Apply, 12–15. See also physical standby

databases
advantages, 14–15, 17
considerations, 20
corruption detection, 13–14
errors, 457–458
media recovery, 13
overview, 12–15
performance, 13
process flow, 117
recovery phase, 117
rolling database upgrades, 15
standby databases, 14
switchover and, 313
vs. SQL Apply, 11–17

redo change vectors, 108
redo compression, 45, 59–61, 282
redo copy latch, 111
redo data, 3
redo entries. See redo records
redo feature

asynchronous redo transport, 7–9
described, 2
merged, 304, 305
not applied to standby databases, 465
overview, 2–5
reducing amount of, 59
synchronous redo transport, 5–7

redo gaps. See also gaps
failovers and, 326, 328
resolving manually, 451–452

redo generation rate
availability and, 252
considerations, 232–233
determining, 43–44

redo log buffers, 3, 4, 8, 111
redo log files. See also ORL files
redo processing, 107–126, 111–114. See also

recovery
redo records, 3, 108
redo transport

ARCH, 11, 56, 198, 304, 312
architecture, 5, 6
compression, 9, 59–61
delays in, 268–269
primary database, 14
SYNC. See SYNC redo transport

redo transport mode, 42–58
Redo Transport Services, 5–11

described, 4, 5, 114
optimizing, 59–61

REDO_TRANSPORT_COMPRESS_ ALL
parameter, 9, 61

redo-write size, 4, 45
refreshing technology stack, 396
REINSTATE DATABASE command, 341
remote archival failure, 457
Remote File Server. See RFS
remote mirroring systems, 3, 13, 491–495
REMOTE_ARCHIVE_ENABLE parameter, 79
REMOVE CONFIGURATION command, 217
REMOVE INSTANCE command, 209–210
REOPEN attribute, 81
replica database. See standby databases
replicated tables, 134–141
replication

log-based, 130, 134, 135, 144–145
skipping, 130–134
third-party solutions, 151, 153
trigger-based, 137–141
unsupported tables, 135–141

reporting
Active Data Guard, 26
Database Replay, 365–366

RESET DB_UNIQUE_NAME option, 413
Resource Manager (RSM), 173–175
resources, 470
restarts

breaking deadlocks with, 165–167
SQL Apply, 164–167

RESTORE CONTROLFILE command,
412, 432

restore DATABASE preview command,
434–436

restore point, 27–28, 310, 315, 354, 400
RESTORE PREVIEW command, 434

Index 513
restores. See recoveries
RESYNC CATALOG command, 412
resynchronization, 414
retail brokerage firm configuration, 478–480
retention period, 441
RETRIES attribute, 383
reverse properties, 204–205
RFS (Remote File Server), 5, 6–7
RFS process, 5–10, 12, 56, 57, 117–118
RMAN (Recovery Manager)

advantages, 410
backups. See backups, RMAN
basics, 410–411
best practices, 440–441
block change tracking support,

411–412, 441
configuration, 412–415
control file management, 412
creating physical standby database, 78–98
format options, 419–420
incremental backups, 453–454
integration with Data Guard, 411–412
Oracle Database 10g, 94–98
Oracle Database 11g, 88–94
recoveries. See recoveries, RMAN
terminology, 411

RMAN catalog, 401, 412–416, 440
rman2disk.ksh script, 423
RMAN-08137 error, 418
Role Management Services, 19–24, 114
role transitions

automatic recognition of, 482
basics, 300–309
considerations, 62
described, 129, 300
failover, 302–309
SQL Apply and, 129
switchover, 300–302, 309

rolling database upgrades, 15, 396,
398–407, 476

round trip time (RTT), 7, 44–46
RPO (recovery point objective)

considerations, 33, 34
data loss, 33–34
overview, 32, 33–34
relating to protection modes, 62–63
requirements, 33–35
vs. RTO, 34

RSM (BrokerResource Manager), 173–175
RSM processes, 174
RTA (Real Time Apply), 115, 117–119, 207, 353

RTO (recovery time objective)
choosing apply method, 61–62
considerations, 34, 35
high availability, 35
low, 35
overview, 32, 34–35
real-time apply and, 119
relating to protection modes, 62–63
requirements, 34–35
vs. RPO, 34
zero downtown, 35

RTT (round trip time), 7, 44–46

S

SANs (Storage Area Networks), 13
scaling recovery rate, 118–119
scheduler jobs, 142–144
schemas

not maintained, 129–130
Statspack, 121–122

SCNs (system change numbers)
assigned, 3
comparing, 14
described, 108
flashback, 331, 332
lost writes, 126
query, 13
recovery, 331
reinstating primary database, 329–330

SCN_TO_TIMESTAMP function, 273–275
SDU buffer, 45
SDUs (session data units), 46–48
SecureFile large objects (LOBs), 135
send buffer, 49, 51–53, 59
servers

Data Guard Net Server, 174
DNS, 388
internode, 176
Log Network Server, 5–10
observer, 467–468
Remote File Server, 5–10, 115

server-side load balancing, 380
server-side TAF, 384, 391
SERVICE attribute, 36, 80
service level agreement (SLA), 32
SERVICE_NAME parameter, 390
session data units (SDUs), 46–48
SGA (System Global Area), 3, 109, 146,

148, 150

514 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Index 515
SHOW command, 214
SHOW CONFIGURATION command, 190–191,

194–195, 199
SHOW DATABASE command, 214, 449
SHOW DATABASE VERBOSE

command, 196–197, 208, 215
SHOW PROBLEM command, 446–447
SHUTDOWN ABORT command, 316, 337, 343
SID (system ID), 68–69
site failover, 378–379
skip rules, 129–133, 248, 249
SKIP_FAILED_TRANSACTION

clause, 167–168
skipping

DDL transactions, 295–296
failed transactions, 167–168
replication, 130–134
table entries, 245–250
transactions, 167–168, 296

SKIP_TRANSACTION procedure, 167,
168, 296

SLA (service level agreement), 32
snapshot standby database, 27, 250,

353–364, 468
socket size, 49–55
soft-corrupt data blocks, 112
spfile, 61, 95, 179, 216, 418
“split brain” condition, 24
SQL Apply, 15–17. See also logical standby

databases
advantages, 16–17
apply engine, 147
basics, 145–157
bottlenecks, 157, 159–164
checkpoints, 149–150
considerations, 15, 17, 20
DDL transactions, 153–157
DML transactions, 151–153
errors, 450–451
hanging, 461
memory management, 147–149
mining engine, 146
overview, 15–16
parameter values, 158
performance, 157–164
problems with, 459–461
process architecture, 146–147
redos in, 333
restarts in, 164–167
rolling upgrades, 398, 399–402, 407
row dependency, 153

setting parameters, 148
stopped, 167–169
switchover and, 313–314
transaction “chunking,” 150–151
troubleshooting, 164–170
tuning, 157–164
vs. Redo Apply, 11–17

SQL Apply lag, 296–297
SQL commands, 102, 103, 173, 201, 301
SQL Performance Analyzer, 364, 370–371
SQL queries, 275
SQL statements, 459–460
SQL syntax properties, 207–208
SQL*Plus

Broker properties and, 205
considerations, 63, 64, 72
described, 24
DG Menu, 276, 277
stopping MRP, 76–77
switchovers and, 25, 300, 311

SRL (standby redo log) files
adding, 224–226
considerations, 7, 37, 56–58
correcting, 75–77
described, 5, 56
input/output, 56–58
listing, 76
Maximum Availability mode, 38
Maximum Performance mode, 37
multiplexing, 57, 75–77, 90
number of, 37
ORL files and, 37
size, 116
uses for, 115–116
vs. ORL files, 116

standby apply performance, 17
standby control file, 412, 416, 432, 468
standby data files, 69–71
standby databases

active, 26–29
alternate destinations, 84
applying redos to, 11–17
backups on, 423–425
control file loss, 432
creating with Grid Control, 67–73,

221–222
creating with primary backup, 423
cross-platform considerations, 77
described, 2
determining current time on, 273–275
editing properties, 236–238

Index 515
logical. See logical standby databases
Maximum Availability mode, 38–39
Maximum Performance mode, 36–37
Maximum Protection mode, 39–41
missing data files, 437–440
mixing, 39
modifying with Grid Control, 222–224
monitoring, 272–276
multiple, 348
not receiving redo logs, 454–455
physical. See physical standby databases
read-write, 353–357
recovering datafiles on, 431
Redo Apply, 14
redo not applied to, 465
redo not sent to, 465
registered, 412–413
removing from Broker control, 250–251
reopening, 81
rolling forward, 453–454
snapshot, 27, 250, 353–364, 468
switching with primary. See switchover
transitioning primary to, 466
transitioning to primary role, 466–467
unable to apply redo, 457–458
waiting on log files, 455

standby file management, 284
standby locations, 69
standby redo log. See SRL
STANDBY setting, 134
StandbyArchiveLocation property, 210
STANDBY_FILE_MANAGEMENT parameter,

87–88
STANDBY_LOGFILE value, 82
STANDBY_ROLE value, 82
START parameter, 173, 181–183
STARTUP MOUNT command, 189, 191
static listener, 88–89
stats, checking for, 291–292
Statspack snapshots, 122–124
Statspack utility, 121–124
StatusReport property, 448
steady state, 34, 42–44, 128
stmt argument, 131
Storage Area Networks (SANs), 13
streams, 483
Streams capture, 144–145
switchback, 300, 397
switchover, 300–302. See also failover

with Data Guard Broker, 323
described, 238

health checks, 324
logical standby, 301–302, 320–323
multiple standbys and, 348
opening physical database after, 302
overview, 20–21, 300
performing with Grid Control, 238–240,

323–324
physical standby, 301–302, 315–320
preparing for, 311–314
preprocessing steps, 314–315
procedure for, 311–324
vs. failover, 309

switchover commands, 20, 303, 316–319, 348
switchover issues, 461–463
switchover process, 301–302
symbolic links, 262
SYNC attribute, 80
SYNC (synchronous) redo transport

architecture, 5–6
considerations, 477
latency and, 8
Maximum Availability mode, 38
overview, 5–7
vs. ASYNC transport, 38

SYNC standby database, 38–39
synchronous redo transport. See SYNC
synchronous transmission, 19
SYS password, 277
SYS user, 450
SYSDBA role, 277
SYSDBA username, 72
.syspasswd file, 277
system change numbers. See SCNs
System Global Area (SGA), 3, 109,

146, 148, 150
system hangs, 477
system ID (SID), 68–69

T

table level level enforcement, 114
tables

flashback, 429
logging, 136–141
nested, 135
not replicated, 130
protecting on logical standby, 134–141
replicating subset of, 130
replicating unsupported, 135–141
skipped/skip rules, 130–134

516 Oracle Data Guard 11g Handbook

Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3 Oracle TIGHT / Oracle Data Guard 11g Handbook / Carpenter et al. / 162111-3

Index 517
tablespace level enforcement, 113
TAF (Transparent Application Failover), 188,

382–384, 391
TAF attributes, 383–384
TAG name, 420, 421
target database, 411
Target Name, 72
target standby alert log, 315, 317–318
TCP (Transmission Control Protocol)

buffer space, 48–49
queue lengths and, 54–56
queue losses, 54
timeouts, 381–382, 384, 386, 390–391
tuning, 48–54

TCP connections, 48–49
TCP network layer, 48–54
TCP socket buffer size, 48–54, 58
TCP/IP (Transmission Control Protocol/Internet

Protocol), 44
technology stack, 396
TEOR (Terminal EOR), 326
Terminal EOR (TEOR), 326
test environment, 353–364
testing

active standby databases, 27–29
Database Replay, 366–370
network tuning, 58

thread checkpoint, 108
thread merging, 110, 304, 305, 307–308
threads, closed, 307
thresholds, 226
THROUGH ALL SWITCHOVER qualifier,

319–320, 348
throughput, 44, 58, 119
time, 273–275, 287
time loss, 33
timeouts, 381–382, 384, 386, 390–391
TNS (Transparent Networking Substrate), 46–48,

183–185
TNS descriptors, 53
TNS errors, 174–175
TNS level, 46
“TNS Packet Reader Failure” error, 458
TNSNAME definition, 36
TNSNAME entries, 184–186, 189, 192
TNSNAME files, 183, 184, 192
TNSNAME identifier, 72
TNSNAMES descriptor, 80
TNSNAMES.ORA file, 47, 48, 72, 189, 277, 463
TopWaitEvents property, 216
trace files, 447–448

transaction loss, 33. See also data loss
transactions

“chunking,” 150–151
committing, 111
DDL. See DDL transactions
dependent, 304
DML, 151–153
failed, 167–168
life cycle, 116–117
life of, 111
skipping, 167–168, 296

transfer methods, 69
transient logical standby database, 15, 402–407
transitions, role. See role transitions
transmission, 19–20
Transmission Control Protocol. See TCP
transmit queue limits, 54–55
Transparent Application Failover. See TAF
Transparent Networking Substrate. See TNS
transport lag, 8, 36, 159, 231–233, 272
trigger-based replication, 137–141
triggers

base table, 136, 137, 139
database role changes, 393–394
database startup, 390
DML, 136, 137
failover, 387, 390, 393–394
logging table, 136, 137, 140
SQL Apply, 135

troubleshooting, 443–470. See also errors
archive destination issues, 455
blog.dataguardbook.com, 470
control file, 469–470
data block corruption, 426–429
Data Guard Broker issues, 464–468
Data Guard Broker log files/tools, 448–449
database alert logs, 444–447
database management issues,

450–456, 459
DDL issues, 460
diagnostic information, 444–449
dynamic performance views, 449
failover issues, 463
health checks, 448–449
HELP command, 447
hints/tips, 468–469
logical standby database, 459–461
media recovery failures, 455–456
nologging issue, 456, 468–469
not receiving redo logs, 454–455
observer log files, 447

Index 517
OMF, 469–470
overview, 444
password file problems, 450
physical standby databases, 456–458
primary database shutdown, 456–458
redo gaps, 451–452
renaming datafiles with, 456
rolling standby forward, 453–454
SHOW PROBLEM command, 446–447
snapshot standby, 468
“split brain” condition, 24
SQL Apply, 164–170, 459–461
standby waiting on log files, 455
switchover issues, 461–463
trace files, 447–448

TRUNCATE operation, 155–156
tuning

apply engine, 163–164
bandwidth, 43–46
log buffers, 59
mining engine, 159–162
networks, 42–56, 58
recovery rate, 118–119
SQL Apply, 157–164
TCP, 48–54

TYPE attribute, 383

U

unique name, 78–79
FOR DB_UNIQUE_NAME, 413–414
DB_UNIQUE_NAME (attribute), 41, 79,

81–82
DB_UNIQUE_NAME (parameter),

41, 78–79, 195, 412, 461
LIST DB_UNIQUE_NAME OF

DATABASE, 415
RESET DB_UNIQUE_NAME, 413

UNRECOVERABLE option, 112
“Unsupported Record” error, 460
upgrades

DBUA, 400–401
rolling, 15, 396, 398–407, 476
TNS name and, 185

user errors, 429–430. See also errors
username

considerations, 191
physical standby database, 68–69
SYSDBA, 72

utility company configuration, 476–478

V

validation, 3
VALID_FOR attribute, 82–83, 206
V$ARCHIVE_DEST view, 282–284, 449
V$ARCHIVE_DEST_STATUS view, 282–284,

312, 449
V$ARCHIVED_LOG view, 268, 449
V$ARCHIVE_GAP view, 449
VARRAY data type, 99, 135
V$DATABASE_BLOCK_CORRUPTION view,

124–125
V$DATAGUARD_CONFIG view, 449
V$DATAGUARD_STATS view, 120–121, 272
V$DATAGUARD_STATUS view, 284–285, 449
V$DIAG_INFO view, 445
VERIFY command, 448
very large databases (VLDBs), 419
views. See also specific views

Data Guard, 120–121
dynamic performance, 449
materialized, 141–142
for monitoring recovery progress,

120–121
VIP (virtual IP) address, 106, 189, 379, 387, 388
virtual IP (VIP) address, 106, 189, 379, 387, 388
Virtual Private Database (VPD) policies, 130
VLDBs (very large databases), 419
V$LOG view, 449
V$LOGFILE view, 449
V$LOG_HISTORY view, 264, 449
V$LOGSTDBY_PROCESS view, 147,

292–294, 449
V$LOGSTDBY_PROGRESS view, 287, 313,

449, 461
V$LOGSTDBY_STATS view, 291
V$MANAGED_STANDBY view, 120,

275–276, 449
VPD (Virtual Private Database) policies, 130
V$PWFILE_USERS view, 279
V$RECOVERY_PROGRESS view, 121,

271–272
V$STANDBY_APPLY_SNAPSHOT view, 121
V$STANDBY_LOG view, 449

W

WANs (wide area networks), 44
web retailer configuration, 484–485
web site, dataguardbook.com, 276

518 Oracle Data Guard 11g Handbook

wide area networks (WANs), 44
workload capture, 365, 367
workload processing, 365
workload replay, 365
write-ahead logging protocol, 111
write-behind logging protocol, 111

X

XML, 135, 445
XML files, 445
XPT service, 183, 185

Z

zero data loss
Maximum Availability mode, 38–39
Maximum Protection mode, 39–41
mixed databases and, 33
production downtime and, 39
production throughput and, 33

zero data loss configurations, 39, 476–480
zero data loss method, 5
zero downtime, 35

If there are other Oracle users at
your location who would like to
receive their own subscription to
Oracle Magazine, please photo-
copy this form and pass it along.

Three easy ways to subscribe:

Web
 oracle.com/oraclemagazine

Fax

+1.847.763.9638

Mail

P.O. Box 1263, Skokie, IL 60076-8263

1

2

3

FREE SUBSCRIPTIONGET
Y O U R

TO ORACLE MAGAZINE
Oracle Magazine is essential gear for today’s information technology professionals.

Stay informed and increase your productivity with every issue of Oracle Magazine.

Inside each free bimonthly issue you’ll get:

Copyright © 2008, Oracle and/or its affiliates. All rights reserved. Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

WHAT IS THE PRIMARY BUSINESS ACTIVITY
OF YOUR FIRM AT THIS LOCATION? (check
one only)

o 01 Aerospace and Defense Manufacturing
o 02 Application Service Provider
o 03 Automotive Manufacturing
o 04 Chemicals
o 05 Media and Entertainment
o 06 Construction/Engineering
o 07 Consumer Sector/Consumer Packaged

Goods
o 08 Education
o 09 Financial Services/Insurance
o 10 Health Care
o 11 High Technology Manufacturing, OEM
o 12 Industrial Manufacturing
o 13 Independent Software Vendor
o 14 Life Sciences (biotech, pharmaceuticals)
o 15 Natural Resources
o 16 Oil and Gas
o 17 Professional Services
o 18 Public Sector (government)
o 19 Research
o 20 Retail/Wholesale/Distribution
o 21 Systems Integrator, VAR/VAD
o 22 Telecommunications
o 23 Travel and Transportation
o 24 Utilities (electric, gas, sanitation, water)
o 98 Other Business and Services _________

WHICH OF THE FOLLOWING BEST DESCRIBES
YOUR PRIMARY JOB FUNCTION?
(check one only)

CORPORATE MANAGEMENT/STAFF
o 01 Executive Management (President, Chair,

CEO, CFO, Owner, Partner, Principal)
o 02 Finance/Administrative Management

(VP/Director/ Manager/Controller,
Purchasing, Administration)

o 03 Sales/Marketing Management
(VP/Director/Manager)

o 04 Computer Systems/Operations
Management
(CIO/VP/Director/Manager MIS/IS/IT, Ops)

IS/IT STAFF
o 05 Application Development/Programming

Management
o 06 Application Development/Programming

Staff
o 07 Consulting
o 08 DBA/Systems Administrator
o 09 Education/Training
o 10 Technical Support Director/Manager
o 11 Other Technical Management/Staff
o 98 Other

WHAT IS YOUR CURRENT PRIMARY OPERATING
PLATFORM (check all that apply)

o 01 Digital Equipment Corp UNIX/VAX/VMS
o 02 HP UNIX
o 03 IBM AIX
o 04 IBM UNIX
o 05 Linux (Red Hat)
o 06 Linux (SUSE)
o 07 Linux (Oracle Enterprise)
o 08 Linux (other)
o 09 Macintosh
o 10 MVS
o 11 Netware
o 12 Network Computing
o 13 SCO UNIX
o 14 Sun Solaris/SunOS
o 15 Windows
o 16 Other UNIX
o 98 Other
99 o None of the Above

DO YOU EVALUATE, SPECIFY, RECOMMEND,
OR AUTHORIZE THE PURCHASE OF ANY OF
THE FOLLOWING? (check all that apply)

o 01 Hardware
o 02 Business Applicat ions (ERP, CRM, etc.)
o 03 Applicat ion Development Tools
o 04 Database Products
o 05 Internet or Int ranet Products
o 06 Other Sof tware
o 07 Middleware Products
99 o None of the Above

IN YOUR JOB, DO YOU USE OR PLAN TO PUR-
CHASE ANY OF THE FOLLOWING PRODUCTS?
(check all that apply)

SOFTWARE
o 01 CAD/CAE/CAM
o 02 Collaboration Software
o 03 Communications
o 04 Database Management
o 05 File Management
o 06 Finance
o 07 Java
o 08 Multimedia Authoring
o 09 Networking
o 10 Programming
o 11 Project Management
o 12 Scientific and Engineering
o 13 Systems Management
o 14 Workflow

HARDWARE
o 15 Macintosh
o 16 Mainframe
o 17 Massively Parallel Processing

o 18 Minicomputer
o 19 Intel x86(32)
o 20 Intel x86(64)
o 21 Network Computer
o 22 Symmetric Multiprocessing
o 23 Workstation Services

SERVICES
o 24 Consulting
o 25 Education/Training
o 26 Maintenance
o 27 Online Database
o 28 Support
o 29 Technology-Based Training
o 30 Other
99 o None of the Above

WHAT IS YOUR COMPANY’S SIZE?
(check one only)

o 01 More than 25,000 Employees
o 02 10,001 to 25,000 Employees
o 03 5,001 to 10,000 Employees
o 04 1,001 to 5,000 Employees
o 05 101 to 1,000 Employees
o 06 Fewer than 100 Employees

DURING THE NEXT 12 MONTHS, HOW MUCH
DO YOU ANTICIPATE YOUR ORGANIZATION
WILL SPEND ON COMPUTER HARDWARE,
SOFTWARE, PERIPHERALS, AND SERVICES FOR
YOUR LOCATION? (check one only)

o 01 Less than $10,000
o 02 $10,000 to $49,999
o 03 $50,000 to $99,999
o 04 $100,000 to $499,999
o 05 $500,000 to $999,999
o 06 $1,000,000 and Over

WHAT IS YOUR COMPANY’S YEARLY SALES
REVENUE? (check one only)

o 01 $500, 000, 000 and above
o 02 $100, 000, 000 to $500, 000, 000
o 03 $50, 000, 000 to $100, 000, 000
o 04 $5, 000, 000 to $50, 000, 000
o 05 $1, 000, 000 to $5, 000, 000

WHAT LANGUAGES AND FRAMEWORKS DO
YOU USE? (check all that apply)

o 01 Ajax o 13 Python
o 02 C o 14 Ruby/Rails
o 03 C++ o 15 Spring
o 04 C# o 16 Struts

o 05 Hibernate o 17 SQL
o 06 J++/J# o 18 Visual Basic
o 07 Java o 98 Other
o 08 JSP
o 09 .NET
o 10 Perl

o 11 PHP
o 12 PL/SQL

WHAT ORACLE PRODUCTS ARE IN USE AT YOUR
SITE? (check all that apply)

ORACLE DATABASE
o 01 Oracle Database 11g
o 02 Oracle Database 10g
o 03 Oracle9i Database
o 04 Oracle Embedded Database

(Oracle Lite, Times Ten, Berkeley DB)
o 05 Other Oracle Database Release

ORACLE FUSION MIDDLEWARE
o 06 Oracle Applicat ion Server
o 07 Oracle Por tal
o 08 Oracle Enterpr ise Manager
o 09 Oracle BPEL Process Manager
o 10 Oracle Ident ity Management
o 11 Oracle SOA Suite
o 12 Oracle Data Hubs

ORACLE DEVELOPMENT TOOLS
o 13 Oracle JDeveloper
o 14 Oracle Forms
o 15 Oracle Repor ts
o 16 Oracle Designer
o 17 Oracle Discoverer
o 18 Oracle BI Beans
o 19 Oracle Warehouse Builder
o 20 Oracle WebCenter
o 21 Oracle Applicat ion Express

ORACLE APPLICATIONS
o 22 Oracle E-Business Suite
o 23 PeopleSof t Enterpr ise
o 24 JD Edwards Enterpr iseOne
o 25 JD Edwards World
o 26 Oracle Fusion
o 27 Hyperion
o 28 Siebel CRM

ORACLE SERVICES
o 28 Oracle E-Business Suite On Demand
o 29 Oracle Technology On Demand
o 30 Siebel CRM On Demand
o 31 Oracle Consult ing
o 32 Oracle Educat ion
o 33 Oracle Suppor t
o 98 Other
99 o None of the Above

YOU MUST ANSWER ALL 10 QUESTIONS BELOW.

1

2

3

4

5

6

7

8

9

08
01
40
04

s i g n a t u r e (r e q u i r e d) d a t e

x
From time to time, Oracle Publishing allows our partners
exclusive access to our e-mail addresses for special promo-
tions and announcements. To be included in this program,
please check this circle. If you do not wish to be included, you
will only receive notices about your subscription via e-mail.

Oracle Publishing allows sharing of our postal mailing list with
selected third parties. If you prefer your mailing address not to
be included in this program, please check this circle.

If at any time you would like to be removed from either mailing list, please contact
Customer Service at +1.847.763.9635 or send an e-mail to oracle@halldata.com.
If you opt in to the sharing of information, Oracle may also provide you with
e-mail related to Oracle products, services, and events. If you want to completely
unsubscribe from any e-mail communication from Oracle, please send an e-mail to:
unsubscribe@oracle-mail.com with the following in the subject line: REMOVE [your
e-mail address]. For complete information on Oracle Publishing’s privacy practices,
please visit oracle.com/html/privacy/html

n a m e t i t l e

c o m p a n y e - m a i l a d d r e s s

s t r e e t / p . o . b o x

c i t y / s t a t e / z i p o r p o s t a l c o d e t e l e p h o n e

c o u n t r y f a x

Want your own FREE subscription?

Yes, please send me a FREE subscription Oracle Magazine. No.

Would you like to receive your free subscription in digital format instead of print if it becomes available? Yes No

To receive a free subscription to Oracle Magazine, you must fill out the entire card, sign it, and date
it (incomplete cards cannot be processed or acknowledged). You can also fax your application to
+1.847.763.9638. Or subscribe at our Web site at oracle.com/oraclemagazine

10

	Contents
	Foreword
	Acknowledgments
	Introduction
	1 Data Guard Architecture
	Data Guard Overview
	What Is Redo?

	Redo Transport Services
	Synchronous Redo Transport
	Asynchronous Redo Transport
	Redo Transport Compression
	Automatic Gap Resolution

	Apply Services
	Redo Apply (Physical Standby)
	SQL Apply (Logical Standby)
	Can’t Decide? Then Use Both!

	Data Guard Protection Modes
	Maximum Performance
	Maximum Availability
	Maximum Protection

	Role Management Services
	Switchover
	Failover

	Data Guard Management
	Active Standby Databases
	Offload Read-Only Queries and Reporting
	Offload Backups
	Testing

	Data Guard and the Maximum Availability Architecture
	Conclusion

	2 Implementing Oracle Data Guard
	Plan Before You Implement
	Determining Your Requirements
	Understanding the Configuration Options
	Relating the RPO and RTO to the Protection Mode

	Creating a Physical Standby Database
	Choosing Your Interface
	Before You Start
	Using Oracle Enterprise Manager Grid Control
	The Power User Method

	Creating a Logical Standby
	Data Guard and Oracle Real Application Clusters
	Conclusion

	3 Redo Processing
	Important Concepts of Oracle Recovery
	ACID Properties
	Oracle Recovery
	Life of a Transaction
	Nologging Operations

	The Components of a Physical Standby
	Real-time Apply
	Scaling and Tuning Data Guard Apply Recovery
	Parallel Media Recovery
	Tools and Views for Monitoring Physical Standby Recovery

	Physical Standby Corruption Detection
	11g New Data Protection Changes
	Data Protection and Checking on a Physical Standby

	Conclusion

	4 Logical Standby
	Characterizing the Dataset Available at the Logical Standby
	Characterizing the Dataset Replicated from the Primary Database
	Protecting Replicated Tables on a Logical Standby
	Customizing Your Logical Standby Database (or Creating a Local Dataset at the Logical Standby)
	Understanding the Operational Aspects of a Logical Standby
	Looking Inside SQL Apply

	Tuning SQL Apply
	Some Rules of Thumb
	Determining Whether SQL Apply Is Lagging
	Determining Whether SQL Apply Is the Bottleneck
	Determining Which SQL Apply Component Is the Bottleneck

	Troubleshooting SQL Apply
	Understanding Restarts in SQL Apply
	Troubleshooting Stopped SQL Apply

	Conclusion

	5 Implementing Oracle Data Guard Broker
	Overview of the Data Guard Broker
	The Broker Process Model
	The Broker Process Flow
	The Broker Configuration Files
	The Broker CLI

	Getting Started with the Broker
	Configuring the Broker Parameters
	The Broker and Oracle Net Services
	RAC and the Broker
	Connecting to the Broker

	Managing Data Guard with the Broker
	Creating and Enabling a Broker Configuration
	Changing the Broker Configuration Properties
	Changing the State of a Database
	Changing the Protection Mode

	Monitoring Data Guard Using the Broker
	Removing the Broker
	Conclusion

	6 Oracle Enterprise Manager Grid Control Integration
	Accessing the Data Guard Features
	Configuring Data Guard Broker with OEM Grid Control
	Verify Configuration and Adding Standby Redo Logs
	Viewing Metrics
	Modifying Metrics
	Viewing the Alert Log File
	Enabling Flashback Database
	Reviewing Performance
	Changing Protection Modes
	Editing Standby Database Properties
	Performing a Switchover
	Performing a Manual Failover
	Fast-Start Failover
	Creating a Logical Standby
	Managing Active Standby
	Managing Snapshot Standby
	Removing a Standby Database from Broker Control

	Keeping an Eye on Availability
	Conclusion

	7 Monitoring Data Guard Implementations
	Monitoring the Data Guard Environment
	Mining the Alert Log File (PS+LS)
	Gathering Statistical Information from Archive Log History (PS+LS)
	Detecting Archive Log Gaps (PS+LS)
	Identifying Delays in Redo Transport (PS)
	Monitoring Archive Log Destinations (PS+LS)
	Examining Apply Rate and Active Rate (PS)
	Reviewing Transport and Apply Lag (PS+LS)
	Determining the Current Time on the Standby Database (PS)
	Reporting the Status of Managed Recovery Process (PS)

	Data Guard Menu Utility
	Reviewing the Current Data Guard Environment
	Checking the Password File (PS+LS)
	Checking for Nologging Activities (PS+LS)
	Looking at Archivelog Mode and Destinations (PS+LS)
	Checking Standby File Management (PS)
	Revealing Errors in the Data Guard Status View (PS)
	Logical Standby Data Guard Menu

	Conclusion

	8 Switchover and Failover
	Introduction to Role Transition
	Switchover
	Failover
	Switchover vs. Failover

	Flashback Technologies and Data Guard
	Performing a Switchover
	Configuration Completeness Check
	Preparatory Checks
	Preprocessing Steps
	Switching over to a Physical Standby
	Switching over to a Logical Standby
	Using the Broker or Grid Control to Switchover
	Switchover Health Check

	Performing a Failover
	Failing over to a Physical Standby
	Failing over to a Logical Standby
	Bringing Back the Old Primary
	Using the Broker or Grid Control to Failover
	Automatic Failover

	A Final Word on Multiple Standbys
	Conclusion

	9 Active Data Guard
	Physical Standby—Open Read-Only
	Why Read-Only?
	The Downside of Read-Only or Read-Write Mode

	Snapshot Standby for QA and Test Environments
	Read Write Standby in Oracle Database 10g
	Snapshot Standbys in Oracle Database 11g

	Real Application Testing
	Database Replay
	SQL Performance Analyzer

	Active Data Guard
	Configuring Active Data Guard

	Conclusion

	10 Automating Site and Client Failover
	Defining the Problem
	Complete Site Failover
	Partial Site Failover

	The Nitty Gritty
	Connection Load Balancing and Connect Time Failover
	Outbound Connect Timeout
	Transparent Application Failover
	Fast Application Notification
	The DB_ROLE_CHANGE System Event

	Implementing Client Failover
	Complete Site Failover Configuration

	Conclusion

	11 Minimizing Planned Downtime Using Data Guard Switchover
	Overview of Planned Migration
	Leveraging Data Guard Switchover for Planned Migration
	Case 1–New Data Center
	Case 2–Move to ASM

	Performing a Database Rolling Upgrade Using Data Guard
	Leveraging Rolling Upgrades Using SQL Apply
	Rolling Upgrades Using Transient Logical Standby

	Conclusion

	12 Backup and Recovery Considerations
	RMAN Basics
	RMAN Integration with Data Guard
	Block Change Tracking Support
	Control File Management
	Resynchronizing the RMAN Catalog

	RMAN Configuration in Data Guard
	Example Configuration for a Primary Database
	Example Configuration for a Backup Standby Database
	Example Configuration for Other Physical Standby Databases

	Backup Strategies
	Backup Scenarios
	Backup Database Not Backed Up
	Full Backups on Primary
	Backup as Copy
	Image Copy Rolled Forward
	Standby Database Creation
	Backups on a Standby Database
	Archive Backups

	General Recovery Strategies
	Media Failure
	Block Corruption
	User Errors

	Recovery Scenarios
	Loss of a Datafile on a Primary Database
	Loss of a Datafile on a Standby Database
	Loss of Standby Controlfile
	Loss of Primary Controlfile
	Loss of an Online Redo Log File
	Incomplete Recovery of the Primary Database
	Recovering from a Dropped Table
	Recover a Missing Datafile from a Backup Taken on the Standby

	General Best Practices
	Conclusion

	13 Troubleshooting Data Guard
	Diagnostic Information
	Database Alert Logs
	Observer Log Files
	Data Guard Trace Files
	Data Guard Broker Log Files and Tools
	Dynamic Performance Views

	Data Guard Configuration and Management Errors
	Common Management Issues
	Physical Standby Issues
	Logical Standby Database Failures
	Switchover Issues
	Failover Issues
	Data Guard Broker Issues
	Errors Converting to a Snapshot Standby

	Helpful Hints and Tips
	Avoid Refreshing the Standby Control File
	Avoid Using the NOLOGGING Clause
	OMF—Copying Control File

	Conclusion

	14 Deployment Architectures
	Manufacturing Company: HA Configuration
	Utility Company: Zero Data Loss HA/DR
	Retail Brokerage Firm: HA/DR with Zero Data Loss and Extended Geographic Separation
	Government Agency: Protection from Multi-site Threats
	Pharmaceutical Company: Centralized HA/DR and Data Distribution
	Web Retailer: HA/DR with Reader-farm Scale Out
	Insurance Company: Maximum Availability Architecture
	Conclusion

	A Data Guard vs. Array-based Remote Mirroring Solutions
	The Basics
	Topology
	Performance
	Reliability
	Final Thoughts

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

